Принципы построения сетей эвм. Функциональный состав, структура и классификация сетей эвм Принципы взаимодействия приложений в сетях эвм

Тема 1.

Типы сетей.

В зависимости от способа организации обработки данных и взаимодействия пользователей, который поддерживается конкретной сетевой операционной системой, выделяют два типа информационных сетей:

Иерархические сети;

Сети клиент/сервер.

В иерархических сетях все задачи, связанные с хранением, обработкой данных, их представлением пользователям, выполняет центральный компьютер. Пользователь взаимодействует с центральным компьютером с помощью терминала. Операциями ввода/вывода информации на экран управляет центральный компьютер.

Достоинства иерархических систем:

Отработанная технология обеспечения сохранности данных;

Надежная система защиты информации и обеспечения секретности.

Недостатки:

Высокая стоимость аппаратного и программного обеспечения, высокие эксплуатационные расходы;

Быстродействие и надежность сети зависят от центрального компьютера.

Модели клиент-сервер - это технология взаимодействия компьютеров в сети, при которой каждый из компьютеров имеет свое назначение и выполняет свою определенную роль. Одни компьютеры в сети владеют и распоряжаются информационно-вычислительными ресурсами (процессоры, файловая система, почтовая служба, служба печати, база данных), другие имеют возможность обращаться к этим службам, пользуясь их услугами.

Компьютер, управляющий тем или иным ресурсом называют сервером этого ресурса, а компьютер, пользующийся им - клиентом .

Каждый конкретный сервер определяется видом того ресурса, которым он владеет. Например, назначением сервера баз данных является обслуживание запросов клиентов, связанных с обработкой данных; файловый сервер, или файл-сервер, распоряжается файловой системой и т.д.

Один из основных принципов технологии клиент-сервер заключается в разделении функций стандартного интерактивного приложения на четыре группы, имеющие различную природу.

Первая группа - это функции ввода и отображения данных.

Вторая группа - объединяет чисто прикладные функции, характерные для данной предметной области (для банковской системы - открытие счета, перевод денег с одного счета на другой и т.д.).



Третья группа - фундаментальные функции хранения и управления информационно-вычислительными ресурсами (базами данных, файловыми системами и т.д.).

Четвертая группа - служебные функции, осуществляющие связь между функциями первых трех групп.

В соответствии с этим в любом приложении выделяются следующие логические компоненты:

Компонент представления (presentation), реализующий функции первой группы;

Прикладной компонент (business application), поддерживающий функции второй группы;

Компонент доступа к информационным ресурсам (resource manager), поддерживающий функции третьей группы, а также вводятся и уточняются соглашения о способах их взаимодействия (протокол взаимодействия).

Различия в реализации технологии клиент-сервер определяются следующими факторами:

Видами и механизмами программного обеспечения, в которые интегрирован каждый из этих компонентов;

Способом распределения логических компонентов между компьютерами в сети;

Механизмами, используемыми для связи компонентов между собой.

Выделяются четыре подхода, реализованные в следующих моделях:

Модель файлового сервера (File Server - FS);

Модель доступа к удаленным данным (Remote Data Access - RDA);

Модель сервера баз данных (Data Base Server - DBS);

Модель сервера приложений (Application Server - AS).

По организации взаимодействия принято выделять два типа систем, использующих метод клиент/сервер:

Равноправная сеть;

Сеть с выделенным сервером.

Равноправная сеть - это сеть, в которой нет единого центра управления взаимодействием рабочих станций, нет единого устройства хранения данных. Операционная система такой сети распределена по всем рабочим станциям, поэтому каждая рабочая станция одновременно может выполнять функции как сервера, так и клиента. Пользователю в такой сети доступны все устройства (принтеры, жесткие диски и т.п.), подключенные к другим рабочим станциям.

Достоинства:

Низкая стоимость (используются все компьютеры, подключенные к сети, и умеренные цены на ПО для работы сети);

Высокая надежность (при выходе из строя одной рабочей станции, доступ прекращается лишь к некоторой части информации).

Недостатки:

Работа сети эффективна только при количестве одновременно работающих станций не более 10;

Трудности организации эффективного управления взаимодействием рабочих станций и обеспечение секретности информации;

Трудности обновления и изменения ПО рабочих станций.

Сеть с выделенным сервером - здесь один из компьютеров выполняет функции хранения данных общего пользования, организации взаимодействия между рабочими станциями, выполнения сервисных услуг - сервер сети. На таком компьютере выполняется операционная система, и все разделяемые устройства (жесткие диски, принтеры, модемы и т.п.) подключаются к нему, выполняет хранение данных, печать заданий, удаленная обработка заданий. Рабочие станции взаимодействуют через сервер, поэтому логическую организацию такой сети можно представить топологией "звезда", где центральное устройство - сервер.

Достоинства:

Выше скорость обработки данных (определяется быстродействием центрального компьютера, и на сервер устанавливается специальная сетевая операционная система, рассчитанная на обработку и выполнение запросов, поступивших одновременно от нескольких пользователей);

Обладает надежной системой защиты информации и обеспечения секретности;

Проще в управлении по сравнению с равноправными.

Недостатки:

Такая сеть дороже из-за отдельного компьютера под сервер;

Менее гибкая по сравнению с равноправной.

Сети с выделенным сервером являются более распространенными. Примеры сетевых операционных систем такого типа: LAN Server, IBM Corp., VINES, Banyan System Inc., NetWare, Novell Inc.

Тема 2.

Методы передачи данных в сетях ЭВМ.

При обмене данными между узлами используются три метода передачи данных:

Симплексная (однонаправленная) передача (телевидение, радио);

Полудуплексная (прием/передача информации осуществляется поочередно);

Дуплексная (двунаправленная), каждая станция одновременно передает и принимает данные.

Для передачи данных в информационных системах наиболее часто применяется последовательная передача. Широко используются следующие методы последовательной передачи:

Асинхронная;

Синхронная.

При асинхронной передаче каждый символ передается отдельной посылкой (рис.1). Стартовые биты предупреждают приемник о начале передачи. Затем передается символ. Для определения достоверности передачи используется бит четности (бит четности = 1, если количество единиц в символе нечетно, и 0 в противном случае. Последний бит "стоп бит" сигнализирует об окончании передачи.

Преимущества:

Несложная отработанная система;

Недорогое (по сравнению с синхронным) интерфейсное оборудование.

Недостатки:

Третья часть пропускной способности теряется на передачу служебных битов (старт/стоповых и бита четности);

Невысокая скорость передачи по сравнению с синхронной;

При множественной ошибке с помощью бита четности невозможно определить достоверность полученной информации.

Асинхронная передача используется в системах, где обмен данными происходит время от времени и не требуется высокая скорость передачи данных. Некоторые системы используют бит четности как символьный бит, а контроль информации выполняется на уровне протоколов обмена данными (Xmodem, Zmodem, MNP).

При использовании синхронного метода данные передаются блоками. Для синхронизации работы приемника и передатчика в начале блока передаются биты синхронизации. Затем передаются данные, код обнаружения ошибки и символ окончания передачи. При синхронной передаче данные могут передаваться и как символы, и как поток битов. В качестве кода обнаружения ошибки обычно используется Циклический Избыточный Код Обнаружения Ошибок (CRC). Он вычисляется по содержимому поля данных и позволяет однозначно определить достоверность принятой информации.

Преимущества:

Высокая эффективность передачи данных;

Высокая скорость передачи данных;

Надежный встроенный механизм обнаружения ошибок.

Недостатки:

Интерфейсное оборудование более сложное и, соответственно, более дорогое.

Функциональный состав и структура сетей ЭВМ

Полный перечень функций, реализуемых любой сетью ЭВМ, можно представить двумя компонентами ‑ обработка и передача данных .

Вычислительные средства (ЭВМ, вычислительные комплексы и системы) абонентских систем и их программное обеспечение (сетевые операционные системы и приложения) являются основными функциональными элементами сетей ЭВМ, выполняющих обработку данных. Их главная задача состоит в реализации функций предоставления, потребления и распределения ресурсов сети. Вычислительные средства, реализующие весь комплекс перечисленных функций относятся к универсальным и составляют основу универсальных абонентских систем (УАС). Вычислительные средства, специализированные на предоставлении ресурсов, называются серверами и составляют основу сервисных абонентских систем (САС). Специализированные на потреблении сетевых ресурсов ‑ называются клиентами и составляют основу клиентских абонентских систем (КАС). Специализированные на управлении вычислительной сетью ‑ называются административными и составляют основу административных абонентских систем (ААС). Классификация сетевых абонентских систем по функциональному признаку представлена на рис. 1.5.

Рис. 1.5. Классификация сетевых абонентских систем

Универсальные абонентские системы используются для построения одноранговых сетей ЭВМ. Остальные виды абонентских систем используются для построения сетей типа «клиент - сервер».

Вычислительные средства узлов коммутации, совместно с каналами связи, образуют телекоммуникационную сеть с определенной топологической структурой и реализуют функции передачи данных между всеми абонентскими системами сети.

Таким образом, в составе любой сети ЭВМ можно выделить следующие основные функциональные компоненты:

Абонентские системы различного назначения (УАС, САС, КАС, ААС) в совокупности образующие абонентскую сеть;

Узлы коммутации и каналы связи, образующие телекоммуникационную сеть.

В общем виде структура сети ЭВМ представлена на рис. 1.6.

Отдельные сети ЭВМ посредством специального межсетевого оборудования (МСО) могут объединяться между собой, образуя одноуровневые или многоуровневые иерархические структуры (рис. 1.7).

По такому принципу могут объединяться локальные, региональные и глобальные сети ЭВМ.

Классификация сетей ЭВМ

Сети ЭВМ относятся к разряду сложных вычислительных систем, поэтому для их классификации используется не один, а целый ряд признаков, наиболее характерные из которых представлены на рис. 1.8.

На информационные сети;

Вычислительные сети;

По функциональному назначению сети ЭВМ подразделяются:

На информационные сети;

Вычислительные сети;

Информационно-вычислительные сети.

Рис. 1.6. Обобщенная структура сети ЭВМ

Рис. 1.7. Объединение сетей ЭВМ

Рис. 1.8. Классификация сетей ЭВМ

Информационные сети предоставляют пользователям в основном информационные услуги. К таким сетям относятся сети научно-технической и справочной информации, резервирования и продажи билетов на транспорте, сети оперативной информации служб специального назначения и т.д.

Вычислительные сети отличаются наличием в своем составе более мощных вычислительных средств, запоминающих устройств повышенной емкости для хранения прикладных программ, банков данных и знаний, доступных для пользователей, возможностью оперативного перераспределения ресурсов между задачами.

На практике наибольшее распространение получили смешанные информационно-вычислительные сети, в которых осуществляются хранение и передача данных, а также решение различных задач по обработке информации.

По размещению основных информационных массивов (банков данных) сети подразделяются на следующие типы:

Сети с централизованным размещением информационных массивов;

Сети с локальным (абонентским) размещением информационных массивов.

В сетях с централизованным размещением информационные массивы формируются и хранятся на главном файловом сервере сети. В сетях с локальным размещением информационные массивы могут находиться на различных файловых серверах.

По степени территориальной рассредоточенности компонентов сети различают:

Глобальные сети, охватывающие территорию страны или нескольких стран с расстояниями между отдельными узлами сети в несколько тысяч километров;

Региональные сети, расположенные в пределах определенного территориального региона (города, района, области и т.п.);

Локальные вычислительные сети, охватывающие сравнительно небольшую территорию (в радиусе до 10 км).

По типу используемых вычислительных средств сети могут быть:

Однородными (ЭВМ всех абонентских систем сети аппаратно и программно совместимы);

Неоднородными (ЭВМ абонентских систем сети аппаратно и программно несовместимы).

Локальные сети ЭВМ обычно являются однородными, а региональные и глобальные ‑ неоднородными.

По методу передачи данных различают сети:

С коммутацией каналов;

Коммутацией сообщений;

Коммутацией пакетов;

Со смешанной коммутацией.

Для современных сетей ЭВМ наиболее характерным является использование метода коммутации пакетов. Особенности каждого из методов передачи данных более подробно будут рассмотрены в дальнейшем.

Важным признаком классификации сетей ЭВМ является их топология, т.е. структура связей между элементами сети. Топология оказывает существенное влияние на пропускную способность, на устойчивость сети к отказам ее оборудования, на качество обслуживания запросов пользователей, на логические возможности и стоимость сети.

Для построения сетей ЭВМ используются следующие топологические структуры (рис. 1.9):

Радиальная (звездообразная);

Кольцевая;

Полносвязная;

Древовидная (иерархическая);

Смешанная.

Рис. 1.9. Топологические структуры сетей ЭВМ: а – радиальная; б – кольцевая; в – шинная; г – полносвязная; д – древовидная; е – смешанная

Основу сетей с радиальной (звездообразной) топологией (рис. 1.9, а) составляет главный центр, который может быть как активным (выполняется обработка информации), так и пассивным (выполняется только ретрансляция информации). Такие сети довольно просты по своей структуре и организации управления. К недостаткам сетей с радиальной топологией можно отнести: нарушение связи при выходе из строя центрального узла коммутации, отсутствие свободы выбора различных маршрутов для установления связи между АС, увеличение задержек в обслуживании запросов при перегрузке центра обработки, значительное возрастание общей протяженности линий связи при размещении АС на большой территории.

В сетях с кольцевой топологией (рис. 1.9, б) информация между абонентскими станциями передается только в одном направлении. Кольцевая структура обеспечивает широкие функциональные возможности сети при высокой эффективности использования моноканала, низкой стоимости, простоте методов управления, возможности контроля работоспособности моноканала. К недостаткам сетей с кольцевой топологией можно отнести: нарушение связи при выходе из строя хотя бы одного сегмента канала передачи данных.

В сетях с шинной топологией (рис. 1.9, в) используется моноканал передачи данных, к которому подсоединяются абонентские системы. Данные от передающей АС распространяются по каналу в обе стороны. Информация поступает на все АС, но принимает сообщение только та АС, которой оно адресовано. Шинная топология ‑ одна из наиболее простых. Она позволяет легко наращивать и управлять сетью ЭВМ, является наиболее устойчивой к возможным неисправностям отдельных абонентских систем. Недостатком шинной топологии является полный выход из строя сети при нарушении целостности моноканала.

В полносвязной сети (рис. 1.9, г) информация может передаваться между всеми АС по собственным каналам связи. Такое построение сети требует большого числа соединительных линий связи. Оно эффективно для малых сетей с небольшим количеством центров обработки, работающих с полной загрузкой каналов связи.

В сетях с древовидной топологией (рис. 1.9, д) реализуется объединение нескольких более простых сетей с шинной топологией. Каждая ветвь дерева представляет собой сегмент. Отказ одного сегмента не приводит к выходу из строя остальных сегментов.

Топология крупных сетей обычно представляет собой комбинации нескольких топологических решений. Примером такой сети может служить сеть со смешанной радиально ‑ кольцевой топологией, представленной на рис. 1.9, е.

Правильный и рациональный выбор основных функциональных, технических и программных компонентов сетей ЭВМ, их топологической структуры оказывают непосредственное влияние на все технические характеристики и общую эффективность функционирования сетей ЭВМ в целом. Это особенно важно для вычислительных сетей военного назначения, предназначенных для обработки и передачи больших информационных массивов данных в условиях жесткого лимита времени и высоких требований к достоверности информации.

Лекция 1.Введение в дисциплину Характеристики сетей ЭВМ

Сети ЭВМ могут характеризоваться совокупностью показателей качества , к основным из которых относятся следующие:

1. функциональные возможности сети –– перечень основных информационно вычислительных услуг, предоставляемых пользователям сети;

2. производительность сети –– среднее количество запросов пользователей сети, обслуживаемых за единицу времени;

3. пропускная способность сети (канала) – максимально возможное количество информации, которое может быть передано по сети (по каналу) за единицу времени. Пропускная способность измеряется в битах в секунду (бит/с), в килобитах в секунду (Кбит/с), в мегабитах в секунду (Мбит/с), в гигабитах в секунду (Гбит/с) и т. д.

4. надежность сети –– среднее время наработки на отказ основных компонентов сети;

§ вычислительные сети;

§ информационно-вычислительные сети.

Информационные сети предоставляют пользователям в основном информационные услуги. К таким сетям относятся сети научно-технической и справочной информации, резервирования и продажи билетов на транспорте, сети оперативной информации служб специального назначения и т. д.

Вычислительные сети отличаются наличием в своем составе более мощных вычислительных средств, запоминающих устройств повышенной емкости для хранения прикладных программ, банков данных и знаний, доступных для пользователей, возможностью оперативного перераспределения ресурсов между задачами.

На практике наибольшее распространение получили смешанные информационно-вычислительные сети , в которых осуществляются хранение и передача данных, а также решение различных задач по обработке информации.

По размещению основных информационных массивов (банков данных) сети подразделяются на следующие типы:

§ сети с централизованным размещением информационных массивов;

§ сети с локальным (абонентским) размещением информационных массивов.

В сетях с централизованным размещением информационные массивы формируются и хранятся на главном файловом сервере сети. В сетях с локальным размещением информационные массивы могут находиться на различных файловых серверах.

По степени территориальной рассредоточенности компонентов сети различают:

§ глобальные сети, охватывающие территорию страны или нескольких стран с расстояниями между отдельными узлами сети в несколько тысяч километров;

§ региональные сети, расположенные в пределах определенного территориального региона (города, района, области и т. п.);

§ локальные вычислительные сети, охватывающие сравнительно небольшую территорию (в радиусе до 10 км).

По типу используемых вычислительных средств сети могут быть:

§ однородными (ЭВМ всех абонентских систем сети аппаратно и программно совместимы);

    неоднородными (ЭВМ абонентских систем сети аппаратно и программно несовместимы).

Локальные сети ЭВМ обычно являются однородными, а региональные и глобальные – неоднородными.

По методу передачи данных различают сети:

§ с коммутацией каналов;

§ с коммутацией сообщений;

§ с коммутацией пакетов;

    со смешанной коммутацией.

Важным признаком классификации сетей ЭВМ является их топология, т. е. структура связей между элементами сети. Топология оказывает существенное влияние на пропускную способность, на устойчивость сети к отказам ее оборудования, на качество обслуживания запросов пользователей, на логические возможности и стоимость сети.

Для построения сетей ЭВМ используются следующие топологические структуры (рис. 2):

§ радиальная (звездообразная);

§ кольцевая;

§ шинная;

§ полносвязная;

§ древовидная (иерархическая);

    смешанная.

Рис. 2. Топологические структуры сетей ЭВМ

Основу сетей с радиальной (звездообразной) топологией (рис. 2.а) составляет главный центр, который может быть как активным (выполняется обработка информации), так и пассивным (выполняется только ретрансляция информации). Такие сети довольно просты по своей структуре и организации управления . К недостаткам сетей с радиальной топологией можно отнести: нарушение связи при выходе из строя центрального узла коммутации, отсутствиесвободы выбора различных маршрутов для установления связи между АС, увеличение задержек в обслуживании запросов при перегрузке центра обработки, значительное возрастание общей протяженности линий связи при размещенииАС на большой территории.

В сетях с кольцевой топологией (рис. 2.б) информация между абонентскими станциями передается только в одном направлении. Кольцевая структураобеспечивает широкие функциональные возможности сети при высокой эффективности использования моноканала, низкой стоимости, простоте методовуправления, возможности контроля работоспособности моноканала. К недостаткам сетей с кольцевой топологией можно отнести: нарушение связи при выходе из строя хотя бы одного сегмента канала передачи данных.

В сетях с шинной топологией (рис. 2.в) используется моноканал передачи данных, к которому подсоединяются абонентские системы. Данные от передающей АС распространяются по каналу в обе стороны. Информация поступает на все АС, но принимает сообщение только та АС, которой оно адресовано.

Шинная топология – одна из наиболее простых. Она позволяет легко наращивать и управлять сетью ЭВМ, является наиболее устойчивой к возможным неисправностям отдельных абонентских систем. Недостатком шинной топологии является полный выход из стоя сети при нарушении целостности моноканала.

В полносвязной сети (рис. 2.г) информация может передаваться между всеми АС по собственным каналам связи. Такое построение сети требует больного числа соединительных линий связи. Оно эффективно для малых сетей с небольшим количеством центров обработки, работающих с полной загрузкой каналов связи.

В сетях с древовидной топологией (рис. 2.д) реализуется объединение нескольких более простых сетей с шинной топологией. Каждая ветвь дерева представляет собой сегмент. Отказ одного сегмента не приводит к выходу из строя остальных сегментов.

Топология крупных сетей обычно представляет собой комбинации нескольких топологических решений. Примером такой сети может служить сеть со смешанной радиально – кольцевой топологией, представленная на рис. 2.е.

Правильный и рациональный выбор основных функциональных, технических и программных компонентов сетей ЭВМ, их топологической структуры оказывают непосредственное влияние на все технические характеристики и общую эффективность функционирования сетей ЭВМ в целом. Это особенно важно для вычислительных сетей военного назначения, предназначенных для обработки и передачи больших информационных массивов данных в условиях жесткого лимита времени и высоких требований к достоверности информации.

Лекция 3. Методы структуризации сетей ЭВМ

Физическая структуризация

Построение сетей ЭВМ с небольшим (10-30) количеством абонентских систем чаще всего осуществляется на основе одной из типовых топологий - общая шина, кольцо, звезда или полносвязная сеть. Все перечисленные топологии обладают свойством однородности, то есть все компьютеры абонентских систем в такой сети имеют одинаковые права в отношении информационного взаимодействия друг с другом (за исключением центрального компьютера при соединении звезда). Такая однородность структуры значительно упрощает процедуру наращивания общего числа абонентских систем, облегчает обслуживание и эксплуатацию сети ЭВМ

Построение больших сетей ЭВМ, объединяющих более 30 – ти абонентских систем, на основе унифицированных типовых топологических структур порождает различные ограничения, наиболее существенными из которых являются:

ü ограничения на длину связи между узлами;

ü ограничения на количество узлов в сети;

ü ограничения на интенсивность трафика, порождаемого узлами сети.

Например, технология Ethernet на тонком коаксиальном кабеле позволяет использовать кабель длиной не более 185 метров, к которому можно подключить не более 30 сетевых ЭВМ (рис.3.1). Однако, если абонентские системы интенсивно обмениваются информацией между собой, то приходится снижать число подключенных к каналу компьютеров до 10 - 20, чтобы каждой абонентской системе доставалась приемлемая доля общей пропускной способности сети.

Для снятия этих ограничений используются специальные методы структуризации сети и специальное структурообразующее оборудование – повторители, концентраторы, мосты, коммутаторы, маршрутизаторы. Такое оборудование также называют коммуникационным .

Простейшим из коммуникационных устройств является повторитель (repeater).

Повторители используются для физического соединения различных сегментов кабеля локальной сети ЭВМ с целью увеличения общей длины сети.

Повторитель передает сигналы, приходящие из одного сегмента сети, в другие ее сегменты (рис.Повторитель позволяет преодолеть ограничения на длину линий связи за счет улучшения качества передаваемого сигнала - восстановления его мощности и амплитуды, улучшения фронтов и т. п.

Повторитель, который имеет несколько портов и соединяет несколько физических сегментов, называется концентратором или хабом . В данном устройстве сосредоточиваются все связи между сегментами сети.

Концентраторы характерны практически для всех базовых технологий локальных сетей - Ethernet, ArcNet, Token Ring, FDDI и т. п.

В работе концентраторов различных типов и технологий много общего – они повторяют сигналы, пришедшие с одного из своих портов, на других своих портах. Разница состоит в том, на каких именно портах повторяются входные сигналы. Так, концентратор Ethernet повторяет входные сигналы на всех своих портах, кроме того, с которого сигналы поступают (рис. 3.2, а). А концентратор Token Ring (рис. 3.2, б) повторяет входные сигналы, поступающие с некоторого порта, только на одном порту - на том, к которому подключена следующая в кольце АС.

Концентратор всегда изменяет физическую топологию сети, но при этом оставляет без изменения ее логическую топологию.

Под физической топологией понимается конфигурация связей, образованных отдельными частями кабеля, а под логической - конфигурация информационных потоков между компьютерами сети. Во многих случаях физическая и логическая топологии сети совпадают (рис. 3.3а). Однако это выполняется не всегда. Сеть на рис. 3.3б, демонстрирует пример несовпадения физической и логической топологии. Физически компьютеры соединены по топологии общая шина, а логически – по кольцевой топологии.

Физическая структуризация сети с помощью концентраторов целесообразна не только для увеличения расстояния между узлами сети, но и для повышения ее надежности. Например, если какая-либо абонентская система сети Ethernet с физической общей шиной из-за сбоя начинает непрерывно передавать данные по общему кабелю, то вся сеть выходит из строя, и для решения этой проблемы остается только один выход - вручную отсоединить сетевой адаптер этой абонентской системы от кабеля. В сети Ethernet, построенной с использованием концентратора, эта проблема может быть решена - концентратор отключает свой порт, если обнаруживает, что присоединенный к нему узел слишком долго монопольно занимает сеть. Концентратор может блокировать некорректно работающий узел и в других случаях, выполняя роль некоторого управляющего узла.

Лекция 4. Логическая структуризация сети.

Физическая структуризация полезна во многих отношениях, однако в сетях большого и среднего размера, без логической структуризации обойтись невозможно. Наиболее важной проблемой, не решаемой путем физической структуризации, является проблема передаваемого трафика между различными физическими сегментами сети.

В большой сети возникает неоднородность информационных потоков: сеть состоит из множества подсетей, отделов, рабочих групп и др. Например, в сети с общей шиной взаимодействие любой пары ПК занимает сеть на все время обмена, поэтому при увеличении числа ПК в сети шина становится узким местом. ПК одного отдела вынуждены ждать, пока завершит обмен пара ПК другого отдела. (Рис.1)

https://pandia.ru/text/78/378/images/image007_101.gif" width="14" height="14">

Рис. 1 Физическая структуризация на основе концентраторов

На рисунке показана сеть, построенная на основе концентраторов. Пусть ПК А, находящийся в одной подсети с ПК В, посылает ему данные. Т. к. концентраторы распространяют любой кадр по всем сегментам сети, то кадр посылаемый ПК А, хотя он и не нужен ПК других сегментов поступит на эти сегменты тоже (на рисунке кадр – заштрихованный кружок). И до тех пор пока ПК В не получит адресованный ему кадр, ни один из ПК этой сети не сможет передавать данные.

Такая ситуация возникает из-за того, что логическая структура данной сети осталась однородной, она не учитывает возможность локальной обработки трафика внутри отдела и предоставляет всем ПК равные возможности по обмену информацией (рис. 2).

Рис. 2. Противоречие между физической структуризацией сети и информационными потоками

Для решения проблемы нужно отказаться от единой разделяемой среды. Например, на примере рисунка 2 желательно сделать так, чтобы кадры выходили за пределы сегмента 1, только в том случае, если эти кадры направлены какому-либо ПК другого сегмента. При такой организации производительность сет существенно повысится, т. к. ПК одного отдела не будут постаивать, пока обмениваются данными ПК других отделов.

Распространение трафика, предназначенного для ПК некоторого сегмента сети, только в пределах этого сегмента, называется локализацией трафика. Логическая структуризация сети – это процесс разбиения сети на сегменты с локализованным трафиком. Для логической структуризации используются: мосты, коммутаторы, маршрутизаторы, шлюзы.

Мост ( Bridge) делит среду передачи сети на логические сегменты, передавая информацию только в том случае, если адрес ПК-получателя принадлежит другой подсети. Таким образом, мост изолирует трафик одной подсети от трафика другой (рис. 2)

https://pandia.ru/text/78/378/images/image025_22.jpg" width="40" height="28">

Рис. 3. Логическая структуризация сети с помощью моста

Таким образом, если ПК А пошлет данные ПК В, то эти данные будут повторены только на тех сетевых интерфейсах, которые отмечены на рисунке заштрихованными кружками.

Коммутатор (Switch) по принципу обработки информационных кадров полностью аналогичен мосту. Основное его отличие от моста состоит в том, что он способен осуществлять информационный обмен одновременно между несколькими парами логических сегментов сети, так как каждый его порт оснащен специализированным процессором, который обрабатывает кадры по алгоритму моста независимо от процессоров других портов. За счет этого общая производительность коммутатора обычно намного выше производительности традиционного моста, имеющего один процессорный блок. Можно сказать, что мосты – это мосты нового поколения, которые обрабатывают кадры в параллельном режиме.

Маршрутизатор (Router) – коммуникационное устройство с расширенными интеллектуальными возможностями по сравнению с мостами и коммутаторами. Маршрутизаторы реализуют более эффективные методы разграничения трафика отдельных логических сегментов сети. Маршрутизаторы реализуют более эффективные методы разграничения трафика отдельных логических сегментов сети. Это достигается за счет использования составных числовых адресов и явной адресации логических сегментов сети (рис. 3.6).

№ сегмента сети № абонентской системы

Рис.3 Структура составного адреса

Кроме локализации трафика, маршрутизаторы способны выполнять еще ряд задач, наиболее важными из которых являются выбор наиболее рационального маршрута из нескольких возможных. Другой важной возможностью маршрутизаторов является их способность связывать в единую сеть подсети, построенные на основе разных сетевых технологий (рис 4). Особенностью данной сети является наличие дополнительной связи между сегментами 1 и 2, которая может благодаря наличию маршрутизаторов использоваться как для повышения производительности сети, так и дляповышения ее надежности. В данной сети информационный обмен осуществляется одновременно между двумя парами абонентских систем А и В, С и D.

Кроме перчисленных устройств, отдельные части сети может соединять шлюз ( gateway ). Обычно основной особенностью шлюза явяется необходимость объединить сети с разными типами системного и прикладного программного обеспечения , а не желание локализовать трафик. Тем не менее, шлюз обеспечивает и локализацию трафика в качестве некоторого побочного эффекта. Крупные сети практически никогда не строятся без физической и логической структуризации. Для отдельных сегментов и подсетей характерны типовые однородные топологии базовых технологий, и для их объединения всегда используется оборудование, обеспечивающее локализацию трафика, - мосты, коммутаторы, маршрутизаторы, шлюзы и т. п.

Лекция 5. Архитектура и принципы построения сетей. Эталонная модель взаимодействия открытых систем.

Работа сети заключается в передаче данных от одного компьютера к другому. В этом процессе можно выделить следующие задачи:

ü Распознать данные

ü Разбить их на управляющие блоки

ü Добавить информацию к каждому блоку, чтобы указать местонахождение данных и получателя

ü Добавить информацию синхронизации и информацию для проверки ошибок

ü Поместить данные в сеть и отправить их по заданному адресу

Сетевая ОС при выполнении всех этих задач следует строгому набору процедур. Эти процедуры называются протоколами.

В 1984 году International Standards Organization (ISO) выпустила набор спецификаций для открытых систем, чтобы все они могли использовать одинаковые протоколы и стандарты для обмена информацией. Этим стандартом стала модель (Open System Interconnection reference model), названная эталонной моделью взаимодействия открытых систем

В модели OSI сетевые функции распределены между семью уровнями. Каждому уровню соответствуют различные сетевые операции и протоколы (рис.1)

Рис. 1 Взаимосвязи между уровнями модели OSI

Каждый уровень предоставляет несколько услуг, которые готовят данные для доставки по сети на другой компьютер. Уровни разделяются друг от друга границами – интерфейсами. Все запросы от одного уровня к другому передаются через интерфейс. Каждый уровень для выполнения своих функций использует услуги нижележащего уровня (рис 1)

Когда в модели OSI процесс А на машине 1 хочет взаимодействовать с процессом Б на машине 2, он формирует сообщение и передает его прикладному уровню модели OSI на своей машине. Затем программное обеспечение прикладного уровня добавляет свой заголовок к сообщению и передает его при помощи интерфейса 7\6 уровней представительному уровню и т. д. Некоторые уровни добавляют не только заголовок, но и концевик. Когда сообщение достигает самого нижнего уровня, физический уровень действительно передает сообщение, которое при поступлении на машину 2 передается в обратном порядке (снизу вверх). При этом каждый уровень проверяет и удаляет свой собственный заголовок. Наконец, сообщение поступает к получателю, процессу Б, который может ответить на него, используя аналогичный путь.

Прикладной уровень(Application) – он представляет собой окно для доступа прикладных процессов к сетевым услугам. Он обеспечивает услуги, напрямую поддерживающие приложения пользователя (ПО для передачи файлов, доступа к базам данных , электронной почты). Прикладной уровень управляет общим доступом к сети, потоком данных и восстановлением после сбоев связи.

Представительный уровень(Presentation) – определяет формат, используемый для обмена данными между сетевыми ПК. Его можно назвать переводчиком. Здесь данные, поступившие от прикладного уровня, переводятся в общепонятный промежуточный формат. Этот уровень отвечает за преобразование протоколов, трансляцию и шифрование данных и т. д. Кроме того, данный уровень управляет сжатием данных для уменьшения общего числа передаваемых битов. На представительном уровне работает редиректор, назначение которого состоит в перенаправлении локальных операций на сетевой сервер.

Сеансовый уровень(Session) - позволяет двум приложениям на разных ПК устанавливать, использовать и завершать соединение, называемое сеансом. На этом уровне выполняются функции по распознаванию имен и защите, необходимой для связи двух ПК в сети.

Транспортный уровень (Transport)- гарантирует доставку пакетов без ошибок, в той же последовательности, без потерь и дублирования. На этом уровне сообщения переупаковываются: длинные сообщения разбиваются на несколько пакетов, короткие объединяются в один. Это увеличивает эффективность передачи пакетов по сети

Сетевой уровень (Network) – отвечает за адресацию сообщений и перевод логических адресов и имен в физические. На этом уровне определяется маршрут от ПК-отправителя к ПК-получателю. На этом этапе решаются проблемы, связанные с сетевым трафиком: коммутация пакетов, маршрутизация и перегрузки

Канальный уровень (Data Link) – выполняет передачу кадров от сетевого уровня к физическому. Кадры – это логически организованная структура, в которую можно помещать данные. Канальный уровень упаковывает «сырой» поток битов, поступающих от физического уровня, в кадры данных. Данный уровень обеспечивает точность передачи кадров между ПК через Физический уровень

Физический уровень(Physical) – осуществляет передачу потока битов по физической среде (например, по сетевому кабелю). Здесь реализуются механический, электрический, оптический и функциональный интерфейс с кабелем. На этом уровне определяется способ соединения сетевого кабеля с платой сетевого адаптера и способ передачи сигналов по сетевому кабелю. Этот уровень отвечает за кодирование данных и синхронизацию битов, гарантируя, что переданная 1 будет воспринята именно как 1, а не как 0

Лекция 6 . Основные типы кабелей, их конструкция, характеристики и функционирование

На сегодняшний день подавляющая часть компьютерных сетей использует для соединения провода и кабели. Существуют различные типы кабелей, но на практике в большинстве сетей применяются только три основные группы:

Коаксиальный кабель (coaxial cable) Витая пара (twisted pair) Неэкранированная Экранированная Оптоволоконный кабель (fiber cable)

Назначение и структура коаксиального кабеля

Коаксиальный кабель предназначен для передачи высокочастотных сигналов в различной электронной аппаратуре, особенно в радио- и ТВ-передатчиках, компьютерах, трансмиттерах.

Конструкция коаксиального кабеля состоит из медной жилы или стальной жилы плакированной медью, изоляции, ее окружающей, экрана в виде герметичного слоя фольги и металлической оплетки, внешней оболочки (см. рис. 1). При наличии сильных электромагнитных помех в месте прокладки сети можно воспользоваться кабелем с трехкратной (фольга + оплетка + фольга) или четырехкратной (фольга + оплетка + фольга + оплетка) экранизацией. Экран защищает передаваемые по кабелю данные, поглощая внешние электромагнитные сигналы - помехи или шумы. Таким образом, экран не позволяет помехам исказить данные. Трехкратный экран рекомендуется использовать в условиях сильного электромагнитного шума, например в городских индустриальных районах. Четырехкратный экран разработан для использования в местах с чрезвычайно высоким уровнем электромагнитного шума, например вблизи от электрических машин, магистралей, в метро или поблизости от организаций оборудованных мощными радиопередатчиками.

Электрические сигналы, кодирующие данные, передаются по жиле. Жила - это один провод (сплошная) или пучок проводов. Сплошная жила изготавливается, из меди или стали плакированной медью. Жила окружена изоляционным слоем, который отделяет ее от металлической оплетки. Оплетка играет роль заземления и защищает жилу от электрических шумов и перекрестных помех (электрические наводки, вызванные сигналами в соседних проводах). Проводящая жила и металлическая оплетка не должны соприкасаться, иначе произойдет короткое замыкание, помехи проникнут в жилу, и данные разрушатся. Снаружи кабель покрыт непроводящим слоем - из резины, тефлона или пластика.

Коаксиальный кабель более помехоустойчив, затухание сигнала в нем меньше чем в витой паре. Ввиду того, что плетеная защитная оболочка поглощает внешние электромагнитные сигналы, не позволяя им влиять на передаваемые по жиле данные, то коаксиальный кабель можно использовать при передаче на большие расстояния и в тех случаях, когда высокоскоростная передача данных осуществляется на несложном оборудовании.

Существует два типа коаксиальных кабелей :

Тонкий коаксиальный кабель - гибкий кабель диаметром около 0,5 см, прост в применении и годится практически для любого типа сети, способен передавать сигнал на расстояние до 185 м без его заметного искажения, вызванного затуханием. Основная отличительная особенность - медная жила. Она может быть сплошной или состоять из нескольких переплетенных проводов.

Толстый коаксиальный кабель - относительно жесткий кабель с диаметром около 1 см. Иногда его называют «стандартный Ethernet», поскольку он был первым типом кабеля, применяемым в Ethernet - популярной сетевой архитектуре. Медная жила толстого коаксиального кабеля больше в сечении, чем тонкого, поэтому он передает сигналы на расстояние до 500 м. Толстый коаксиальный кабель иногда используют в качестве основного кабеля, который соединяет несколько небольших сетей, построенных на тонком коаксиальном кабеле.

Сравнение двух типов коаксиальных кабелей

Как правило, чем толще кабель, тем сложнее его прокладывать. Тонкий коаксиальный кабель гибок, прост в установке и относительно недорог. Толстый коаксиальный кабель трудно гнуть, следовательно, его сложнее монтировать, это очень существенный недостаток, особенно в тех случаях, когда необходимо проложить кабель по трубам или желобам

Выбор того или иного типа коаксиальных кабелей зависит от места где этот кабель будет прокладываться. Существуют поливинилхлоридные и пленумные классы коаксиальных кабелей.

Поливинилхлорид – это пластик, который применяется в качестве изолятора или внешней оболочки у большинства коаксиальных кабелей. Его прокладывают на открытых участках помещений. Однако при горении он выделяет ядовитые газы.

Пленумные коаксиальные кабели – прокладываются в вентиляционных шахтах, между подвесными потолками и перекрытиями пола.

Монтирование кабельной системы

Для подключения к толстому коаксиальному кабелю применяют специальное устройство – трансивер. Он снабжен специальным коннектором пронзающим ответвителем, который проникает через слой изоляции и вступает в контакт с проводящей жилой.

Для подключения тонкого коаксиального кабеля используются BNC-коннекторы.
BNC коннектор (Рис 1), BNC T коннектор (Рис.2) и BNC баррел коннектор

https://pandia.ru/text/78/378/images/image040_15.jpg" width="228" height="201 src=">

Назначение и структура витой пары

Самая простая витая пара – это два перевитых изолированных медных провода. Согласно стандарту различают два вида витых пар:

§ UTP - кабель на основе неэкранированной медной пары

§ STP - кабель на основе экранированной медной пары

Неэкранированная витая пара (UTP, unshielded twisted pair) - это кабель, в котором изолированная пара проводников скручена с небольшим числом витков на единицу длины. Скручивание проводников уменьшает электрические помехи извне при распространении сигналов по кабелю. э.

Кабель на основе неэкранированной медной пары различают по его пропускной способности, выделяя тем самым несколько категорий:

Категория 6 : Кабель этой категории является одной из наиболее совершенных сред передачи данных среди вышеперечисленных категорий. Его частота передачи сигнала доходит до 250 МГц, что почти в два раза больше пропускной способности категории 5е. Улучшена помехозащищенность.

Монтаж кабельной системы на основе витой пары

Рис. 1 Порт MDI/MDI-X и разъем RJ-45

Прямая разводка – применяется, когда кабель соединяет ПК с концентратором или концентратор с концентратором

Кросс-разв одка – применяется для соединения ПК друг с другом

Прямая разводка кабеля выполняется согласно таблице 1

№ контакта коннектора

Цвет проводника

Бело-зеленый

Бело - оранжевый

Бело-синий

Оранжевый

Бело-коричневый

Коричневый

Кросс-разводка кабеля выполняется согласно таблице 2

№ контакта коннектора

Первый конец

Второй конец

Бело-зеленый

Бело - оранжевый

Оранжевый

Бело - оранжевый

Бело-зеленый

Бело-синий

Бело-синий

Оранжевый

Бело-коричневый

Бело-коричневый

Коричневый

Коричневый

После подключения коннекторов кабель следует проверить с помощью специального тестера, который определит, правильно ли проводники витых пар подсоединены к контактам коннекторов, а также целостность самого кабеля.
Назначение и функции оптоволокна

В оптоволоконном кабеле цифровые данные распространяются по оптическим волокнам в виде модулированных световых импульсов. Это относительно защищенный способ передачи, поскольку при нем не используются электрические сигналы. Следовательно, к оптоволоконному кабелю невозможно подключиться, не разрушая его, и перехватывать данные, от чего не застрахован любой кабель, проводящий электрические сигналы

Рис.1 Структура оптоволоконного кабеля: 1 –cердцевина с показателем преломления n1;

2 - отражающая оболочка с показателем преломления n2, n1 > n2;.3 – защитное покрытие.

Кабель содержит несколько световодов, хорошо защищенных пластиковой изоляцией. Он обладает сверхвысокой скоростью передачи данных (до 2 Гбит), абсолютно не подвержен помехам и сам не создает излучения, долговечен (срок службы 25 лет). Расстояние между системами, соединенными оптиковолокном, может достигать 100 километров. Основа оптоволокна - кварц (SiO2), самый распространенный в природе материал, недорогой в отличие от меди.

В зависимости от распределения показателя преломления и от величины диаметра сердечника различают:

    многомодовое волокно со ступенчатым изменением показателя преломления(а) многомодовое волокно с плавным изменением показателя преломления(б) одномодовое волокно (в)

Рис.2 Типы оптического кабеля

В одномодовом кабеле используется центральный проводник очень малого диаметра - от 5 до 15 мкм. При этом практически все лучи света распространяются вдоль оптической оси световода, не отражаясь от внешнего проводника. Полоса пропускания одномодового кабеля очень широкая - до сотен гигагерц на километр.

Изготовление тонких качественных волокон для одномодового кабеля представляет сложный технологический процесс, что делает одномодовый кабель достаточно дорогим. Кроме того, в волокно такого диаметра достаточно сложно направить пучок света, не потеряв при этом значительную часть его энергии.

В многомодовых кабелях используются более широкие внутренние сердечники, которые легче изготовить технологически.

В многомодовых кабелях во внутреннем проводнике одновременно существует несколько световых лучей, отражающихся от внешнего проводника под разными углами. Угол отражения луча называется модой луча.

Многомодовые кабели имеют более узкую полосу пропускания - от 500 до 800 МГц/км. Сужение полосы происходит из-за потерь световой энергии при отражениях, а также из-за интерференции лучей разных мод.

В качестве источников излучения света в волоконно-оптических кабелях применяются светодиоды и полупроводниковые лазеры.

Для одномодовых кабелей применяются только полупроводниковые лазеры, так как при таком малом диаметре оптического волокна световой поток, создаваемый светодиодом, невозможно без больших потерь направить в волокно. Для многомодовых кабелей используются более дешевые светодиодные излучатели.

Волоконно-оптические кабели присоединяют к оборудованию разъемами MIC, ST и SC.

Казалось бы, идеальный проводник для сети найден, но стоит оптический кабель чрезвычайно дорого (около 1-3$ за метр), и для работы с ним требуется специальные сетевые карты, коммутаторы и т. д. Данное соединение применяется для объединения крупных сетей, высокосортного доступа в Интернет (для провайдеров и крупных компаний), а также для передачи данных на большие расстояния. В домашних сетях, если требуется высокая скорость соединения, гораздо дешевле и удобнее воспользоваться гигабитной сетью на витой паре.

Понятие сети ЭВМ

Под сетью ЭВМ понимают соединение двух и более ЭВМ с целью совместного использования их ресурсов (процессоров, устройств памяти, устройств ввода/вывода, данных). По степени охвата территории различают сети:

· локальные (местные) - в пределах одного учреждения, помещения (или при максимальном удалении ЭВМ не более 1км.)

· региональные - внутри населенного пункта, района

· национальные - внутри государства

· глобальные

По степени доступности различают корпоративные и общедоступные сети.

По топологии (способу объединения ЭВМ) различают:

· звездообразную топологию

При таком способе обмен данными между ЭВМ осуществляется через более мощную ЭВМ - сервер. Недостатком такого соединения является низкая живучесть сети - выход из строя сервера означает прекращение функционирование сети. Однако, простота и дешевизна реализации сделала эту структуру популярной в локальных сетях.

· топологию с общей шиной

При этом способе обмен данными происходит через общую шину, которую используя механизм прерывания может "захватывать" тот или иной компьютер. Характерной особенностью здесь является отсутствие сервера. Очень часто используется в локальных сетях, а уж в "домашних" повсеместно.

· кольцевая топология

В этой структуре каждая ЭВМ используя механизм прерывания работает в качестве ретранслятора. Обратите внимание, живучесть сети повышена - при одиночном обрыве связи между соседними ЭВМ сеть продолжает функционировать.

· полная топология

Соединение ЭВМ "каждая с каждой" позволяют получить сеть самую дорогую, но и обладающую максимальной живучестью.

Характеристики сетей ЭВМ

Операционные возможности - это перечень основных услуг предоставляемых сетью пользователю по обработке, хранению и передачи данных.

Время реакции сетей - Это интервал времени между возникновением запроса пользователя к какой-либо услуге сети и моментом получения ответа на данный запрос.

Время реакции сети (Т) состоит:

· Время подготовки запроса пользователя

· Время доступа запроса к средствам передачи данных

· Время передачи запроса до адресата через промежуточные средства телекоммуникации

· Время обработки запроса и подготовки ответа

· Время передачи ответа

· Время обработки ответа источником запроса

Пропускная способность - это объем данных (бит/с) передаваемых сетью в единицу времени и является наряду с задержкой передачи характеристикой, показывающей непосредственно качество передачи данных.

Надежность – эта характеристика складывается из:

· Коэффициент готовности сети – это доля времени в течении которого сеть выполняет возложенные на нее функции

· Вероятность доставки данных без искажений (вероятность потери данных)

· Безопасность – защита данных от несанкционированного доступа

· Отказоустойчивость – способность сети работать при отказе отдельных структурных функциональных элементов сети

Расширяемость и маштабируемость сети.

Расширяемость – характеризует степень легкости замены или добавления / удаления отдельных элементов сети.

Маштабируемость – возможность расширения сети в широких пределах без заметного ухудшения качества функционирования сети.

Производительность сети - Это суммарная производительность всех вычислительных систем, входящих в сеть, характеризует вычислительную мощность всей сети.

Прозрачность, управляемость и совместимость.

Прозрачность – характеризует степень простоты работы пользователя в сети

Управляемость – это возможность контроля состояния сети и ее отдельных компонентов, возможность разрешения возникающих в сети проблем, возможность анализа качества функционирования сети.

Совместимость – возможность сети включать в себя разнообразное программное, техническое обеспечение, произведенное самыми разными производителями (интегрируемость). Она достигается соблюдением разными производителями единых правил производства продукции (стандартов).

Стоимость обработки данных - Характеризует эффект и целесообразность построения и использования сети. Определяется из стоимости средств используемых для обработки, передачи и хранения данных с учетом их объема.

Модель ISO OSI

В 1984 году Международной Организацией по Стандартизации (International Standard Organization, ISO) была разработана модель взаимодействия открытых систем (Open Systems Interconnection, OSI).

Модель представляет собой международный стандарт для проектирования сетевых коммуникаций и предполагает уровневый подход к построению сетей. Каждый уровень модели обслуживает различные этапы процесса взаимодействия. Посредством деления на уровни сетевая модель OSI упрощает совместную работу оборудования и программного обеспечения.

Модель OSI разделяет сетевые функции на семь уровней: прикладной, уровень представления, сессионный, транспортный, сетевой, канальный и физический.

Понятие о сетях ЭВМ, информационных технологиях на сетях

Лекция 20

Сеть представляет собой совокупность компьютеров, объединœенных средствами передачи данных. Средства передачи данных в общем случае могут состоять из следующих элементов: связных компьютеров, каналов связи (спутниковых, телœефонных, цифровых, волоконно-оптических, радио- и других), коммутирующей аппаратуры, ретрансляторов, различного рода преобразователœей сигналов и других элементов и устройств.

Архитектура сети определяет принципы построения и функционирования аппаратного и программного обеспечения элементов сети.

Современные сети можно классифицировать по различным признакам: по удаленности компьютеров, топологии, назначению, перечню предоставляемых услуг, принципам управления (централизованные и децентрализованные), методам коммутации (без коммутации, телœефонная коммутация, коммутация цепей, сообщений, пакетов и дейтаграмм и т. д.), видам среды передачи и т. д.

Сети условно разделяют на локальные и глобальные исходя из удаленности компьютеров.

Произвольная глобальная сеть может включать другие глобальные сети, локальные сети, а также отдельно подключаемые к ней компьютеры (удаленные компьютеры) или отдельно подключаемые устройства ввода-вывода. Глобальные сети бывают четырех базовых видов: городские, региональные, национальные и транснациональные. В качестве устройств ввода-вывода могут использоваться, к примеру, печатающие и копирующие устройства, кассовые и банковские аппараты, дисплеи (терминалы) и факсы. Перечисленные элементы сети бывают удалены друг от друга на значительное расстояние.

Локальная вычислительная сеть (ЛВС) представляет собой коммуникационную систему, позволяющую совместно использовать ресурсы компьютеров, подключенных к сети, такие, как принтеры, плоттеры, диски, модемы, приводы CD-ROM и другие периферийные устройства. В локальных вычислительных сетях компьютеры расположены на расстоянии до нескольких километров и обычно соединœены при помощи скоростных линий связи со скоростью обмена от 1 до 10 и более Мбит/с (не исключается случаи соединœения компьютеров и с помощью низкоскоростных телœефонных линий). ЛВС обычно развертываются в рамках некоторой организации (корпорации, учреждения). По этой причине их иногда называют корпоративными системами или сетями. Компьютеры при этом, как правило, находятся в пределах одного помещения, здания или сосœедних зданий.

Функции программного обеспечения компьютера, установленного в сети, условно можно разделить на две группы: управление ресурсами самого компьютера (в том числе и в интересах решения задач для других компьютеров) и управление обменом с другими компьютерами (сетевые функции).

Собственными ресурсами компьютера традиционно управляет ОС. Функции сетевого управления реализует сетевое ПО, ĸᴏᴛᴏᴩᴏᴇ должна быть выполнено как в виде отдельных пакетов сетевых программ, так и в виде сетевой ОС.

Топология - ϶ᴛᴏ конфигурация соединœения элементов в сеть. Топология во многом определяет такие важнейшие характеристики сети, как ее надежность, производительность, стоимость, защищенность и т.д.

Одним из подходов к классификации топологий ЛВС является выделœение двух базовых классов топологий: широковещательных и последовательных.

В широковещательных конфигурациях каждый персональный компьютер передает сигналы, которые бывают восприняты остальными компьютерами. К таким конфигурациям относятся топологии ʼʼобщая шинаʼʼ, ʼʼдеревоʼʼ, ʼʼзвезда с пассивным центромʼʼ. Сеть типа ʼʼзвезда с пассивным центромʼʼ можно рассматривать как разновидность ʼʼдереваʼʼ, имеющего корень с ответвлением к каждому подключенному устройству.

В последовательных конфигурациях каждый физический подуровень передает информацию только одному персональному компьютеру. Примерами последовательных конфигураций являются: произвольная (произвольное соединœение компьютеров), иерархическая, ʼʼкольцоʼʼ, ʼʼцепочкаʼʼ, ʼʼзвезда с интеллектуальным центромʼʼ, ʼʼснежинкаʼʼ и др.

Коротко рассмотрим три наиболее широко распространенные (базовые) топологии ЛВС: ʼʼзвездаʼʼ, ʼʼобщая шинаʼʼ и ʼʼкольцоʼʼ.

В случае топологии ʼʼзвездаʼʼ каждый компьютер через специальный сетевой адаптер подключается отдельным кабелœем к центральному узлу (Рис. 21). Центральным узлом служит пассивный соединитель или активный повторитель.

Рис. 21. Топология ʼʼзвездаʼʼ

Недостатком такой топологии является низкая надежность, так как выход из строя центрального узла приводит к остановке всœей сети, а также обычно большая протяженность кабелœей (это зависит от реального размещения компьютеров). Иногда для повышения надежности в центральном узле ставят специальное релœе, позволяющее отключать вышедшие из строя кабельные лучи.

Топология ʼʼобщая шинаʼʼ предполагает использование одного кабеля, к которому подключаются всœе компьютеры. Информация по нему передается компьютерами поочередно (Рис. 22).

Рис. 22. Топология ʼʼобщая шинаʼʼ

Достоинством такой топологии является, как правило, меньшая протяженность кабеля, а также более высокая надежность чем у ʼʼзвездыʼʼ, так как выход из строя отдельной станции не нарушает работоспособности сети в целом. Недостатки состоят в том, что обрыв основного кабеля приводит к неработоспособности всœей сети, а также слабая защищенность информации в системе на физическом уровне, так как сообщения, посылаемые одним компьютером другому, в принципе, бывают приняты и на любом другом компьютере.

При кольцевой топологии данные передаются от одного компьютера другому по эстафете (Рис. 23). В случае если некоторый компьютер получает данные, предназначенные не ему, он передает их дальше по кольцу. Адресат предназначенные ему данные никуда не передает.

Рис. 23. Кольцевая топология

Достоинством кольцевой топологии является более высокая надежность системы при разрывах кабелœей, чем в случае топологии с общей шиной, так как к каждому компьютеру есть два пути доступа. К недостаткам топологии следует отнести большую протяженность кабеля, невысокое быстродействие по сравнению со ʼʼзвездойʼʼ (но соизмеримое с ʼʼобщей шинойʼʼ), а также слабую защищенность информации, как и при топологии с общей шиной.

Топология реальной ЛВС может в точности повторять одну из приведенных выше или включать их комбинацию. Структура сети в общем случае определяется следующими факторами: количеством объединяемых компьютеров

Понятие о сетях ЭВМ, информационных технологиях на сетях - понятие и виды. Классификация и особенности категории "Понятие о сетях ЭВМ, информационных технологиях на сетях" 2017, 2018.