Сортировка массива методом пузырька эмулятор. Методы сортировки в программировании: сортировка "пузырьком"

Не только не считается самым быстрым методом, более того, она замыкает перечень самых медленных способов упорядочивания. Однако и у нее есть свои плюсы. Так, сортировка методом пузырька - самое что ни на есть логичное и естественное решение проблемы, если необходимо расставить элементы в определенном порядке. Обычный человек вручную, к примеру, воспользуется именно им - просто по интуиции.

Откуда взялось такое необычное название?

Название метода придумали, используя аналогию с воздушными пузырьками в воде. Это метафора. Подобно тому, как маленькие пузыри воздуха поднимаются наверх - ведь их плотность больше, чем какой-либо жидкости (в данном случае - воды), так и каждый элемент массива, чем меньше он по значению, тем больше он постепенно пробирается к началу перечня чисел.

Описание алгоритма

Сортировка пузырьком выполняется следующим образом:

  • первый проход: элементы массива чисел берутся по два и также парами сравниваются. Если в какой-то двойке элементов первое значение оказывается больше второго, программа производит их обмен местами;
  • следовательно, попадает в конец массива. В то время как все остальные элементы остаются, как и были, в хаотичном порядке и требуют еще сортировки;
  • поэтому и необходим второй проход: производится он по аналогии с предыдущим (уже описанным) и имеет число сравнений - минус один;
  • у прохода номер три сравнений на единицу меньше, чем у второго, и на двойку, чем у первого. И так далее;
  • подытожим, что каждый проход имеет (всего значений в массиве, конкретное число) минус (номер прохода) сравнений.

Еще короче алгоритм будущей программы можно записать так:

  • массив чисел проверяется до тех пор, пока не будут найдены какие-либо два числа, причем второе из них обязано быть больше первого;
  • неправильно расположенные по отношению друг к другу элементы массива программа меняет местами.

Псевдокод на основе описанного алгоритма

Самая простая реализация выполняется так:

Процедура Sortirovka_Puzirkom ;

Начало

цикл для j от nachalnii_index до konechii_index ;

цикл для i от nachalnii_index до konechii_index-1 ;

если massiv[i]>massiv

(меняем значения местами);

Конец

Конечно, здесь простота только усугубляет ситуацию: чем проще алгоритм, тем более в нем проявляются все недостатки. Затратность времени слишком велика даже для небольшого массива (тут вступает в дело относительность: для обывателя количество времени может казаться маленьким, но в деле программиста каждая секунда или даже миллисекунда на счету).

Потребовалась реализация получше. Например, учитывающая обмен значений в массиве местами:

Процедура Sortirovka_Puzirkom ;

Начало

sortirovka = истина;

цикл пока sortirovka = истина;

sortirovka = ложь;

цикл для i от nachalnii_index до konechii_index-1 ;

если massiv[i]>massiv (первый элемент больше второго), то:

(меняем элементы местами);

sortirovka = истина; (обозначили, что обмен был произведен).

Конец.

Недостатки метода

Основной минус - продолжительность процесса. Сколько же времени выполняется пузырьком?

Время выполнения рассчитывается из квадрата количества чисел в массиве - конечный результат ему пропорционален.

При наихудшем варианте массив будет пройден столько же раз, сколько в нем имеется элементов минус одно значение. Так происходит потому, что в конечном итоге остается только один элемент, который не с чем сравнивать, и последний проход по массиву становится бесполезным действом.

Кроме того, эффективен метод сортировки простыми обменами, как его еще называют, только для массивов небольшого размера. Большие объемы данных с его помощью обработать не получится: результатом станут либо ошибки, либо сбой работы программы.

Достоинства

Сортировка пузырьком весьма проста для понимания. В учебных программах технических ВУЗов при изучении упорядочивания элементов массива ее проходят в первую очередь. Метод легко реализуется как на языке программирования Delphi (Д (Делфи), так и на C/C++ (Си/Си плюс плюс), невероятно простой алгоритм расположения значений в верном порядке и на Сортировка пузырьком идеально подходит для начинающих.

По причине недостатков алгоритм не применяют во внеучебных целях.

Наглядный принцип сортировки

Изначальный вид массива 8 22 4 74 44 37 1 7

Шаг 1 8 22 4 74 44 37 1 7

8 22 4 74 44 1 37 7

8 22 4 74 1 44 37 7

8 22 4 1 74 44 37 7

8 22 1 4 74 44 37 7

8 1 22 4 74 44 37 7

1 8 22 4 74 44 37 7

Шаг 2 1 8 22 4 74 44 7 37

1 8 22 4 74 7 44 37

1 8 22 4 7 74 44 37

1 8 22 4 7 74 44 37

1 8 4 22 7 74 44 37

1 4 8 22 7 74 44 37

Шаг 3 1 4 8 22 7 74 37 44

1 4 8 22 7 37 74 44

1 4 8 22 7 37 74 44

1 4 8 7 22 37 74 44

1 4 7 8 22 37 74 44

Шаг 4 1 4 7 8 22 37 44 74

1 4 7 8 22 37 44 74

1 4 7 8 22 37 44 74

1 4 7 8 22 37 44 74

Шаг 5 1 4 7 8 22 37 44 74

1 4 7 8 22 37 44 74

1 4 7 8 22 37 44 74

Шаг 6 1 4 7 8 22 37 44 74

1 4 7 8 22 37 44 74

Шаг 7 1 4 7 8 22 37 44 74

Пример сортировки пузырьком на языке Pascal

Пример:

const kol_mas=10;

var massiv:array of integer;

a, b, k: integer;

writeln ("input", kol_mas, "elements of array");

for a:=1 to kol_mas do readln(massiv[a]);

for a:=1 to kol_mas-1 do begin

for b:=a+1 to kol_mas do begin

if massiv[a]>massiv[b] then begin

k:=massiv[a]; massiv[a]:=massiv[b]; massiv[b]:=k;

end;

writeln ("after sort");

for a:=1 to kol_mas do writeln(massiv[a]);

Пример сортировки пузырьком на языке С (Си)

#include

#include

int main(int argc, char* argv)

int massiv = {36, 697, 73, 82, 68, 12, 183, 88},i, ff;

for (; ;){

ff = 0;

for (i = 7; i>0; i--){

if (massiv[i] < massiv) {

swap (massiv[i],massiv);

if (ff == 0) break;

getch(); // задержка экрана

Алгоритм сортировки одномерного массива методом «пузырька». Описание алгоритма. Блок-схема и программа сортировки по возрастанию массива типа real из 7 элементов.

Описание алгоритма

Классификация методов сортировки не всегда четко определена. Остановимся на методе, в котором обмен двух элементов является основной характеристикой процесса. Приведенный ниже алгоритм сортировки простым обменом основан на принципе сравнения и обмена пары соседних элементов до тех пор, пока не будут рассортированы все элементы.

Как и в предыдущих методах простого выбора, мы совершаем повторные проходы по массиву, каждый раз просеивая наименьший элемент оставшегося множества, двигаясь к левому концу массива. Если, для разнообразия, мы будем рассматривать массив, расположенный вертикально, а не горизонтально и – при помощи некоторого воображения - представим себе элементы пузырьками в резервуаре с водой, обладающими «весами», соответствующими их ключам, то каждый проход по массиву приводит к «всплыванию» пузырька на соответствующий его весу уровень (см. табл. 2). Этот метод широко известен как сортировка методом пузырька . Его простейший вариант приведен в программе 1.

  1. Пример сортировки методом пузырька

procedure bubblesort ;

var i , j : index ; x : item ;

begin for i := 2 to n do

begin for j := n downto i do

if a [j -1].key > a [j ].key then

begin x := a [j -1]; a [j -1] := a [j ]; a [j ] := x

end {bubblesort }

  1. Сортировка методом пузырька

Этот алгоритм легко оптимизировать. Пример в табл. 2 показывает, что три последних прохода никак не влияют на порядок элементов, поскольку те уже рассортированы. Очевидный способ улучшить данный алгоритм – это запоминать, производился ли на данном проходе какой-либо обмен. Если нет, то это означает, что алгоритм можно продолжить, если запоминать не только сам факт обмена, но и место (индекс) последнего обмена. Ведь ясно, что все пары соседних элементов с индексами, меньшими этого индекса k , уже расположены в нужном порядке. Поэтому следующие проходы можно заканчивать на этом индексе, вместо того чтобы двигаться до установленной заранее нижней границыi . Однако внимательный программист заметит здесь странную асимметрию: один неправильно расположенный «пузырек» в «тяжелом» конце рассортированного массива всплывает на место за один проход, а неправильно расположенный элемент в «легком» конце будет опускаться на правильное место только на один шаг на каждом проходе. Например, массив

12 18 42 44 55 67 94 06

будет рассортирован при помощи метода пузырька за один проход, а сортировка массива

94 06 12 18 42 44 55 67

потребует семи проходов. Эта неестественная асимметрия подсказывает третье улучшение: менять направление следующих один за другим проходов.

Анализ сортировки методом пузырька.

Число сравнений в алгоритме простого обмена равно

,

минимальное, среднее и максимальное количества пересылок (присваиваний элементов) равны

,

,

.

  1. Блок–схема сортировки методом пузырька.

Программа сортировки

A: array of real;

N, j, k: integer;

WriteLn("Ввод массива");

for j:= 1 to N do

Write("A", j, "=");

WriteLn("Исходный массив");

for j:= 1 to N do

Write(A[j]:8:1);

for j:= 2 to k do

if A > A[j] then

A := A[j];

WriteLn("Отсортированный массив");

for j:= 1 to N do

Write(A[j]:8:1);


Расположим массив сверху вниз, от нулевого элемента - к последнему.

Идея метода: шаг сортировки состоит в проходе снизу вверх по массиву. По пути просматриваются пары соседних элементов. Если элементы некоторой пары находятся в неправильном порядке, то меняем их местами.

После нулевого прохода по массиву "вверху" оказывается самый "легкий" элемент - отсюда аналогия с пузырьком. Следующий проход делается до второго сверху элемента, таким образом второй по величине элемент поднимается на правильную позицию...

Делаем проходы по все уменьшающейся нижней части массива до тех пор, пока в ней не останется только один элемент. На этом сортировка заканчивается, так как последовательность упорядочена по возрастанию.

Template void bubbleSort(T a, long size) { long i, j; T x; for(i=0; i < size; i++) { // i - номер прохода for(j = size-1; j > i; j--) { // внутренний цикл прохода if (a > a[j]) { x=a; a=a[j]; a[j]=x; } } } }

Среднее число сравнений и обменов имеют квадратичный порядок роста: Theta(n 2), отсюда можно заключить, что алгоритм пузырька очень медленен и малоэффективен.
Тем не менее, у него есть громадный плюс: он прост и его можно по-всякому улучшать. Чем мы сейчас и займемся.

Во-первых, рассмотрим ситуацию, когда на каком-либо из проходов не произошло ни одного обмена. Что это значит?

Это значит, что все пары расположены в правильном порядке, так что массив уже отсортирован. И продолжать процесс не имеет смысла(особенно, если массив был отсортирован с самого начала!).

Итак, первое улучшение алгоритма заключается в запоминании, производился ли на данном проходе какой-либо обмен. Если нет - алгоритм заканчивает работу.

Процесс улучшения можно продолжить, если запоминать не только сам факт обмена, но и индекс последнего обмена k. Действительно: все пары соседих элементов с индексами, меньшими k, уже расположены в нужном порядке. Дальнейшие проходы можно заканчивать на индексе k, вместо того чтобы двигаться до установленной заранее верхней границы i.

Качественно другое улучшение алгоритма можно получить из следующего наблюдения. Хотя легкий пузырек снизу поднимется наверх за один проход, тяжелые пузырьки опускаются со минимальной скоростью: один шаг за итерацию. Так что массив 2 3 4 5 6 1 будет отсортирован за 1 проход, а сортировка последовательности 6 1 2 3 4 5 потребует 5 проходов.

Чтобы избежать подобного эффекта, можно менять направление следующих один за другим проходов. Получившийся алгоритм иногда называют "шейкер-сортировкой ".

Template void shakerSort(T a, long size) { long j, k = size-1; long lb=1, ub = size-1; // границы неотсортированной части массива T x; do { // проход снизу вверх for(j=ub; j>0; j--) { if (a > a[j]) { x=a; a=a[j]; a[j]=x; k=j; } } lb = k+1; // проход сверху вниз for (j=1; j<=ub; j++) { if (a > a[j]) { x=a; a=a[j]; a[j]=x; k=j; } } ub = k-1; } while (lb < ub); }

Насколько описанные изменения повлияли на эффективность метода? Среднее количество сравнений, хоть и уменьшилось, но остается O(n 2), в то время как число обменов не поменялось вообще никак. Среднее(оно же худшее) количество операций остается квадратичным.

Дополнительная память, очевидно, не требуется. Поведение усовершенствованного (но не начального) метода довольно естественное, почти отсортированный массив будет отсортирован намного быстрее случайного. Сортировка пузырьком устойчива, однако шейкер-сортировка утрачивает это качество.

На практике метод пузырька, даже с улучшениями, работает, увы, слишком медленно. А потому - почти не применяется.


Все отлично знают, что из класса обменных сортировок самый быстрый метод – это так называемая быстрая сортировка . О ней пишут диссертации, её посвящено немало статей на Хабре, на её основе придумывают сложные гибридные алгоритмы. Но сегодня речь пойдёт не про quick sort , а про другой обменный способ – старую добрую пузырьковую сортировку и её улучшения, модификации, мутации и разновидности.

Практический выхлоп от данных методов не ахти какой и многие хабрапользователи всё это проходили ещё в первом классе. Поэтому статья адресована тем, кто только-только заинтересовался теорией алгоритмов и делает в этом направлении первые шаги.

image: пузырьки

Сегодня поговорим о простейших сортировках обменами .

Если кому интересно, скажу, что есть и другие классы – сортировки выбором , сортировки вставками , сортировки слиянием , сортировки распределением , гибридные сортировки и параллельные сортировки . Есть, кстати, ещё эзотерические сортировки . Это различные фейковые, принципиально нереализуемые, шуточные и прочие псевдо-алгоритмы, про которые я в хабе «IT-юмор» как-нибудь напишу пару статей.

Но к сегодняшней лекции это не имеет отношения, нас сейчас интересуют только простенькие сортировки обменами. Самих сортировок обменами тоже немало (я знаю более дюжины), поэтому мы рассмотрим так называемую пузырьковую сортировку и некоторые другие, с ней тесно взаимосвязанные.

Заранее предупрежу, что почти все приведённые способы весьма медленные и глубокого анализа их временной сложности не будет. Какие-то побыстрее, какие-то помедленнее, но, грубо говоря, можно сказать, что в среднем O (n 2 ). Также я не вижу резона загромождать статью реализациями на каких-либо языках программирования. Заинтересовавшиеся без малейшего труда смогут найти примеры кода на Розетте , в Википедии или где-нибудь ещё.

Но вернёмся к сортировкам обменами. Упорядочивание происходит в результате многократного последовательного перебора массива и сравнения пар элементов между собой. Если сравниваемые элементы не отсортированы друг относительно друга – то меняем их местами. Вопрос только в том, каким именно макаром массив обходить и по какому принципу выбирать пары для сравнения.

Начнём не с эталонной пузырьковой сортировки, а с алгоритма, который называется…

Глупая сортировка

Сортировка и впрямь глупейшая. Просматриваем массив слева-направо и по пути сравниваем соседей. Если мы встретим пару взаимно неотсортированных элементов, то меняем их местами и возвращаемся на круги своя, то бишь в самое начало. Снова проходим-проверяем массив, если встретили снова «неправильную» пару соседних элементов, то меняем местами и опять начинаем всё сызнова. Продолжаем до тех пор пока массив потихоньку-полегоньку не отсортируется.

«Так любой дурак сортировать умеет» - скажете Вы и будете абсолютно правы. Именно поэтому сортировку и прозвали «глупой». На этой лекции мы будем последовательно совершенствовать и видоизменять данный способ. Сейчас у него временная сложность O (n 3 ), произведя одну коррекцию, мы уже доведём до O (n 2 ), потом ускорим ещё немного, потом ещё, а в конце концов мы получим O (n log n ) – и это будет вовсе не «Быстрая сортировка»!

Внесём в глупую сортировку одно-единственное улучшение. Обнаружив при проходе два соседних неотсортированных элемента и поменяв их местами, не станем откатываться в начало массива, а невозмутимо продолжим его обход до самого конца.

В этом случае перед нами не что иное как всем известная…

Пузырьковая сортировка

Или сортировка простыми обменами . Бессмертная классика жанра. Принцип действий прост: обходим массив от начала до конца, попутно меняя местами неотсортированные соседние элементы. В результате первого прохода на последнее место «всплывёт» максимальный элемент. Теперь снова обходим неотсортированную часть массива (от первого элемента до предпоследнего) и меняем по пути неотсортированных соседей. Второй по величине элемент окажется на предпоследнем месте. Продолжая в том же духе, будем обходить всё уменьшающуюся неотсортированную часть массива, запихивая найденные максимумы в конец.

Если не только в конец задвигать максимумы, а ещё и в начало перебрасывать минимумы то у нас получается…

Шейкерная сортировка

Она же сортировка перемешиванием , она же коктейльная сортировка . Начинается процесс как в «пузырьке»: выдавливаем максимум на самые задворки. После этого разворачиваемся на 180 0 и идём в обратную сторону, при этом уже перекатывая в начало не максимум, а минимум. Отсортировав в массиве первый и последний элементы, снова делаем кульбит. Обойдя туда-обратно несколько раз, в итоге заканчиваем процесс, оказавшись в середине списка.

Шейкерная сортировка работает немного быстрее чем пузырьковая, поскольку по массиву в нужных направлениях попеременно мигрируют и максимумы и минимумы. Улучшения, как говорится, налицо.

Как видите, если к процессу перебора подойти творчески, то выталкивание тяжёлых (лёгких) элементов к концам массива происходит быстрее. Поэтому умельцы предложили для обхода списка ещё одну нестандартную «дорожную карту».

Чётно-нечётная сортировка

На сей раз мы не будем сновать по массиву взад-вперёд, а снова вернёмся к идее планомерного обхода слева-направо, но только сделаем шире шаг. На первом проходе элементы с нечётным ключом сравниваем с соседями, зиждущимися на чётных местах (1-й сравниваем со 2-м, затем 3-й с 4-м, 5-й с 6-м и так далее). Затем наоборот – «чётные по счёту» элементы сравниваем/меняем с «нечётными». Затем снова «нечёт-чёт», потом опять «чёт-нечет». Процесс останавливается тогда, когда после подряд двух проходов по массиву («нечётно-чётному» и «чётно-нечётному») не произошло ни одного обмена. Стало быть, отсортировали.

В обычном «пузырьке» во время каждого прохода мы планомерно выдавливаем в конец массива текущий максимум. Если же передвигаться вприпрыжку по чётным и нечётным индексам, то сразу все более-менее крупные элементы массива одновременно за один пробег проталкиваются вправо на одну позицию. Так получается быстрее.

Разберём последнее покращення * для Сортування бульбашкою ** - Сортування гребінцем ***. Этот способ упорядочивает весьма шустро, O (n 2 ) – его наихудшая сложность. В среднем по времени имеем O (n log n ), а лучшая даже, не поверите, O (n ). То есть, весьма достойный конкурент всяким «быстрым сортировкам» и это, заметьте, без использования рекурсии. Впрочем, я обещал, что в крейсерские скорости мы сегодня углубляться не станем, засим умолкаю и перехожу непосредственно к алгоритму.


Во всём виноваты черепашки

Небольшая предыстория. В 1980 году Влодзимеж Добосиевич пояснил почему пузырьковая и производные от неё сортировки работают так медленно. Это всё из-за черепашек . «Черепахи» - небольшие по значению элементы, которые находятся в конце списка. Как Вы, возможно, заметили пузырьковые сортировки ориентированы на «кроликов» (не путать с «кроликами» Бабушкина) – больших по значению элементов в начале списка. Они весьма резво перемещаются к финишу. А вот медлительные пресмыкающиеся на старт ползут неохотно. Подгонять «тортилл» можно с помощью расчёски .

image: виноватая черепашка

Сортировка расчёской

В «пузырьке», «шейкере» и «чёт-нечете» при переборе массива сравниваются соседние элементы. Основная идея «расчёски» в том, чтобы первоначально брать достаточно большое расстояние между сравниваемыми элементами и по мере упорядочивания массива сужать это расстояние вплоть до минимального. Таким образом мы как бы причёсываем массив, постепенно разглаживая на всё более аккуратные пряди.

Первоначальный разрыв между сравниваемыми элементами лучше брать не абы какой, а с учётом специальной величины называемой фактором уменьшения , оптимальное значение которой равно примерно 1,247. Сначала расстояние между элементами равно размеру массива разделённого на фактор уменьшения (результат, естественно, округляется до ближайшего целого). Затем, пройдя массив с этим шагом, мы снова делим шаг на фактор уменьшения и проходим по списку вновь. Так продолжается до тех пор, пока разность индексов не достигнет единицы. В этом случае массив досортировывается обычным пузырьком.

Опытным и теоретическим путём установлено оптимальное значение фактора уменьшения :

Когда был изобретён этот метод, на него на стыке 70-х и 80-х мало кто обратил внимание. Десятилетие спустя, когда программирование перестало быть уделом учёных и инженеров IBM, а уже лавинообразно набирало массовый характер, способ переоткрыли, исследовали и популяризировали в 1991 году Стивен Лейси и Ричард Бокс.

Вот собственно и всё что я хотел Вам рассказать про пузырьковую сортировку и иже с ней.

- Примечания

* покращення (укр. ) – улучшение
** Сортування бульбашкою (укр. ) – Сортировка пузырьком
*** Сортування гребінцем (укр. ) – Сортировка расчёской


Сегодня мы затронем тему сортировки в Паскале. Есть достаточно много различных методов, большинство из них не имеет широкой известности, да и знание их в принципе и не нужно. Достаточно знать базовый набор и несколько дополнительных. В этой статья я расскажу вам о самой известной сортировке - это сортировка методом пузырька, которую также называют сортировкой простого обмена.
Для начала, что такое сортировка в паскале и зачем она нужна? Сортировка - это метод упорядочить массив (обычно по возрастанию или убыванию) . В задачах встречаются такие строки "расположить элементы массива, начиная от минимального (максимального)" . Имейте ввиду, что это то же самое.
Вернемся к сортировке пузырьком. Почему ее назвали именно так? Дело в том, что это аналогия. Представьте себе обычный массив, расположенный вертикально. В результате сортировки более меньшие элементы поднимаются вверх. То есть здесь массив можно представить в виде воды, а меньшие элементы в виде пузырька, которые всплывают наверх.


Теперь подробнее о самом алгоритме. Все достаточно просто:
1. Для сортировки используется 2 цикла, один вложен в другой. Один используется на шаги, другой на под-шаги.
2. Суть алгоритма - это сравнение двух элементов. Именно двух. Поясняю, например имеем массив с 10-ю элементами. Элементы будут сравниваться парами: 1 и 2, 2и 3,3 и 4,4 и 5,6 и 7 и т.д. При сравнении пар, если предыдущий элемент оказался больше чем последующий - то их меняют местами. Например если второй элемент равен 5 , а третий 2 , то они их поменяют местами.
3. Сортировка методом пузырька делится на шаги. В каждом шаге выполняется попарное сравнение. В результате каждого шага наибольшие элементы начинают выстраиваться с конца массива. То есть после первого шага самый большой по значению элемент массива будут стоять на последнем месте. Во втором шаге работа производится со всеми элементами кроме последнего. Опять находится самый большой элемент и ставится в конец массива, с которым производится работа. Третий шаг повторяет второй и так до тех пор, пока массив не будет отсортирован. Для более удобного восприятия приведу нагядный пример. Возьмем массив, состоящий из 7 элементов: 2,5,11,1,7,8,3. Смотрим.(Кликните на картинку для увеличения изображения)


Перейдем непосредственно к коду. Как уже было сказано нам необходимо два цикла. Вот как это будет выглядеть

const
m = 7; {колличетво элементов в массиве}

var
msort: array of integer; {собственно наш массив}
i, j, k: integer; {i - это шаг,j - это под-шаг}

begin
writeln("Введите элементы массива");
for i:= 1 to m do
read(msort[i]);

For i:= 1 to m - 1 do
for j:= 1 to m - i do
if msort[j] > msort then begin
k:= msort[j];
msort[j] := msort;
msort := k;
end;

Write("Отсортированный массив: ");
for i:= 1 to m do
write(msort[i]:4);

end.

Обратите внимание на элемент k . Он нужен только для одной цели: чтобы поменять два элемента массива местами. Дело в том, что в Паскале нет специальной функции, которая бы выполняла такое действие. Поэтому приходится расписывать ее самому, добавляя дополнительный элемент для обмена. На этом статья сортировка методом пузырька закончена, следующие статьи выйдут в течении следующей недели (а может и раньше).