Классификация сигналов, используемых в радиотехнике. Основы цифровой обработки сигнала

Таким образом, сигналом называется физический процесс, параметры которого содержат информацию (сообщение) и который пригоден для обработки и передачи на расстояние.

Одномерные и многомерные сигналы. Типичным для радиотехники сигналом является напряжение на зажимах какой либо цепи или ток в ветви. Такой сигнал, описываемый одной функцией времени, принято называть одномерным.

Однако иногда удобно вводить в рассмотрение многомерные, или векторные, сигналы вида

образованные некоторым множеством одномерных сигналов. Целое число N называют размерностью такого сигнала.

Отметим, что многомерный сигнал - упорядоченная совокупность одномерных сигналов. Поэтому в общем случае сигналы с различным порядком следования компонент не равны друг другу.



Аналоговые, дискретные и цифровые сигналы . Заканчивая краткий обзор принципов классификации радиотехнических сигналов, отметим следующее. Часто физический процесс, порождающий сигнал, развивается во времени таким образом, что значения сигнала можно измерять в любые моменты времени. Сигналы этого класса принято называть аналоговыми (континуальными). Термин «аналоговый сигнал» подчеркивает, что такой сигнал «аналогичен», полностью подобен порождающему его физическому процессу.

Одномерный аналоговый сигнал наглядно представляется своим графиком (осциллограммой), который может быть как непрерывным, так и с точками разрыва..

.

Многомерные модели сигналов особенно полезны в тех случаях, когда функционирование сложных систем анализируется с помощью ЭВМ.

Детерминированные и случайные сигналы. Другой принцип классификации радиотехнических сигналов основан на возможности или невозможности точного предсказания их мгновенных значений в любые моменты времени.

Если математическая модель сигнала позволяет осуществить такое предсказание, то сигнал называется детерминированным. Способы его задания могут быть разнообразными - математическая формула, вычислительный алгоритм, наконец, словесное описание.

Аналоговые (непрерывные), дискретные и цифровые сигналы . Часто физический процесс, порождающий сигнал, развивается во времени таким образом, что значения сигнала можно измерять в любые моменты времени. Сигналы этого класса принято называть аналоговыми (континуальными). Термин «аналоговый сигнал» подчеркивает, что такой сигнал «аналогичен», полностью подобен порождающему его физическому процессу.

Одномерный аналоговый сигнал наглядно представляется своим графиком (осциллограммой), который может быть как непрерывным, так и с точками разрыва.

Первоначально в радиотехнике использовались сигналы исключительно аналогового типа. Такие сигналы позволяли с успехом решать относительно несложные технические задачи (радиосвязь, телевидение и т. д.). Аналоговые сигналы было просто генерировать, принимать и обрабатывать с помощью доступных в те годы средств.

Возросшие требования к радиотехническим системам, разнообразие применений заставили искать новые принципы их построения. На смену аналоговым в ряде случаев пришли импульсные системы, работа которых основана на использовании дискретных сигналов. Простейшая математическая модель дискретного сигнала - это счетное множество точек ( - целое число) на оси времени, в каждой из которых определено отсчетное значение сигнала . Как правило, шаг дискретизации для каждого сигнала постоянен.

Одно из преимуществ дискретных сигналов по сравнению с аналоговыми - отсутствие необходимости воспроизводить сигнал непрерывно во все моменты времени. За счет этого появляется возможность по одной и той же радиолинии передавать сообщения от разных источников, организуя многоканальную связь с разделением каналов по времени.

Интуитивно ясно, что быстро изменяющиеся во времени аналоговые сигналы для их дискретизации требуют малого шага .

Особой разновидностью дискретных сигналов являются цифровые сигналы. Для них характерно то, что отсчетные значения представлены в форме чисел. По соображениям технических удобств реализации и обработки обычно используют двоичные числа с ограниченным и, как правило, не слишком большим числом разрядов. В последнее время наметилась тенденция к широкому внедрению систем с цифровыми сигналами. Это связано со значительными успехами, достигнутыми микроэлектроникой и интегральной схемотехникой.

Следует иметь в виду, что в сущности любой дискретный или цифровой сигнал (речь идет о сигнале - физическом процессе, а не о математической модели) является сигналом аналоговым.

Строго говоря, детерминированных сигналов, равно как и отвечающих им детерминированных процессов, не существует. Неизбежное взаимодействие системы с окружающими ее физическими объектами, наличие хаотических тепловых флуктуации и просто неполнота знаний о начальном состоянии системы - все это заставляет рассматривать реальные сигналы как случайные функции времени.

В радиотехнике случайные сигналы часто проявляют себя как помехи, препятствующие извлечению информации из принятого колебания. Проблема борьбы с помехами, повышение помехоустойчивости радиоприема - одна из центральных проблем радиотехники.

Может показаться, что понятие «случайный сигнал» противоречиво. Однако это не так. Например, сигнал на выходе приемника радиотелескопа, направленного на источник космического излучения, представляет собой хаотические колебания, несущие, однако, разнообразную информацию о природном объекте.

Между детерминированными и случайными сигналами нет непреодолимой границы. Очень часто в условиях, когда уровень помех значительно меньше уровня полезного сигнала с известной формой, более простая детерминированная модель оказывается вполне адекватной поставленной задаче.

Моделирование сигналов начинается, прежде всего, с их классификации. Существует несколько способов классификации, один из которых показан на рис. 1.6 .

Рис. 1.6.

Следует иметь в виду, что в радиотехнических цепях действуют электрические сигналы.

Электрические сигналы - это изменяющиеся во времени электрические токи или напряжения.

Все электрические сигналы делят на детерминированные и случайные.

Детерминированные сигналы описываются заданной функцией времени, значение которой в любой момент времени известно или может быть предсказано с вероятностью единица.

К детерминированным сигналам относятся так называемые испытательные или тестовые сигналы. Они широко используются при проведении различных исследований, при испытании радиоаппаратуры, в радиоизмерителыюй практике и т.п.

Для описания случайных сигналов используется вероятностный подход, при котором случайные сигналы рассматриваются как случайные процессы.

Случайный сигнал - это случайный процесс, изменяющийся в заданном динамическом диапазоне и принимающий любое значение из диапазона в вероятностью меньшей единицы.

Как правило, случайные сигналы представляют собой хаотические функции времени, а выбор его математической модели зависит от закона его распределения (равномерный, нормальный или гауссов, пуассоновский и т.п.).

Все случайные сигналы делятся на стационарные, нестационарные и эргодические.

Случайный процесс называется стационарным, если его статистические характеристики (как минимум математическое ожидание т и дисперсия а 2) не зависят от времени. В противном случае процесс не стационарен.

Процесс называется эргодическим, если его средняя по ансамблю реализаций равна средней по времени.

Все эргодические процессы являются стационарными, но не все стационарные процессы являются эргодическими.

Большинство случайных сигналов в радиотехнических системах являются эргодическими, поэтому для описания математической модели достаточно случайный сигнал усреднить по ансамблю реализаций или по времени.

Реальные сигналы всегда являются в какой - то мере случайными. Во - первых, сигнал всегда искажается в цепях передатчика и приёмника из - случайного характера изменения параметров их элементов. Во - вторых, в среде передачи на сигнал всегда воздействуют случайные помехи, превращая его в случайный на входе приёмника. В то же время во многих случаях реальный сигнал с известной степенью точности можно рассматривать как детерминированный, что облегчает их анализ.

Все сигналы (детерминированные и случайные) делятся на периодические и непериодические.

Периодические сигналы характеризуются свойством повторяемости через некоторый промежуток времени Т, называемый периодом: s(t) = s(t + nT),n= 1,2,3,.... (1.2)

Здесь s(t) - рассматриваемый сигнал; Т - период его повторения; f = 1/Т - частота повторения сигнала.

Если в процессе передачи Т меняется произвольным образом, то сигнал называют непериодическим. Если же период Т повторяется через достаточно большой промежуток времени, то сигнал называют ква- зипериодическим или псевдослучайным.

Сигналы, даже аналоговые, существующие только в одном интервале времени, относятся к импульсным. На рисунке 1.7 приведены некоторые виды перечисленных выше сигналов.

Рис. 1.7, а описывает, например, детерминированный дискретный сигнал с периодом следования прямоугольных импульсов Т и длительностью импульса Т с в соотношении 2: 1 (меандр). Отношение Q = Т/Т с называется скважностью сигнала. Для сигнала рис. 1.7, а она равна 2, а для сигнала рис. 1.7,с - 3. На рисунке 1.7, с показан периодический сигнал с Q = 3. Рисунки 1.7, b и d иллюстрируют случайные и непериодические сигналы соответственно. Если на всех рисунках выделить только один импульс, то получим, соответственно, сигнал импульсный .


Рис. 1.7.

При рассмотрении различных сигналов обычно прибегают к четырём видам их представления:

  • - временному;
  • - спектральному;
  • - корреляционному;
  • - векторному.

Временное представление.

Временное представление основано на рассмотрении сигнала как функции времени. В зависимости от положения сигнала относительно наблюдателя, его функция времени будет, вообще говоря, различной. Сказанное достаточно просто поясняется с помощью диаграммы, изображённой на рис. 1.8.


Рис. 1.8.

Положим, что «наблюдатель» находится в точке, которая характеризуется интервалом наблюдения t4 - ts. Очевидно, что в момент времени tj наблюдается только некоторая точка, отображающая факт наличия сигнала, а о его структуре сказать ничего нельзя. По мере приближения к «наблюдателю» сигнал начинает растягиваться во времени и мы видим какую-то его структуру (интервал времени t2 - На этом интервале структура сигнала соответствует его истинной структуре, а вот частота следования импульсов не будет соответствовать фактической. Таковой она станет только в интервале t 4 - t 5 , когда расположение сигнала будет соответствовать положению «наблюдателя». В этом интервале мы сможем измерить истинные параметры сигнала - его амплитуду, частоту и фазу.

На этом свойстве основывается эффект Доплера, который легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится, и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, он услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты звуковых волн.

Если источник сигнала движется по направлению к приёмнику («наблюдателю»), то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется - длина волны увеличивается:

где со 0 - угловая частота, с которой источник испускает волны, с - скорость распространения волн в среде, v - скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

Аналогично, если приёмник движется навстречу волнам, он регистрирует их гребни чаще и наоборот.

Математически временное представление сигнала - это разложение сигнала s(t), при котором в качестве базисных (основополагающих) функций используются единичные импульсные функции - дельта-функции. Математическое описание такой функции задается соотношениями

где 8(t) - дельта-функция, отличная от нуля в начале координат (при t = 0).

Для более общего случая, когда дельта-функция отличается от нуля в момент времени t = tj (рис. 1.9), имеем

Рис. 1.9. Дельта-функция

Такая математическая модель соответствует абстрактному импульсу бесконечно малой длительности и безграничной величины. Единственным параметром, правильно отражающим реальный сигнал, является время его действия. С помощью дельта-функции можно выразить значение реального сигнала s(t) в конкретный момент времени tji

Это равенство справедливо для любого текущего момента времени t.

Таким образом, функцию s(t) можно выразить в виде совокупности примыкающих друг к другу импульсов бесконечно малой длительности. Ортогональность совокупности таких импульсов очевидна, так как они не перекрываются во времени.

Подавляющее большинство сигналов, использующихся в современных системах связи имеют вид прямоугольных импульсов. Прямоугольный импульс прямоуголен только в идеальном случае. На самом деле он имеет вид, изображённый на рис. 1.10 .


Рис. 1.10.

На рисунке импульс имеет следующие основные составные части:

  • - участок t r t2 - фронт, т.е. отклонение напряжения от исходного уровня;
  • - участок t2-t3 - вершина импульса;
  • - участок t3-t 4 - срез (задний фронт), т.е. возврат напряжения к исходному уровню.

Параметры импульса:

  • 1. Амплитуда импульса U m - наибольшее отклонение импульса от исходного уровня.
  • 2. Длительность импульса т н (t„). Измеряется на различных уровнях U m . Длительность бывает:
    • - полная, на уровне 0,lU m (т ио);
    • - активная, при которой обычно срабатывает импульсное устройство - на уровне 0,5U m (т иа).
  • 2. Длительность фронта (1ф) - время нарастания напряжения от 0,1 U m до 0,9U m (может быть полной и активной).
  • 3. Длительность среза (t c) - время возвращения напряжения к исходному уровню от 0,9U m до 0,lU m .
  • 4. Спад вершины импульса (AU m). Описывается коэффициентом

спада Величина коэффициента спада колеблется в диапазоне от 0,01 до 0,1.

В качестве дополнительного можно отметить такой параметр как крутизна - скорость нарастания (спада) импульса.

Крутизна фронта определяется как

Крутизна среза определяется как

Определяется крутизна в [В/с]. Прямоугольный импульс обладает бесконечно большой крутизной. Наибольшее применение получили прямоугольные и экспоненциальные видеоимпульсы.

Для передачи информации используются последовательности импульсов - периодические и непериодические. Периодические последовательности используются только для тестирования аппаратуры, а для передачи семантической информации применяются непериодические последовательности. Тем не менее, для рассмотрения основных закономерностей, имеющих место при передаче информации, обратимся к периодическим последовательностям (рис. 1.11).

Рис. 1.11.

Рассмотрим параметры последовательности импульсов.

  • 1. Период следования (повторения) - Т. Т = t„ + t n .
  • 2. Частота следования (повторения) - F. Это есть число импульсов в секунду. Выражение для определения частоты имеет вид: F = 1/Т.
  • 3. Скважность - отношение интервала между импульсами (периода) (скважины) к длительности самого импульса (Q). Q=T/t H . Скважность всегда больше 1 (Q>1).
  • 4. Коэффициент заполнения - величина, обратная скважности (у).

Таким образом, основными параметрами импульсов являются амплитуда, длительность импульса, длительность фронта, длительность среза, спад вершины импульса.

Параметрами последовательности импульсов являются период следования импульсов, частота следования импульсов, скважность, коэффициент заполнения.

Периодический сигнал описывается выражением s(t) = s(t + Т), причём в течение периода Т (ti, t + Т) сигнал описывается формулой

Если в процессе передачи период Т меняется произвольным образом, то сигнал называют непериодическим. Если же период Т повторяется через достаточно большой промежуток времени, то сигнал называют квазипериодическим или псевдослучайным.

Среди множества различных сигналов особое место занимают так называемые тестовые или испытательные сигналы. Основные из них приведены в таблице 1 .

Таблица 1

Испытательные сигналы

Приведенные в таблице 1 сигналы являются функциями времени, но следует отметить, что такие же функции используются и в частотной области, где аргументом будет частота. Любую из функций можно смещать во времени в желаемую область временной плоскости и использовать для описания более сложных сигналов.

Функция включения (единичная функция (функция скачка) или функция Хевисайда), позволяет описать процесс перехода некоторого физического объекта из исходного - «нулевого» в «единичное» состояние, причем этот переход совершается мгновенно. С помощью функции включения удобно описывать, например, разнообразные процессы коммутации в электрических цепях.

При моделировании сигналов и систем значение единичной функции (функции скачка) в точке t = 0 очень часто принимают равным 1, если это не имеет принципиального значения. Эта функция используется также при создании математических моделей сигналов конечной длительности. При умножении любой произвольной функции, в том числе периодической, на прямоугольный импульс, сформированный из двух последовательных функций включения s(t) = o(t) - o(t - Т), из неё «вырезается» участок на интервале 0 - Т, и обнуляются значения функции за пределами этого интервала (следует обратить внимание из аналитической записи этого примера, где «выставлены» эти функции). Произведение произвольного сигнала на функцию включения характеризует начало действия сигнала.

Дельта-функция или функция Дирака по определению дополнительно описывается следующими математическими выражениями:

причем интеграл характеризует тот факт, что эта функция имеет единичную площадь и локализована в конкретной временной точке.

Функция S(t-i) не является дифференцируемой, и имеет размерность, обратную размерности её аргумента, что непосредственно следует из безразмерности результата интегрирования и, в соответствии с примечаниями таблицы, характеризует скорость изменения функции включения. Значение дельта-функции равно нулю везде за исключением точки т, где она представляет собой бесконечно узкий импульс с бесконечно большой амплитудой.

Дельта-функция является полезной математической абстракцией. На практике такие функции не могут быть реализованы с абсолютной точностью, так как невозможно реализовать амплитудное значение, равное бесконечности, в точке t = т на аналоговой временной шкале, т. е. определенной по времени также с бесконечной точностью. Но во всех случаях, когда площадь импульса равна 1, длительность импульса достаточно мала, а за время его действия на входе какой-либо системы сигнал на ее выходе практически не изменяется (реакция системы на импульс во много раз больше длительности самого импульса), входной сигнал можно считать единичной импульсной функцией со свойствами дельта - функции.

При всей своей абстрактности дельта-функция имеет вполне определённый физический смысл. Представим себе импульсный сигнал прямоугольной формы (выразив его функцией из таблицы - это rect- функция, т. е. сигнал s(t) = (1/ти)гесф(1-т)/ти], от англ, rectangle - прямоугольник) длительностью т,„ амплитуда которого равна 1/т,„ а площадь соответственно равна 1.

При уменьшении значения длительности т и импульс, сокращаясь по длительности, сохраняет свою площадь, равную 1, и возрастает по амплитуде. Предел такой операции при т„->0и носит название дельта-импульса. Этот сигнал 5(t-x) сосредоточен в одной координатной точке t=x, конкретное амплитудное значение сигнала не определено, но площадь (интеграл) остается равной 1.

Это не мгновенное значение функции в точке t = т, а именно импульс (импульс силы в механике, импульс тока в электротехнике и т.

п.) - математическая модель короткого действия, значение которого равно 1.

Дельта-функция обладает фильтрующим свойством. Суть его заключается в том, что если дельта-функция 5(t-x) входит под интеграл какой-либо функции в качестве множителя, то результат интегрирования равен значению подынтегральной функции в точке т расположения дельта-функции, т. е.:

Пределы интегрирования в этом выражении можно ограничить ближайшими окрестностями точки т.

При изучении общих свойств сигналов, абстрагируются от их физической природы и назначения, заменяя их математической моделью. Математическая модель - это приближённое описание сигнала в форме, наиболее пригодной для проводимого исследования. Математическое описание всегда отражает лишь отдельные, наиболее важные свойства сигнала, существенные для данного исследования.

Математический аппарат, используемый при анализе сигналов, позволяет проводить исследования без учёта их физической природы.

При практическом анализе сигналов чаще всего применяется представление в виде обобщённого ряда Фурье,

однако эти сигналы должны удовлетворять условию конечности энергии на интервале от t до t2

Так как равенство (1.10) понимается в среднеквадратическом смысле, представление сигнала в виде обобщённого ряда Фурье сводится к выбору системы базисных функций {

В настоящее время широкое применение нашли следующие ортогональные базисные функции - тригонометрические (sinx, cosx), полиномы Чебышева, Эрмита, функции Уолша, Хаара и др.

Коэффициенты с п определяются исходя из минимизации среднеквадратической ошибки а 0 , обусловленной конечным числом слагаемых в правой части выражения (1.10)

где N - число слагаемых, а поскольку базисные функции (р п зависят от времени.

При этом ошибка, обусловленная конечным числом слагаемых в правой части выражения (1.10), является наименьшей по сравнению с другими способами определения коэффициентов с п. Так как а > 0, то всегда имеет место неравенство Г31

2.1.1. Детерминированные и случайные сигналы

Детерминированный сигнал – это сигнал, мгновенное значение которого в любой момент времени можно предсказать с вероятностью равной единице.

Примером детерминированного сигнала (рис.10) могут быть: последовательности импульсов (форма, амплитуда и положение во времени которых известны), непрерывные сигналы с заданными амплитудно-фазовыми соотношениями.

Способы задания ММ сигнала: аналитическое выражение (формула), осциллограмма, спектральное представление.

Пример ММ детерминированного сигнала.

s(t)=S m ·Sin(w 0 t+j 0)

Случайный сигнал – сигнал, мгновенное значение которого в любой момент времени заранее неизвестно, а может быть предсказано с некоторой вероятностью, меньше единицы.

Примером случайного сигнала (рис. 11) может быть напряжение, соответствующее человеческой речи, музыке; последовательность радиоимпульсов на входе радиолокационного приемника; помехи, шумы.

2.1.2. Сигналы, применяемые в радиоэлектронике

Непрерывные по величине (уровню) и непрерывные по времени (непрерывные или аналоговые) сигналы – принимают любые значения s(t) и существуют в любой момент в заданном временном интервале (рис. 12).

Непрерывные по величине и дискретные по времени сигналы заданы при дискретных значениях времени (на счетном множестве точек), величина сигнала s(t) в этих точках принимает любое значение в определенном интервале по оси ординат.

Термин «дискретный» характеризует способ задания сигнала на оси времени (рис. 13).

Квантованные по величине и непрерывные по времени сигналы заданы на всей временной оси, но величина s(t) может принимать лишь дискретные (квантованные) значения (рис. 14).

Квантованные по величине и дискретные по времени (цифровые) сигналы – передаются значения уровней сигнала в цифровой форме (рис. 15).

2.1.3. Импульсные сигналы

Импульс – колебание, существующее лишь в пределах конечного отрезка времени. На рис. 16 и 17 представлены видеоимпульс и радиоимпульс.

Для трапециидального видеоимпульса вводят параметры:

А – амплитуда;

t и – длительность видеоимпульса;

t ф – длительность фронта;

t ср – длительность среза.

S р (t)=S в (t)Sin(w 0 t+j 0)

S в (t) – видеоимпульс – огибающая для радиоимпульса.

Sin(w 0 t+j 0) – заполнение радиоимпульса.

2.1.4. Специальные сигналы

Функция включения (единичная функция (рис. 18) или функция Хевисайда) описывает процесс перехода некоторого физического объекта из «нулевого» в «единичное» состояние, причем этот переход совершается мгновенно.

Дельта-функция (Функция Дирака) является импульсом, длительность которого стремится к нулю, при этом высота импульса неограниченно возрастает. Принято говорить, что функция сосредоточена в этой точке.

(2)
(3)

Вопросы к государственному экзамену

по курсу «Цифровая обработка сигналов и сигнальные процессоры»

(Корнеев Д.А.)

Заочное обучение

Классификация сигналов, энергия и мощность сигналов. Ряды Фурье. Синусно-косинусная форма, вещественная форма, комплексная форма.

КЛАССИФИКАЦИЯ СИГНАЛОВ, ИСПОЛЬЗУЕМЫХ В РАДИОТЕХНИКЕ

С информационной точки зрения сигналы можно разделить на детерминированные и случайные.

Детерминированным называют любой сигнал, мгновенное значение которого в любой момент времени можно предсказать с вероятностью единица. Примерами детерминированных сигналов могут служить импульсы или пачки импульсов, форма, амплитуда и положение во времени которых известны, а также непрерывный сигнал с заданными амплитудными и фазовыми соотношениями внутри его спектра.

К случайным относят сигналы, мгновенные значения которых заранее неизвестны и могут быть предсказаны лишь с некоторой вероятностью, меньшей единицы. Такими сигналами являются, например,электрическое напряжение, соответствующее речи, музыке, последовательности знаков телеграфного кода при передаче неповторяющегося текста. К случайным сигналам относится также последовательность радиоимпульсов на входе радиолокационного приемника, когда амплитуды импульсов и фазы их высокочастотного заполнения флуктуируют из-за изменения условий распространения, положения цели и некоторых других причин. Можно привести большое число других примеров случайных сигналов. По существу, любой сигнал, несущий в себе информацию, должен рассматриваться как случайный.

Перечисленные выше детерминированные сигналы, «полностью известные», информации уже не содержат. В дальнейшем такие сигналы часто будут обозначаться термином колебание.

Наряду с полезными случайными сигналами в теории и практике приходится иметь дело со случайными помехами - шумами. Уровень шумов является основным фактором, ограничивающим скорость передачи информации при заданном сигнале.

Аналоговый сигнал Дискретный сигнал

Квантованный сигнал Цифровой сигнал

Рис. 1.2. Сигналы произвольные по величине и по времени (а), произвольные по величине и дискретные по времени (б), квантованные по величине и непрерывные по времени (в), квантованные по величине и дискретные по времени (г)

Между тем сигналы от источника сообщений могут быть как непрерывные, так и дискретные (цифровые). В связи с этим применяемые в современной радиоэлектронике сигналы можно разделить на следующие классы:

произвольные по величине и непрерывные по времени (рис. 1.2, а);

произвольные по величине и дискретные по времени (рис. 1.2, б);

квантованные по величине и непрерывные по времени (рис. 1.2, в);

квантованные по величине и дискретные по времени (рис. 1.2, г).

Сигналы первого класса (рис. 1.2, а) иногда называют аналоговыми , так как их можно толковать как электрические модели физических величин, или непрерывными, так как они задаются по оси времени на несчетном множестве точек. Такие множества называются континуальными. При этом по оси ординат сигналы могут принимать любое значение в определенном интервале. Поскольку эти сигналы могут иметь разрывы, как на рис. 1.2, а, то, чтобы избежать некорректности при описании, лучше такие сигналы обозначать термином континуальный.

Итак, континуальный сигнал s(t) является функцией непрерывной переменной t, а дискретный сигнал s(х) - функцией дискретной переменной х, принимающей только фиксированные значения . Дискретные сигналы могут создаваться непосредственно источником информации (например, дискретными датчиками в системах управления или телеметрии) или образовываться в результате дискретизации континуальных сигналов.

На рис. 1.2, б представлен сигнал, заданный при дискретных значениях времени t (на счетном множестве точек); величина же сигнала в этих точках может принимать любое значение в определенном интервале по оси ординат (как и на рис. 1.2, а). Таким образом, термин дискретный характеризует не сам сигнал, а способ задания его на временнбй оси.

Сигнал на рис. 1.2, в задан на всей временнбй оси, однако его величина может принимать лишь дискретные значения. В подобных случаях говорят о сигнале, квантованном по уровню.

В дальнейшем термин дискретный будет применяться только по отношению к дискретизации по времени; дискретность же по уровню будет обозначаться термином квантование.

Квантование используют при представлении сигналов в цифровой форме с помощью цифрового кодирования, поскольку уровни можно пронумеровать числами с конечным числом разрядов. Поэтому дискретный по времени и квантованный по уровню сигнал (рис. 1.2, г) в дальнейшем будет называться цифровым.

Таким образом, можно различать континуальные (рис. 1.2, а), дискретные (рис. 1.2, б), квантованные (рис. 1.2, в) и цифровые (рис. 1.2, г) сигналы.

Каждому из этих классов сигналов можно поставить в соответствие аналоговую, дискретную или цифровую цепи. Связь между видом сигнала и видом цепи показана на функциональной схеме (рис. 1.3).



При обработке континуального сигнала с помощью аналоговой цепи не требуется дополнительных преобразований сигнала. При обработке же континуального сигнала с помощью дискретной цепи необходимы два преобразования: дискретизация сигнала по времени на входе дискретной цепи и обратное преобразование, т. е. восстановление континуальной структуры сигнала на выходе дискретной цепи.

Для произвольного сигнала s(t) = a(t)+jb(t) , где а(t) и b(t) - вещественные функции, мгновенная мощность сигнала (плотность распределения энергии) определяется выражением:

w(t) = s(t)s*(t) = a 2 (t)+b 2 (t) = |s(t)| 2 .

Энергия сигнала равна интегралу от мощности по всему интервалу существования сигнала. В пределе:

Е s = w(t)dt = |s(t)| 2 dt.

По существу, мгновенная мощность является плотностью мощности сигнала, так как измерения мощности возможны только через энергию, выделяемую на определенных интервалах ненулевой длины:

w(t) = (1/Dt) |s(t)| 2 dt.

Сигнал s(t) изучается, как правило, на определенном интервале Т (для периодических сигналов - в пределах одного периода Т), при этом средняя мощность сигнала:

W T (t) = (1/T) w(t) dt = (1/T) |s(t)| 2 dt.

Понятие средней мощности может быть распространено и на незатухающие сигналы, энергия которых бесконечно велика. В случае неограниченного интервала Т строго корректное определение средней мощности сигнала производится по формуле:

W s = w(t) dt.

Идея о том, что любая периодическая функция может быть представлена в виде ряда гармонически связанных синусов и косинусов была предложена бароном Жан Батистом Жозефом Фурье (1768−1830).

Ряд Фурье функции f(x) представляется в виде

Прежде чем приступить к изучению каких – либо явлений, процессов или объектов, в науке всегда стремятся провести их классификацию по возможно большему количеству признаков. Предпримем подобную попытку применительно к радиотехническим сигналам и помехам.

Основные понятия, термины и определения в области радиотехнических сигналов устанавливает государственный стандарт «Сигналы радиотехнические. Термины и определения». Радиотехнические сигналы весьма разнообразны. Их можно классифицировать по целому ряду признаков.

1. Радиотехнические сигналы удобно рассматривать в виде математических функций, заданных во времени и физических координатах. С этой точки зрения сигналы делятся на одномерные и многомерные . На практике наиболее распространены одномерные сигналы. Они обычно являются функциями времени. Многомерные сигналы состоят из множества одномерных сигналов, и кроме того, отражают свое положение в n- мерном пространстве. Например, сигналы, несущие информацию об изображении какого-либо предмета, природы, человека или животного, являются функциями и времени и положения на плоскости.

2. По особенностям структуры временного представления все радиотехнические сигналы подразделяются на аналоговые , дискретные и цифровые . В лекции №1 уже были рассмотрены их основные особенности и отличия друг от друга.

3. По степени наличия априорной информации все многообразие радиотехнических сигналов принято делить на две основные группы: детерминированные (регулярные) и случайные сигналы. Детерминированными называют радиотехнические сигналы, мгновенные значения которых в любой момент времени достоверно известны. Примером детерминированного радиотехнического сигнала может служить гармоническое (синусоидальное) колебание, последовательность или пачка импульсов, форма, амплитуда и временное положение которых заранее известно. По сути дела детерминированный сигнал не несет в себе никакой информации и практически все его параметры можно передать по каналу радиосвязи одним или несколькими кодовыми значениями. Другими словами, детерминированные сигналы (сообщения) по существу не содержат в себе информации, и нет смысла их передавать. Они обычно применяются для испытаний систем связи, радиоканалов или отдельных устройств.

Детерминированные сигналы подразделяются на периодические и непериодические (импульсные ). Импульсный сигнал – это сигнал конечной энергии, существенно отличный от нуля в течение ограниченного интервала времени, соизмеримого со временем завершения переходного процесса в системе, для воздействия на которую этот сигнал предназначен. Периодические сигналы бывают гармоническими , то есть содержащими только одну гармонику, и полигармоническими , спектр которых состоит из множества гармонических составляющих. К гармоническим сигналам относятся сигналы, описываемые функцией синуса или косинуса. Все остальные сигналы называются полигармоническими.



Случайные сигналы – это сигналы, мгновенные значения которых в любые моменты времени неизвестны и не могут быть предсказаны с вероятностью, равной единице. Как ни парадоксально на первый взгляд, но сигналом несущим полезную информацию, может быть только случайный сигнал. Информация в нем заложена во множестве амплитудных, частотных (фазовых) или кодовых изменений передаваемого сигнала. На практике любой радиотехнический сигнал, в котором заложена полезная информация, должен рассматриваться как случайный.

4. В процессе передачи информации сигналы могут быть подвергнуты тому или иному преобразованию. Это обычно отражается в их названии: сигналы модулированные , демодулированные (детектированные ), кодированные (декодированные ), усиленные , задержанные , дискретизированные , квантованные и др.

5. По назначению, которое сигналы имеют в процессе модуляции, их можно разделить на модулирующие (первичный сигнал, который модулирует несущее колебание) или модулируемые (несущее колебание).

6. По принадлежности к тому или иному виду систем передачи информации различают телефонные , телеграфные , радиовещательные , телевизионные , радиолокационные , управляющие , измерительные и другие сигналы.

Рассмотрим теперь классификацию радиотехнических помех. Под радиотехнической помехой понимают случайный сигнал, однородный с полезным и действующий одновременно с ним. Для систем радиосвязи помеха – это любое случайное воздействие на полезный сигнал, ухудшающее верность воспроизведения передаваемых сообщений. Классификация радиотехнических помех возможна также по ряду признаков.



1. По месту возникновения помехи делят на внешние и внутренние . Основные их виды были уже рассмотрены в лекции №1.

2. В зависимости от характера взаимодействия помехи с сигналом различают аддитивные и мультипликативные помехи. Аддитивной называется помеха, которая суммируется с сигналом. Мультипликативной называется помеха, которая перемножается с сигналом. В реальных каналах связи обычно имеют место и аддитивные, и мультипликативные помехи.

3. По основным свойствам аддитивные помехи можно разделить на три класса: сосредоточенные по спектру (узкополосные помехи), импульсные помехи (сосредоточенные во времени) и флуктуационные помехи (флуктуационные шумы), не ограниченные ни во времени, ни по спектру. Сосредоточенными по спектру называют помехи, основная часть мощности которых находится на отдельных участках диапазона частот, меньших полосы пропускания радиотехнической системы. Импульсной помехой называется регулярная или хаотическая последовательность импульсных сигналов, однородных с полезным сигналом. Источниками таких помех являются цифровые и коммутирующие элементы радиотехнических цепей или работающих рядом с ними устройств. Импульсные и сосредоточенные помехи часто называют наводками .

Между сигналом и помехой отсутствует принципиальное различие. Более того, они существуют в единстве, хотя и противоположны по своему действию.