Сетевые технологии локальных вычислительных сетей. Понятие сетевых технологий

Сегодня сети и сетевые технологии соединяют людей в любых уголках мира и обеспечивают им доступ к самой большой роскоши на свете - человеческому общению. Люди без помех общаются и играют с друзьями, находящимися в других частях света.

Происходящие события становятся известны во всех странах мира за считанные секунды. Каждый в состоянии подключиться к Интернету и выложить свою порцию информации.

Сетевые информационные технологии: корни их возникновения

Во второй половине прошлого века человеческой цивилизацией были сформированы две ее важнейшие научно-технические отрасли - компьютерные и Около четверти века обе эти отрасли развивались самостоятельно, и в их рамках были созданы соответственно компьютерные и телекоммуникационные сети. Однако в последней четверти ХХ столетия в результате эволюции и взаимопроникновения этих двух отраслей человеческого знания и возникло то, что мы называем термином «сетевая технология», являющимся подразделом более общего понятия «информационная технология».

В результате их появления в мире произошла новая технологическая революция. Подобно тому как за несколько десятилетий до нее поверхность суши покрылась сетью скоростных автомагистралей, в конце прошлого века все страны, города и села, предприятия и организации, а также индивидуальные жилища оказались связанными "информационными магистралями". При этом все они стали элементами различных сетей передачи данных между компьютерами, в которых были реализованы те или иные технологии передачи информации.

Технология сети: понятие и содержание

Сетевая технология представляет собой достаточный для построения некоторой целостный комплекс правил представления и передачи информации, реализуемых в виде так называемых «стандартных протоколов», а также аппаратных и программных средств, включающих сетевые адаптеры с драйверами, кабели и ВОЛС, различные коннекторы (разъемы).

"Достаточность" этого комплекса средств означает его минимализацию при сохранении возможности построения работоспособной сети. Она должна иметь потенциал совершенствования, например, за счет создания в ней подсетей, требующих применения протоколов различного уровня, а также спецкоммуникаторов, именуемых обычно «маршрутизаторами». После усовершенствования сеть становится надежнее и быстрее, но ценой появления надстроек над основной сетевой технологией, составляющей ее базис.

Термин "сетевая технология" наиболее часто применяется в вышеописанном узком смысле, однако зачастую он расширенно трактуется как любой набор средств и правил построения сетей определенного типа, например "технология локальных компьютерных сетей".

Прообраз сетевой технологии

Первым прообразом компьютерной сети, но еще не самой сетью, стали в 60-80-х гг. прошлого века многотерминальные системы. Представляя собой совокупность монитора и клавиатуры, располагающихся на больших расстояниях от больших ЭВМ и соединяющихся с ними посредством телефонных модемов или по выделенным каналам, терминалы выходили из помещений ИВЦ и рассредоточивались по всему зданию.

При этом, кроме оператора самой ЭВМ на ИВЦ, все пользователи терминалов получали возможность вводить с клавиатуры свои задания и наблюдать за их выполнением на мониторе, осуществляя и некоторые операции управления заданиями. Такие системы, реализующие как алгоритмы разделения времени, так и пакетной обработки, назывались системами удаленного ввода заданий.

Глобальные сети

Вслед за многотерминальными системами в конце 60-х гг. ХХ в. был создан и первый тип сетей - глобальные компьютерные сети (ГКС). Они связали суперкомпьютеры, существовавшие в единичных экземплярах и хранившие уникальные данные и ПО, с большими ЭВМ, находившимися от них на расстояниях до многих тысяч километров, посредством телефонных сетей и модемов. Эта сетевая технология была ранее апробирована в многотерминальных системах.

Первой ГКС в 1969 г. стала ARPANET, работавшая в Минобороны США и объединявшая разнотипные компьютеры с различными ОС. Они оснащались допмодулями для реализации коммуникационных общих для всех входящих в сеть компьютеров. Именно на ней были разработаны основы сетевых технологий, применяемые и в настоящее время.

Первый пример конвергенции компьютерных и телекоммуникационных сетей

ГКС достались в наследство линии связи от более старых и более глобальных сетей — телефонных, т. к. прокладывать новые линии большой протяженности было очень дорого. Поэтому многие годы в них использовались аналоговые телефонные каналы для передачи в данный момент времени только одного разговора. Цифровые данные передавались по ним с очень низкой скоростью (десятки кбит/с), а возможности ограничивались передачей файлов данных и электронной почтой.

Однако унаследовав телефонные линии связи, ГКС не взяли их основную технологию, основанную на принципе коммутации каналов, когда каждой паре абонентов на все время сеанса связи выделялся канал с постоянной скоростью. В ГКС использовали новые компьютерные сетевые технологии, основанные на принципе пакетной коммутации, при котором данные в виде небольших порций-пакетов с постоянной скоростью выдаются в некоммутируемую сеть и принимаются их адресатами в сети по адресным кодам, встроенным в заголовки пакетов.

Предшественники локальных сетей

Появление в конце 70-х гг. ХХ в. БИС привело к созданию мини-ЭВМ с невысокой стоимостью и богатыми функциональными возможностями. Они стали реально конкурировать с большими ЭВМ.

Широкую популярность приобрели мини-ЭВМ семейства PDP-11. Их стали устанавливать во все, даже очень небольшие производственные подразделения для управления техпроцессами и отдельными технологическими установками, а также в отделы управлений предприятий для выполнения офисных задач.

Возникла концепция распределенных по всему предприятию компьютерных ресурсов, хотя все мини-ЭВМ все еще работали автономно.

Появление LAN-сетей

К середине 80-х гг. ХХ в. были внедрены технологии объединения мини-ЭВМ в сети, основанные на коммутации пакетов данных, как и в ГКС.

Они превратили построение сети одного предприятия, называемую локальной (LAN - сеть), в почти тривиальную задачу. Для ее создания нужно только купить сетевые адаптеры под выбранную LAN-технологию, например, Ethernet, стандартную кабельную систему, установить на ее кабели коннекторы (разъемы) и соединить адаптеры с мини-ЭВМ и между собой посредством этих кабелей. Далее на ЭВМ-сервер устанавливалась одна из ОС, предназначенная для организации LAN - сети. После этого она начинала работать, и последующее присоединение каждой новой мини-ЭВМ не вызывало никаких проблем.

Неизбежность появления Интернета

Если появление мини-ЭВМ позволило распределить компьютерные ресурсы равномерно по территориям предприятий, то появление в начале 90-х гг. ПК обусловило их постепенное появление сначала на каждом рабочем месте любого работника умственного труда, а затем и в индивидуальных человеческих жилищах.

Относительная дешевизна и высокая надежность работы ПК сначала дали мощный толчок развитию LAN-сетей, а затем привели и к возникновению глобальной компьютерной сети - Интернета, охватившей сегодня все страны мира.

Размер Интернета каждый месяц прирастает на 7-10%. Он представляет собой ядро, связующее различные локальные и глобальные сети предприятий и учреждений во всем мире друг с другом.

Если на первом этапе через Интернет в основном передавались файлы данных и сообщения электронной почты, то сегодня он обеспечивает в основном удаленный доступ к распределенным информресурсам и электронным архивам, к коммерческим и некоммерческим информслужбам многих стран. Его архивы свободного доступа содержат сведения практически по всем областям знания и деятельности человека - от новых направлений в науке до прогнозов погоды.

Основные сетевые технологии LAN-сетей

Среди них выделяют базовые технологии, на которых может строиться базис любой конкретной сети. В качестве примера можно привести такие известные LAN-технологии как Ethernet (1980), Token Ring (1985) и FDDI (конец 80-х гг.).

В конце 90-х гг. в лидеры технологии LAN-сетей вышла технология Ethernet, объединившая классический его вариант со до 10 мбит/с, а также Fast Ethernet (до100 Мбит/c) и Gigabit Ethernet (до 1000 Мбит/c). Все Ethernet-технологии имеют близкие принципы работы, упрощающие их обслуживание и объединение построенных на их основе LAN-сетей.

В тот же период в ядра практически всех компьютерных ОС их разработчиками стали встраиваться сетевые функции, реализующие вышеперечисленные сетевые информационные технологии. Появились даже специализированные коммуникационные ОС вроде IOS компании Cisco Systems.

Как развивались ГКС-технологии

Технологии ГКС на аналоговых телефонных каналах из-за большого уровня искажений в них отличались сложными алгоритмами контроля и восстановления данных. Примером их является технология X.25 разработки еще начала 70-х гг. ХХ в. Более современные сетевые технологии - это frame relay, ISDN, ATM.

ISDN - аббревиатура, означающая «цифровую сеть с интеграцией услуг», позволяет проведение удаленных видеоконференций. Удаленный доступ обеспечивается установкой в ПК адаптеров ISDN, работающих во много раз быстрее любых модемов. Имеется и специальное ПО, позволяющее популярным ОС и браузерам работать с ISDN. Но дороговизна оборудования и необходимость прокладывать специальные линии связи тормозит развитие этой технологии.

Технологии глобальных сетей прогрессировали вместе с телефонными сетями. После появления цифровой телефонии была разработана спецтехнология Plesiochronous Digital Hierarchy (PDH), поддерживающая скорости до 140 Мбит/с и используемая для создания предприятиями их собственных сетей.

Новая технология Synchronous Digital Hierarchy (SDH) в конце 80-х гг. ХХ в. расширила пропускную способность цифровых телефонных каналов до 10 Гбит/c, а технология Dense Wave Division Multiplexing (DWDM) — до сотен Гбит/c и даже до нескольких Тбит/c.

Технологии Интернета

Сетевые основаны на использовании языка гипертекста (или HTML-языка) - спецязыка разметки представляющего собой упорядоченный набор атрибутов (тегов), внедряемых предварительно разработчиками интернет-сайтов в каждую их страницу. Конечно, речь в данном случае не идет о текстовых или графических документах (фотографиях, картинках), которые уже «скачаны» пользователем из Интернета, находятся в памяти его ПК и просматриваются через текстовые или Речь идет о так называемых веб-страницах, просматриваемых через программы-браузеры.

Разработчики интернет-сайтов создают их на HTML-языке (сейчас создано множество средств и технологий этой работы, обобщенно называемой «версткой сайтов») в виде совокупности веб-страниц, а владельцы сайтов помещают в интернет-серверы на условиях аренды у владельцев серверов их памяти (так называемого «хостинга»). Они круглосуточно работают в Интернете, обслуживая запросы его пользователей на просмотр загруженных в них веб-страниц.

Браузеры пользовательских ПК, получив через сервер своего интернет-провайдера доступ к конкретному серверу, адрес которого содержится в имени запрашиваемого интернет-сайта, получают доступ к этому сайту. Далее, анализируя HTML-теги каждой просматриваемой страницы, браузеры формируют ее изображение на экране монитора в том виде, как это было задумано разработчиком сайта - со всеми заголовками, цветами шрифта и фона, различными вставками в виде фото, диаграмм, картинок и т. п.

Технология Ethernet

Ethernet – это самый распространенный на сегодняшний день стандарт локальных сетей .

Ethernet – это сетевой стандарт, основанный на экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1975 году.

В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet версии II для сети, построенной на основе коаксиального кабеля, который стал последней версией фирменного стандарта Ethernet. Поэтому фирменную версию стандарта Ethernet называют стандартом Ethernet DIX, или Ethernet II, на основе которых был разработан стандарт IEEE 802.3.

На основе стандарта Ethernet были приняты дополнительные стандарты: в 1995 году Fast Ethernet (дополнение к IEEE 802.3), в 1998 году Gigabit Ethernet (раздел IEEE 802.3z основного документа), которые во многом не являются самостоятельными стандартами.

Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet, обеспечивающих пропускную способность 10 Мбит/с, используется манчестерский код (рис. 3.9).

В манчестерском коде для кодирования единиц и нулей используется перепад потенциала, то есть фронт импульса. При манчестерском кодировании каждый такт делится на две части. Информация кодируется перепадами потенциала, происходящими в середине каждого такта. Единица кодируется перепадом от низкого уровня сигнала к высокому (передним фронтом импульса), а ноль ‑ обратным перепадом (задним фронтом).

Рис. 3.9. Дифференциальное манчестерское кодирование

В стандарте Ethernet (в том числе Fast Ethernet и Gigabit Ethernet) используется один и тот же метод разделения среды передачи данных ‑ метод CSMA/CD.

Каждый ПК работает в Ethernet согласно принципу «Слушай канал передачи, перед тем как отправить сообщения; слушай, когда отправляешь; прекрати работу в случае помех и попытайся еще раз».

Данный принцип можно расшифровать (объяснить) следующим образом:

1. Никому не разрешается посылать сообщения в то время, когда этим занят уже кто-то другой (слушай перед тем, как отправить).

2. Если два или несколько отправителей начинают посылать сообщения примерно в один и тот же момент, рано или поздно их сообщения «столкнутся» друг с другом в канале связи, что называется коллизией.

Коллизии нетрудно распознать, поскольку они всегда вызывают сигнал помехи, который не похож на допустимое сообщение. Ethernet может распознать помехи и заставляет отправителя приостановить передачу и подождать некоторое время, прежде, чем повторно отправить сообщение.

Причины широкой распространенности и популярности Ethernet (достоинства):

1. Дешевизна.

2. Большой опыт использования.

3. Продолжающиеся нововведения.

4. Богатство выбора оборудования. Многие изготовители предлагают аппаратуру построения сетей, базирующуюся на Ethernet.

Недостатки Ethernet:

1. Возможность столкновений сообщений (коллизии, помехи).

2. В случае большой загрузки сети время передачи сообщений непредсказуемо.

Технология Token Ring

Сети Token Ring, как и сети Ethernet, характеризует разделяемая среда передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо . Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему требуется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциям права на использование кольца в определенном порядке. Это право передается с помощью кадра специального формата, называемого маркером, или токеном (token) .

Технология Token Ring был разработана компанией IBM в 1984 году, а затем передана в качестве проекта стандарта в комитет IEЕЕ 802, который на ее основе принял в 1985 году стандарт 802.5.

Каждый ПК работает в Token Ring согласно принципу «Ждать маркера, если необходимо послать сообщение, присоединить его к маркеру, когда он будет проходить мимо. Если проходит маркер, снять с него сообщение и отправить маркер дальше».

Сети Token Ring работают с двумя битовыми скоростями ‑ 4 и 16 Мбит/с. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

Технология Token Ring является более сложной технологией, чем Ethernet. Она обладает свойствами отказоустойчивости. В сети Token Ring определены процедуры контроля работы сети, которые используют обратную связь кольцеобразной структуры ‑ посланный кадр всегда возвращается в станцию-отправитель.

Рис. 3.10. Принцип технологии TOKEN RING

В некоторых случаях обнаруженные ошибки в работе сети устраняются автоматически, например, может быть восстановлен потерянный маркер. В других случаях ошибки только фиксируются, а их устранение выполняется вручную обслуживающим персоналом.

Для контроля сети одна из станций выполняет роль так называемого активного монитора. Активный монитор выбирается во время инициализации кольца как станция с максимальным значением МАС-адреса. Если активный монитор выходит из строя, процедура инициализации кольца повторяется и выбирается новый активный монитор. Сеть Token Ring может включать до 260 узлов.

Концентратор Token Ring может быть активным или пассивным. Пассивный концентратор просто соединяет порты внутренними связями так, чтобы станции, подключаемые к этим портам, образовали кольцо. Ни усиление сигналов, ни их ресинхронизацию пассивный MSAU не выполняет.

Активный концентратор выполняет функции регенерации сигналов, и поэтому иногда называется повторителем, как в стандарте Ethernet.

В общем случае сеть Token Ring имеет комбинированную звездно-кольцевую конфигурацию. Конечные узлы подключаются к MSAU по топологии звезды, а сами MSAU объединяются через специальные порты Ring In (RI) и Ring Out (RO) для образования магистрального физического кольца.

Все станции в кольце должны работать на одной скорости либо 4 Мбит/с, либо 16 Мбит/с. Кабели, соединяющие станцию с концентратором, называются ответвительными (lobe cable), а кабели, соединяющие концентраторы, – магистральными (trunk cable).

Технология Token Ring позволяет использовать для соединения конечных станций и концентраторов различные типы кабеля:

– STP Type 1 ‑ экранированная витая пара (Shielded Twistedpair).
В кольцо допускается объединять до 260 станций при длине ответвительных кабелей до 100 метров;

– UTP Туре 3, UTP Туре 6 ‑ неэкранированная витая пара (Unshielded Twistedpair). Максимальное количество станций сокращается до 72 при длине ответвительных кабелей до 45 метров;

– волоконно-оптический кабель.

Расстояние между пассивными MSAU может достигать 100 м при использовании кабеля STP Туре 1 и 45 м при использовании кабеля UTP Type 3. Между активными MSAU максимальное расстояние увеличивается соответственно до 730 м или 365 м в зависимости от типа кабеля.

Максимальная длина кольца Token Ring составляет 4000 м. Ограничения на максимальную длину кольца и количество станций в кольце в технологии Token Ring не являются такими жесткими, как в технологии Ethernet. Здесь эти ограничения в основном связаны со временем оборота маркера по кольцу.

Все значения тайм-аутов в сетевых адаптерах узлов сети Token Ring можно настраивать, поэтому можно построить сеть Token Ring с большим количеством станций и с большей длиной кольца.

Преимущества технологии Token Ring:

· гарантированная доставка сообщений;

· высокая скорость передачи данных (до 160% Ethernet).

Недостатки технологии Token Ring:

· необходимы дорогостоящие устройства доступа к среде;

· технология более сложная в реализации;

· необходимы 2 кабеля (для повышения надежности): один входящий, другой исходящий от компьютера к концентратору;

· высокая стоимость (160-200% от Ethernet).

Технология FDDI

Технология FDDI (Fiber Distributed Data Interface) – оптоволоконный интерфейс распределенных данных ‑ это первая технология локальных сетей, в которой средой передачи данных является волоконно-оптический кабель. Технология появилась в середине 80-х годов .

Технология FDDI во многом основывается на технологии Token Ring, поддерживая метод доступа с передачей маркера.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Наличие двух колец – это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам.

В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного (Primary) кольца, этот режим назван режимом Thru ‑ «сквозным», или «транзитным». Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным, вновь образуя единое кольцо. Этот режим работы сети называется Wrap, то есть «свертывание» или «сворачивание» колец. Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI.

Рис. 3.11. ИВС с двумя циклическими кольцами в аварийном режиме

Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении (на диаграммах это направление изображается против часовой стрелки), а по вторичному – в обратном (изображается по часовой стрелке). Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.

Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных, поэтому для нее определен специальный метод доступа. Этот метод очень близок к методу доступа сетей Token Ring и также называется методом маркерного (или токенного) кольца – token ring.

Отличия метода доступа заключаются в том, что время удержания маркера в сети FDDI не является постоянной величиной. Это время зависит от загрузки кольца - при небольшой загрузке оно увеличивается, а при больших перегрузках может уменьшаться до нуля. Эти изменения в методе доступа касаются только асинхронного трафика, который не критичен к небольшим задержкам передачи кадров. Для синхронного трафика время удержания маркера по-прежнему остается фиксированной величиной.

Технология FDDI в настоящее время поддерживает типа кабелей:

– волоконно-оптический кабель;

– неэкранированная витая пара категории 5. Последний стандарт появился позже оптического и носит название TP-PMD (Physical Media Dependent).

Оптоволоконная технология обеспечивает необходимые средства для передачи данных от одной станции к другой по оптическому волокну и определяет:

Использование в качестве основной физической среды многомодового волоконно-оптического кабеля 62,5/125 мкм;

Требования к мощности оптических сигналов и максимальному затуханию между узлами сети. Для стандартного многомодового кабеля эти требования приводят к предельному расстоянию между узлами в 2 км, а для одномодового кабеля расстояние увеличивается до 10–40 км в зависимости от качества кабеля;

Требования к оптическим обходным переключателям (optical bypass switches) и оптическим приемопередатчикам;

Параметры оптических разъемов MIC (Media Interface Connector), их маркировку;

Использование для передачи света с длиной волны в 1,3 нм;

Максимальная общая длина кольца FDDI составляет 100 километров, максимальное число станций с двойным подключением в кольце ‑ 500.

Технология FDDI разрабатывалась для применения в ответственных участках сетей ‑ на магистральных соединениях между крупными сетями, например сетями зданий, а также для подключения к сети высокопроизводительных серверов. Поэтому главные требования, у разработчиков были (достоинства ):

‑ обеспечение высокой скорости передачи данных,

‑ отказоустойчивость на уровне протокола;

‑ большие расстояния между узлами сети и большое количество подключенных станций.

Все эти цели были достигнуты. В результате технология FDDI получилась качественной, но весьма дорогой (недостаток ). Даже появление более дешевого варианта для витой пары не намного снизило стоимость подключения одного узла к сети FDDI. Поэтому практика показала, что основной областью применения технологии FDDI стали магистрали сетей, состоящих из нескольких зданий, а также сети масштаба крупного города, то есть класса MAN.

Технология Fast Ethernet

Потребности в высокоскоростной и в то же время недорогой технологии для подключения к сети мощных рабочих станций привели в начале 90-х годов к созданию инициативной группы, которая занялась поисками нового Ethernet, такой же простой и эффективной технологии, но работающей на скорости 100 Мбит/с .

Специалисты разбились на два лагеря, что в конце концов привело к появлению двух стандартов, принятых осенью 1995 года: комитет 802.3 утвердил стандарт Fast Ethernet, почти полностью повторяющий технологию Ethernet 10 Мбит/с.

Технология Fast Ethernet сохранила в неприкосновенности метод доступа CSMA/CD, оставив в нем тот же алгоритм и те же временные параметры в битовых интервалах (сам битовый интервал уменьшился в 10 раз). Все отличия Fast Ethernet от Ethernet проявляются на физическом уровне.

В стандарте Fast Ethernet определены три спецификации физического уровня:

‑ 100Base-TX для 2-х пар UTP категории 5 или 2-х пар STP Type 1 (метод кодирования 4В/5В);

‑ l00Base-FX для многомодового волоконно-оптического кабеля с двумя оптическими волокнами (метод кодирования 4В/5В);

‑ 100Base-T4, работающую на 4-х парах UTP категории 3, но использующую одновременно только три пары для передачи, а оставшуюся ‑ для обнаружения коллизии (метод кодирования 8В/6Т).

Стандарты l00Base-TX/FX могут работать в полнодуплексном режиме.

Максимальный диаметр сети Fast Ethernet равен приблизительно 200 м, а более точные значения зависят от спецификации физической среды. В домене коллизий Fast Ethernet допускается не более одного повторителя класса I (позволяющего транслировать коды 4В/5В в коды 8В/6Т и обратно) и не более двух повторителей класса II (не позволяющих выполнять трансляцию кодов).

Технология Fast Ethernet при работе на витой паре позволяет за счет процедуры автопереговоров двум портам выбирать наиболее эффективный режим работы - скорость 10 Мбит/с или 100 Мбит/с, а также полудуплексный или полнодуплексный режим.

Технология Gigabit Ethernet

Технология Gigabit Ethernet добавляет новую, 1000 Мбит/с, ступень в иерархии скоростей семейства Ethernet. Эта ступень позволяет эффективно строить крупные локальные сети, в которых мощные серверы и магистрали нижних уровней сети работают на скорости 100 Мбит/с, а магистраль Gigabit Ethernet объединяет их, обеспечивая достаточно большой запас пропускной способности.

Разработчики технологии Gigabit Ethernet сохранили большую степень преемственности с технологиями Ethernet и Fast Ethernet. Gigabit Ethernet использует те же форматы кадров, что и предыдущие версии Ethernet, работает в полнодуплексном и полудуплексном режимах, поддерживая на разделяемой среде тот же метод доступа CSMA/CD с минимальными изменениями.

Для обеспечения приемлемого максимального диаметра сети в 200 м в полудуплексном режиме разработчики технологии пошли на увеличение минимального размера кадра в 8 раз (с 64 до 512 байт). Разрешается также передавать несколько кадров подряд, не освобождая среду, на интервале 8096 байт, тогда кадры не обязательно дополнять до 512 байт. Остальные параметры метода доступа и максимального размера кадра остались неизменными.

Летом 1998 года был принят стандарт 802.3z, который определяет использование в качестве физической среды трех типов кабеля:

‑ многомодового оптоволоконного (расстояние до 500 м),

‑ одномодового оптоволоконного (расстояние до 5000 м),

‑ двойного коаксиального (twinax), по которому данные передаются одновременно по двум медным экранированным проводникам на расстояние до 25 м.

Для разработки варианта Gigabit Ethernet на UTP категории 5 была создана специальная группа 802.3ab, которая уже разработала проект стандарта для работы по 4-м парам UTP категории 5. Принятие этого стандарта ожидается в ближайшее время.

Введение

Глава 1. Формы использования сетевых технологий в образовании

1 Сетевые технологии в образовании

2 Электронная почта

1.3 Технология World-Wide Web (WWW)

1.4 Поисковые системы и каталоги Интернет

5 Компьютерные телеконференции

6 Электронные библиотеки

Глава 2. Собственно образовательные сетевые технологии и ресурсы

1 Желательные компоненты системы сетевого образования

2 Образовательные порталы и дистанционное образование

Заключение


Введение

Образование должно опережать жизнь. Это аксиома, давно ставшая общим местом, но по-прежнему остающаяся (по крайней мере, в России) чистой декларацией. Каким образом образование может опережать жизнь? Понятно, что преподавать то, чего ещё нет, невозможно. Но давать учащемуся самые современные знания, одновременно ориентируя его на решение основополагающих, концептуальных вопросов, - можно. Именно концептуальность образования в области конкретных реализаций стимулирует поиск новых, более совершенных, более смелых решений.

Информатизация является объективным процессом во всех сферах человеческой деятельности, в том числе образовании. Цель информатизации образования состоит в глобальной интенсификации интеллектуальной деятельности за счет использования новых информационных технологий.

Информационная насыщенность современного общества, его функциональность на достойном уровне сегодня предполагают такие скорости движения информации, которые могут обеспечить только компьютерные сети, интегрированные в глобальное информационное пространство.

Таким образом, цель данной работы - рассмотреть проблемы внедрения в образование и образовательный процесс современных форм и методов обучения на основе достижений компьютерной техники и коммуникационных технологий в связи с растущей глобализацией всех областей жизни общества, в том числе и педагогической науки и практики.

В соответствии с целью, объектом и предметом исследования были поставлены следующие задачи: выявление основных проблем и перспектив внедрения в образование информатизации; рассмотрение форм использования сетевых технологий в образовании; обзор сетевых технологий, в российском образовании.


.1 Сетевые технологии в образовании

Бурное развитие телекоммуникационных технологий, в частности сети Интернет, и мультимедиа в последние годы не только способствовало появлению повышенного интереса к использованию компьютеров в учебном процессе, но и обусловило появление системы образования нового поколения - компьютерного дистанционного образования. О чем свидетельствует приведенная ниже схема.

Схема 1 - Образование нового поколения - компьютерное дистанционное образование

Сетевое образование, как один из видов дистанционного, представляет собой быстро меняющуюся и пока во многом гипотетическую область социально-экономического развития, плохо поддающуюся прогнозированию, что предполагает важность оценки альтернативных технологий и всевозможный "подогрев" интереса общественности и специалистов к этой области.

Основная проблематика сетевого образования, включает вопросы развития новых технологических схем, модернизацию методических ресурсов и развитие инфраструктуры. Рассмотрение актуальных проблем сетевого образования происходит на фоне продолжающегося в последние годы процесса сокращения рабочих мест практически во всех развитых странах, ускорения модернизации под воздействием экологических ограничений содержания многих профессий, с одной стороны, и, с другой, - вследствие непрекращающегося технологического развития человечества.

Всё это ведёт к сокращению жизненного цикла знаний и навыков, превращает образовательную функцию из разовой (как в начале века) и повторяющейся (в середине века) в регулярную. Наиболее яркий пример - информационные технологии, меняющие программно-технические платформы через полтора-два года. В этих условиях классическая форма очного обучения становится лишь частью общего образовательного инструментария, причём всё меньшей частью. Внешне незаметно, но непрерывно возрастает косвенное участие в образовательном процессе электронных средств массовой информации - в первую очередь, телевидения, а в последние годы - и общедоступных компьютерных сетей.

1.2 Электронная почта

В качестве самой популярной "несущей" технологии в дистанционном образовании сейчас используется обычная электронная почта, базирующаяся на протоколе TCP/IP . Обучающимся очень часто бывает удобно разделять момент времени получения и осмысления учебной информации и момент времени направления ответного сигнала, который может представлять собой дополнительные вопросы к "учителю", или ответы на контрольные вопросы и задачи, содержащиеся в полученном учебном материале.

В равной степени электронная почта хороша для поддержки и других базисных функций образовательного процесса. Привлекательность технологической схемы электронной почты, опирающаяся на её относительную доступность и дешевизну, по-видимому, сохранится для "заочников" на десятки лет.

В последнее время все больше внимания уделяется технологиям реального времени, в том числе, в первую очередь, технологии "всемирной паутины" -World Wide Web.

1.3 Технология World-Wide Web (WWW)

Технология Internet, названная Всемирная паутина (World-WideWeb, WWW или W3) является одним из популярных и интересных сервисов Интернет сегодня, а также удобным средством работы с информацией. Очень часто понятия WWW и Интернет даже считают тождественными.

Эта система основана на двух "китах" - Протокол Передачи Гипертекста - Hypertext Transport Protocol (HTTP), который служит для передачи сложных документов, и Язык Создания Гипертекста - Hypertext Markup Language (HTML), использующий гипертекстовые связи для определения объектов внутри документов-файлов.- информационная система, которой весьма непросто дать корректное определение. Вот некоторые из эпитетов, которыми она может быть обозначена: гипертекстовая, распределенная, интегрирующая, глобальная. WWW работает по принципу клиент-сервер, точнее, клиент-серверы: существует множество серверов, которые по запросу клиента возвращают ему гипермедийный документ - документ, состоящий из частей с разнообразным представлением информации (текст, звук, графика, трехмерные объекты и т.д.), в котором каждый элемент может являться ссылкой на другой документ или его часть. Ссылки WWW указывают не только на документы, специфичные для самой WWW, но и на прочие сервисы и информационные ресурсы Интернет. Более того, большинство программ-клиентов WWW (browsers, навигаторы) не просто понимают такие ссылки, но и являются программами-клиентами соответствующих сервисов: ftp, gopher, сетевых новостей Usenet, электронной почты и т.д. Таким образом, программные средства WWW являются универсальными для различных сервисов Интернет, а сама информационная система WWW играет интегрирующую роль.- сервис прямого доступа, требующий полноценного подключения к Интернет, и более того, часто требующий быстрых линий связи, в случае, если документы, которые Вы читаете, содержат много графики или другой нетекстовой информации.

Технология Web, разработанная в 1989 г. в Женеве, в Лаборатории физики элементарных частиц Европейского центра ядерных исследований (CERN) Тимом Бернерс-Ли (Tim Berners-Lee) и его коллегами-программистами, сначала была направлена на создание единой сети для научных сотрудников, занимающихся физикой высоких энергий. Однако вскоре эта технология нашла гораздо более широкое применение. Первые программы, демонстрирующие работу системы, были закончены в 1992 году и с тех пор WWW - наиболее динамичная и быстро развивающаяся часть Интернет.

Система WWW проста в использовании, что и предопределило ее успех. До появления World Wide Web Интернет была доступна только квалифицированным пользователям компьютера. Теперь же, не имеющие большого компьютерного опыта легко пользуются системой.

1.4 Поисковые системы и каталоги Интернет

В Интернет можно найти любую информацию из той, которая в ней имеется. Интернет - это гигантская библиотека. Как и во всякой библиотеке, здесь надо уметь пользоваться поисковым аппаратом. Как искать? Каталог информации и услуг, доступных в Интернет с помощью WWW, уже сегодня занял бы не один десяток томов печатного текста. Поэтому на первый план выходит проблема поиска нужной информации, которую помогают решить специализированные поисковые системы.

Пожалуй, самой полезной чертой Интернет является наличие в нем поисковых серверов. Это выделенные компьютеры, которые автоматически просматривают все ресурсы Интернет, которые могут найти, и индексируют их содержание. Затем имеется возможность передать такому серверу фразу или набор ключевых слов, описывающих интересующую тему, и сервер возвратит список ресурсов, соответствующих запросу.

Сегодняшние поисковые системы поддерживают индексы, включающие весьма значительную часть ресурсов Интернет. Таких серверов существует довольно-таки много, и вкупе они охватывают практически все доступные ресурсы. Если в Интернет есть информация, которая интересует обучающегося, то ее наверняка можно найти при помощи поисковых серверов. Это самое мощное средство нахождения ресурсов в сети. В каталогах Интернет хранятся тематически систематизированные коллекции ссылок на различные сетевые ресурсы, в первую очередь на документы World Wide Web. Ссылки в такие каталоги заносятся не автоматически, но их администраторами. Более того, занимающиеся этим люди стараются сделать свои коллекции наиболее полными, включающими все доступные ресурсы на каждую тему. В результате пользователю не нужно самому собирать все ссылки по интересующему его вопросу, но достаточно найти этот вопрос в каталоге - работа по поиску и систематизации ссылок уже сделана за него.


Глобальная сеть Интернет позволяет поддерживать такой важный режим связи, как телеконференции. Под компьютерной телеконференцией понимается специальным образом организованная область памяти на компьютере, поддерживающем работу телекоммуникационной системы. Все абоненты, имеющие доступ к этой области памяти (к телеконференции), имеют возможность, как получить на свой компьютер весь текст, который уже находился к этому моменту в этой области памяти, так и добавить к нему свой текст. По мере добавления к телеконференции текстов и реплик, присылаемых ее участниками, общий текст становится все более похожим на стенограмму обычной конференции. Отсюда и название - телеконференция.

Существует много видов телеконференций, отличающихся способами взаимодействия ее участников с компьютером (пользовательским интерфейсом), а также способами организации рубрик телеконференции. Различия определяются тем программным обеспечением, которое использует телекоммуникационная система для реализации режима телеконференций.

Однако, несмотря на различие телеконференций, всем им присуща одинаковая структура. Конференция начинается некоторым текстом, задающим ее тему. Далее каждый из участников имеет возможность добавить к этому тексту свою реплику. Все реплики располагаются последовательно по мере поступления и доступны вместе с исходным текстом всем участникам телеконференции. При последующих обращениях можно получать либо весь текст, либо только новые фрагменты текста. Каждый участник телеконференции имеет возможность работать в удобное для него время.

Участники телеконференции могут быть разбиты на группы для разработки отдельных тем, их доступ к отдельным темам может быть ограничен. Преподаватель может задавать наводящие вопросы, ставить новые проблемы, обращаться к отдельным участникам индивидуально. В общем, телеконференция предоставляют широкие возможности для организации учебного процесса. Однако каковы бы ни были задания или смысл всей телеконференции, это коллективная деятельность особого рода. Участники этой деятельности не видят друг друга, возможно незнакомыми никогда не познакомятся лично. Их работа в телеконференции растянута во времени, и происходит, как правило, на фоне основной деятельности, возможно не имеющей отношения к изучаемому материалу. Как бы то ни было, поведение участников телеконференций оказывается подверженным некоторым закономерностям, зная которые можно эффективно влиять на успешность самой телеконференции и, как следствие, успешность изучения того учебного материала, усвоению которого телеконференция посвящена.

Кроме того, конференции могут подразделяться: по способам доступа; по способам участия; по способам достижения цели. Что и показано в нижеследующей схеме.

Схема 2 - Способы конференций

1.6 Электронные библиотеки

Формы использования сетевых технологий в образовании могут быть различными. В принципе, хранение документов в электронном виде на носителе, доступном из сети, и в формате, интерпретируемом любым достаточно распространённым пользовательским программным пакетом, уже является образовательной сетевой технологией. Речь идёт о так называемых электронных библиотеках. Это могут быть и доступные только по ftp файловые хранилища, в которых документы рассортированы по каталогам в соответствии с тематикой, хронологией или форматом, а каждый каталог снабжен файлом описаний (file_id.diz, descript.ion, files.bbs, read.me и т.п.). Сетевые библиотеки с подобным устройством, хотя и продолжают сегодня существовать, но, безусловно, не являются массовыми, по крайней мере - самыми массовыми. Да и назвать такое файлохранилище библиотекой было бы не совсем верно - это больше похоже на домашнюю книжную полку.

В эпоху гипертекста и организованных баз данных для интерфейса сетевой библиотеки более характерно наличие гипертекстовой главной, титульной страницы и доступного с неё электронного каталога на базе какой-либо достаточно мощной СУБД (среды управления базами банных; чаще всего сегодня это MySQL) с возможностью поиска документа (записи) по различным ключам (автор, заглавие, тематика, контекст бибзаписи, любое встречающееся слово и т.д.) и сортировки по различным признакам.

Определение собственно ключей и признаков сортировки, т.е. классификация единиц хранения - очень важная часть организации сетевой библиотеки. Большая часть ныне существующих русскоязычных сетевых библиотек создавалась любителями, и классификация хранимых текстов в них оставляет желать много лучшего

Можно сказать, что российское интернет-библиотечное дело находится в зачаточном состоянии, что не удивляет: русскому сегменту сети Интернет недавно исполнилось всего десять лет.

Использование же российскими пользователями зарубежных сетевых хранилищ информации часто бывает затруднено недостаточным знанием английского языка, и отсутствием на многих российских рабочих станциях программ, способных интерпретировать форматы postscript и TeX/LaTeX.

Глава 2. Собственно образовательные сетевые технологии и ресурсы

.1 Желательные компоненты системы сетевого образования

Сами по себе хранилища информации, пусть и оснащённые достаточно удобным интерфейсом и общедоступные, можно считать образовательными порталами лишь с определенной натяжкой. Для того, чтобы информация служила образованию, желательны, кроме неё самой, ещё несколько элементов таких, как программа и методики усвоения информации; наставник; система проверки усвоенных знаний; способ удостоверения полученной в процессе образования квалификации. Схема иллюстрирует данные положения.

Схема 3 - Компоненты системы сетевого образования

электронный библиотека образование

2.2 Образовательные порталы и дистанционное образование

Для образования, получаемого по сети, в речь сегодня введён новый термин - дистанционное. От традиционного заочного дистанционное образование отличается тем, что получающий его, как правило, не имеет полноценного вербального и визуального контакта с преподавателем (преподавателями) даже эпизодически. Он не выезжает на установочные и экзаменационные сессии, не присутствует лично на лекциях и экзаменационных испытаниях. Обучение сводится к получению обучающимся по сети программы, методик, заданий и специальных текстов, ответу (по сети же) на контрольные вопросы и тесты и выполнению и отсылке в адрес учреждения дистанционного образования какой-то итоговой работы.

Реальный контроль за работой обучаемого фактически сведён к нулю, а потому не удивительно, что престиж дистанционного образования на сегодняшний день очень низок - даже в сравнении с престижем заочного. Безусловно, то же следует сказать и о его качестве.

Так или иначе, основным дистанционное образование на сегодняшний день быть не может. По крайней мере - в России, где эпоха сверхузких специалистов наступит, вероятно, ещё не скоро - в силу специфики национально-исторической ситуации.

Это связано с сегодняшним уровнем развития технологии. Вероятно, когда скорость обмена данными и качество представления этих данных на пользовательском терминале возрастут настолько, что смогут создавать хотя бы минимальный эффект присутствия, качество и, соответственно, престиж дистантного образования приблизятся к качеству и престижу очного, т.к. можно будет проводить вполне полноценные удалённые лекции, конференции, экзамены.

В какой-то степени это возможно и сегодня - при помощи webcam и программ типа NetMeeting, однако web-камеры пока являются слишком дорогим оборудованием для того, чтобы присутствовать на рабочих станциях достаточного количества обучаемых, а скорость подключения большинства рядовых рабочих станций к сети столь низка при, одновременно, весьма высокой оплате этого подключения, что и нормально и безболезненно для бюджета принять обучающемуся качественный видео-аудиопоток часто представляется мало возможным. Отсюда - простой (и фактически анонимный) обмен текстами и "птичками" при ответе на тесты.

Заключение

Научный подход к решению проблем информатизации образования ставит ближайшей целью задачу овладения обучающимися комплексом знаний, навыков, умений, выработки таких качеств личности, которые смогли бы обеспечить успешное выполнение задач профессиональной деятельности и комфортное существование в условиях информационного общества.

Технологическая направленность образования заключается в следующих направлениях его реализации:

внедрение средств НИТ в образовательный процесс;

повышение уровня компьютерной (информационной) подготовки участников образовательного процесса;

системная интеграция информационных технологий в образовании, поддерживающих процессы обучения;

построение и развитие единого образовательного информационного пространства.

Научные исследования, проведенные в Российском научно-исследовательском институте системной интеграции (Рос НИИ СИ) Министерства образования РФ, позволили выделить ряд актуальных информационных и телекоммуникационных технологий в средней и высшей школе России, среди них: 1. Электронный учебник; 2. Система мультимедиа; 3. Экспертная система; 4. Система автоматизированного проектирования; 5. Электронный библиотечный каталог; 6. Базы данных; 7. Локальные и распределенные (глобальные) вычислительные системы; 8. Электронная почта; 9. Голосовая электронная почта; 10. Электронная доска объявлений; 11. Система телеконференций; 12. Настольная электронная типография.

Доступность достигается за счет возможности получать образование различными слоями населения; в различных географических регионах; на различных технических платформах; на различных языках; в различных учебных заведениях.

Не вызывает сомнений, что всестороннее и полноценное использование преимуществ сетевого обучения позволит поднять образование на качественно новый, отвечающий постоянно растущим потребностям «информационного» общества уровень.

Список использованной литературы

1.Федеральный закон Российской Федерации от 29.12.2012 г. №217-ФЗ «Об образовании».

.Приказ Минобрнауки России от 6 мая 2005 г. № 137 «Об использовании дистанционных образовательных технологий».

Для того, чтобы разобраться как устроена локальная сеть , необходимо разобраться в таком понятии, как сетевая технология .

Сетевая технология состоит из двух компонентов: сетевых протоколов и аппаратуры, обеспечивающей работу этих протоколов. Протоколом в свою очередь является набор «правил», с помощью которых компьютеры, находящиеся в сети, могут соединяться друг с другом, а также обмениваться информацией. С помощью сетевых технологий у нас есть Интернет, есть локальная связь между компьютерами, стоящими у вас дома. Еще сетевые технологии называют базовыми , но также имеют еще одно красивое названиесетевые архитектуры .

Сетевые архитектуры определяют несколько параметров сети , о которых необходимо иметь небольшое представление, чтобы разобраться в устройстве локальной сети:

1)Скорость передачи данных. Определяет, какое количество информации, которая обычно измеряется в битах, может быть передана через сеть за определенное время.

2)Формат сетевых кадров. Информация, передаваемая через сеть, существует в виде так называемых «кадров» — пакетов информации. Сетевые кадры в разных сетевых технологиях имеют различные форматы передаваемых пакетов информации.

3)Тип кодирования сигналов. Определяет каким образом с помощью электрических импульсов, информация кодируется в сети.

4)Среда передачи. Это материал (обычно кабель), через который проходит поток информации – той самой, которая в итоге выводится на экраны наших мониторов.

5)Топология сети. Это схема сети, в которой есть «ребра», представляющие собой кабеля и «вершины» — компьютеры, к которым эти кабеля тянутся. Распространены три основных вида схем сетей: кольцо, шина и звезда.

6)Метод доступа к среде передачи данных. Используется три метода доступа к сетевой среде: детерминированный метод, случайный метод доступа и приоритетная передача. Наиболее распространен детерминированный метод, при котором при помощи специального алгоритма, время использования передающей среды делится между всеми компьютерами находящимися в среде. В случае случайного метода доступа к сети компьютеры состязаются в доступе сети. Такой метод имеет ряд недостатков. Одним из таких недостатков является потеря части передаваемой информации из-за столкновения пакетов информации в сети. Приоритетный доступ обеспечивает соответственно наибольший объем информации к установленной приоритетной станции.

Набор этих параметров определяет сетевую технологию.

В настоящее время широко распространена сетевая технология IEEE802.3/Ethernet . Широкое распространение она получила, благодаря простым и недорогим технологиям. Также популярна за счёт того, что обслуживание таких сетей проще. Топология Ethernet сетей обычно строится в виде «звезды», либо «шины». Средой передачи в таких сетях применяются как тонкие, так и толстые коаксиальные кабеля , а также витые пары и оптоволоконные кабеля . Протяженность сетей Ethernet обычно колеблется от 100 до 2000 метров. Скорость передачи данных в таких сетях обычно около 10 мбит/с. В сетях Ethernet обычно используется метод доступа CSMA/CD, относящийся к децентрализованным случайным методам доступа к сети.

Существуют также высокоскоростные варианты сети Ethernet: IEEE802.3u/Fast Ethernet и IEEE802.3z/Gigabit Ethernet , обеспечивающие скорость передачи данных до 100 мбит/с и до 1000 мбит/с соответственно. В этих сетях в качестве среды передачи используется преимущественно оптоволокно , либо экранированная витая пара .

Существуют также менее распространенные, но при этом повсеместно использующиеся сетевые технологии.

Сетевая технология IEEE802.5/Token-Ring характерна тем, что все вершины или узлы (компьютеры) в такой сети объединены в кольцо, используют маркерный метод доступа к сети, поддерживают экранированную и неэкранированную витую пару , а также оптоволокно в качестве передающей среды. Скорость в сети Token-Ring до 16 мбит/с. Максимальное количество узлов, находящихся в таком кольце, составляет 260, а длина всей сети может достигать 4000 метров.

Прочитайте по теме следующие материалы:

Локальная сеть IEEE802.4/ArcNet особенна тем, что в ней для передачи данных используется метод доступа с помощью передачи полномочий. Эта сеть является одной из самых старейших и ранее популярных в мире. Такая популярность обусловлена надежностью и дешевизной сети. В наше время такая сетевая технология менее распространена, так как скорость в такой сети довольно низкая – около 2,5 мбит/с. Как и большинство других сетей в качестве передающей среды использует экранированные и неэкранированные витые пары и оптоволоконные кабеля, которые могут образовывать сеть длиной до 6000 метров и включать в себя до 255 абонентов.

Сетевая архитектура FDDI (Fiber Distributed Data Interface) , базируется на IEEE802.4/ArcNet и имеет большую популярность из-за своей высокой надежности. Такая сетевая технология включает в себя два оптоволоконных кольца , протяженностью до 100 км. При этом также обеспечивается высокая скорость передачи данных в сети – около 100 мбит/с. Смысл создания двух оптоволоконных колец состоит в том, что по одному из колец проходит путь с резервными данными. Таким образом снижается шанс потери передаваемой информации. В такой сети может находиться до 500 абонентов, что также является преимуществом перед другими сетевыми технологиями.

Локальная компьютерная сеть - это совокупность компьютеров, соединенных линиями связи, обеспечивающая пользователям сети потенциальную возможность совместного использования ресурсов всех компьютеров. С другой стороны, проще говоря, компьютерная сеть - это совокупность компьютеров и различных устройств, обеспечивающих информационный обмен между компьютерами в сети без использования каких-либо промежуточных носителей информации.

Основное назначение компьютерных сетей - совместное использование ресурсов и осуществление интерактивной связи как внутри одной фирмы, так и за ее пределами. Ресурсы (resources) - это данные, приложения и периферийные устройства, такие, как внешний дисковод, принтер, мышь, модем или джойстик.

Компьютеры, входящие в сеть выполняют следующие функции:

  • - организацию доступа к сети
  • - управление передачей информации
  • - предоставление вычислительных ресурсов и услуг пользователям сети.

В настоящее время локальные вычислительные (ЛВС) получили очень широкое распространение. Это вызвано несколькими причинами:

  • * объединение компьютеров в сеть позволяет значительно экономить денежные средства за счет уменьшения затрат на содержание компьютеров (достаточно иметь определенное дисковое пространство на файл-сервере (главном компьютере сети) с установленными на нем программными продуктами, используемыми несколькими рабочими станциями);
  • * локальные сети позволяют использовать почтовый ящик для передачи сообщений на другие компьютеры, что позволяет в наиболее короткий срок передавать документы с одного компьютера на другой;
  • * локальные сети, при наличии специального программного обеспечения (ПО), служат для организации совместного использования файлов (к примеру, бухгалтеры на нескольких машинах могут обрабатывать проводки одной и той же бухгалтерской книги).

Кроме всего прочего, в некоторых сферах деятельности просто невозможно обойтись без ЛВС. К таким сферам относятся: банковское дело, складские операции крупных компаний, электронные архивы библиотек и др. В этих сферах каждая отдельно взятая рабочая станция в принципе не может хранить всей информации (в основном, по причине слишком большого ее объема).

Глобальная вычислительная сеть

Internet - глобальная компьютерная сеть, охватывающая весь мир.

Глобальная сеть Internet, служившая когда-то исключительно исследовательским и учебным группам, чьи интересы простирались вплоть до доступа к суперкомпьютерам, становится все более популярной в деловом мире.

Компании соблазняют быстрота, дешевая глобальная связь, удобство для проведения совместных работ, доступные программы, уникальная база данных сети Internet. Они рассматривают глобальную сеть как дополнение к своим собственным локальным сетям.

По способу организации сети подразделяются на реальные и искусственные.

Искусственные сети (псевдосети) позволяют связывать компьютеры вместе через последовательные или параллельные порты и не нуждаются в дополнительных устройствах. Иногда связь в такой сети называют связью по нуль-модему (не используется модем). Само соединение называют нуль-модемным. Искусственные сети используются, когда необходимо перекачать информацию с одного компьютера на другой. MS-DOS и windows снабжены специальными программами для реализации нуль-модемного соединения.

Реальные сети позволяют связывать компьютеры с помощью специальных устройств коммутации и физической среда передачи данных.

По территориальной распространенности сети могут быть локальными, глобальными, региональными и городскими.

Локальная вычислительная сеть (ЛВС) -Local Area Networks (LAN) - это группа (коммуникационная система) относительно небольшого количества компьютеров, объединенных совместно используемой средой передачи данных, расположенных на ограниченной по размерам небольшой площади в пределах одного или нескольких близко находящихся зданий (обычно в радиусе не более 1-2 км) с целью совместного использования ресурсов всех компьютеров

Сеть, соединяющая компьютеры, удалённые географически на большие расстояния друг от друга. Отличается от локальной сети более протяженными коммуникациями (спутниковыми, кабельными и др.). Глобальная сеть объединяет локальные сети.

Городская сеть (MAN - Metropolitan Area NetWork) - сеть, которая обслуживает информационные потребности большого города.

Региональные - расположенные на территории города или области.

Так же, в последнее время специалисты выделяют такой вид сети, как банковская, которая представляет собой част-ный случай корпоративной сети крупной компании. Очевидно, что специфика банковской деятельности предъявляет жесткие требования к системам защиты информации в компьютерных сетях банка. Не менее важную роль при построении корпоративной сети играет необходимость обеспечения безотказной и бесперебойной работы, поскольку даже кратковременный сбой в ее работе может привести к гигантским убыткам.

По принадлежности различают ведомственные и государственные сети.

Ведомственные принадлежат одной организации и располагаются на ее территории.

Государственные сети - сети, используемые в государственных структурах.

По скорости передачи информации компьютерные сети делятся на низко-, средне- и высокоскоростные.

Низкоскоростные (до 10 Мбит/с),

Среднескоростные (до 100 Мбит/с),

Высокоскоростные (свыше 100 Мбит/с);

В зависимости от назначения и технических решений сети могут иметь различные конфигурации (или, как еще говорят, архитектуру, или топологию).

В кольцевой топологии информация передается по замкнутому каналу. Каждый абонент непосредственно связан с двумя ближайшими соседями, хотя в принципе способен связаться с любым абонентом сети.

В звездообразной (радиальной) в центре находится центральный управляющий компьютер, последовательно связывающийся с абонентами и связывающий их друг с другом.

В шинной конфигурации компьютеры подключены к общему для них каналу (шине), через который могут обмениваться сообщениями.

В древовидной - существует «главный» компьютер, которому подчинены компь-ютеры следующего уровня, и т.д.

Кроме того, возможны конфигурации без отчетливого характера связей; преде-лом является полносвязная конфигурация, когда каждый компьютер в сети непо-средственно связан с любым другим компьютером.

С точки зрения организации взаимодействия компьютеров, сети делят на одноранговые (Peer-to-Peer Network) и с выделенным сервером (Dedicated Server Network).

Все компьютеры одноранговой сети равноправны. Любой пользователь сети может получить доступ к данным, хранящимся на любом компьютере.

Одноранговые сети могут быть организованы с помощью таких операционных систем, как LANtastic, windows"3.11, Novell Netware Lite. Указанные программы работают как с DOS, так и с Windows. Одноранговые сети могут быть организованы также на базе всех современных 32-разрядных операционных систем - Windows 9xME2k, Windows NT workstation версии, OS/2) и некоторых других.

Достоинства одноранговых сетей:

  • 1) наиболее просты в установке и эксплуатации.
  • 2) операционные системы DOS и Windows обладают всеми необходимыми функциями, позволяющими строить одноранговую сеть.

Недостаток одноранговых сетей в том, что затруднено решение вопросов защиты информации. Поэтому такой способ организации сети используется для сетей с небольшим количеством компьютеров и там, где вопрос защиты данных не является принципиальным.

В иерархической сети при установке сети заранее выделяются один или несколько компьютеров, управляющих обменом данных по сети и распределением ресурсов. Такой компьютер называют сервером.

Любой компьютер, имеющий доступ к услугам сервера называют клиентом сети или рабочей станцией.

Сервер в иерархических сетях - это постоянное хранилище разделяемых ресурсов. Сам сервер может быть клиентом только сервера более высокого уровня иерархии. Поэтому иерархические сети иногда называются сетями с выделенным сервером.

Серверы обычно представляют собой высокопроизводительные компьютеры, возможно, с несколькими параллельно работающими процессорами, с винчестерами большой емкости, с высокоскоростной сетевой картой (100 Мбит/с и более).

Иерархическая модель сети является наиболее предпочтительной, так как позволяет создать наиболее устойчивую структуру сети и более рационально распределить ресурсы.

Также достоинством иерархической сети является более высокий уровень защиты данных.

К недостаткам иерархической сети, по сравнению с одноранговыми сетями, относятся:

  • 1) необходимость дополнительной ОС для сервера.
  • 2) более высокая сложность установки и модернизации сети.
  • 3) Необходимость выделения отдельного компьютера в качестве сервера.

Локальные сети (ЛС ЭВМ) объединяют относительно небольшое число компью-теров (обычно от 10 до 100, хотя изредка встречаются и гораздо большие) в преде-лах одного помещения (учебный компьютерный класс), здания или учреждении (например, университета). Традиционное название - локальная вычислительная сеть (ЛВС) - скорее дань тем временам, когда сети в основном использовались да решения вычислительных задач; сегодня же в 99% случаев речь идет исключительно об обмене информацией в виде текстов, графических и видео-образов, числовых массивов. Полезность ЛС объясняется тем, что от 60% до 90% необходимой учреж-дению информации циркулирует внутри него, не нуждаясь в выходе наружу.

Большое влияние на развитие ЛС оказало создание автоматизированных систем управления предприятиями (АСУ). АСУ включают несколько автоматизированных рабочих мест (АРМ), измерительных комплексов, пунктов управления. Другое важнейшее поле деятельности, в котором ЛС доказали свою эффективность - создание классов учебной вычислительной техники (КУВТ).

Благодаря относительно небольшим длинам линий связи (как правило, не более 300 метров), по ЛC можно передавать информацию в цифровом виде с высокой скоростью передачи. На больших расстояниях такой способ передачи неприемлем из-за неизбежного затухания высокочастотных сигналов, в этих случаях приходится прибегать к дополнительным техническим (цифро-аналоговым преобразованиям) и программным (протоколам коррекции ошибок и др.) решениям.

Характерная особенность ЛС - наличие связывающего всех абонентов высокоскоростного канала связи для передачи информации в цифровом виде.

Существуют проводные и беспроводные каналы. Каждый из них характеризуется определенными значениями существенных с точки зрения организации ЛС параметров:

  • - скорости передачи данных;
  • - максимальной длины линии;
  • - помехозащищенности;
  • - механической прочности;
  • - удобства и простоты монтажа;
  • - стоимости.

Если, например, два протокола будут по-разному разбивать данные на пакеты и добавлять информацию (о последовательности пакетов, синхронизации и для проверки ошибок), тогда компьютер, использующий один из этих протоколов, не сможет успешно связаться с компьютером, на котором работает другой протокол.

До середины 80-ых годов большинство локальных сетей были изолированными. Они обслуживали отдельные компании и редко объединялись в крупные системы. Однако, когда локальные сети достигли высокого уровня развития и объем передаваемой ими информации возрос, они стали компонентами больших сетей. Данные, передаваемые из одной локальной сети в другую по одному из возможных маршрутов, называются маршрутизированными. Протоколы, которые поддерживают передачу данных между сетями по нескольким маршрутам, называются маршрутизируемыми протоколами.

Среди множества протоколов наиболее распространены следующие:

  • · NetBEUI;
  • · XNS;
  • · IPX/SPX и NWLmk;
  • · Набор протоколов OSI.

Глобальная вычислительная сеть (ГВС или WAN - World Area NetWork) - сеть, соединяющая компьютеры, удалённые географически на большие расстояния друг от друга. Отличается от локальной сети более протяженными коммуникациями (спутниковыми, кабельными и др.). Глобальная сеть объединяет локальные сети.

WAN (World Area Network ) - глобальная сеть, покрывающая большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства. Пример WAN - сети с коммутацией пакетов (Frame relay), через которую могут "разговаривать" между собой различные компьютерные сети.

Сегодня, когда географические рамки сетей раздвигаются, чтобы соединить пользователей из разных городов и государств, ЛВС превращаются в глобальную вычислительную сеть [ГВС (WAN)], а количество компьютеров в сети уже может варьироваться от десятка до нескольких тысяч.

Internet - глобальная компьютерная сеть, охватывающая весь мир. Сегодня Internet имеет около 15 миллионов абонентов в более чем 150 странах мира. Ежемесячно размер сети увеличивается на 7-10%. Internet образует как бы ядро, обеспечивающее связь различных информационных сетей, принадлежащих различным учреждениям во всем мире, одна с другой.

Если ранее сеть использовалась исключительно в качестве среды передачи файлов и сообщений электронной почты, то сегодня решаются более сложные задачи распределенного доступа к ресурсам. Около трёх лет назад были созданы оболочки, поддерживающие функции сетевого поиска и доступа к распределенным информационным ресурсам, электронным архивам.

Internet, служившая когда-то исключительно исследовательским и учебным группам, чьи интересы простирались вплоть до доступа к суперкомпьютерам, становится все более популярной в деловом мире.

В настоящее время в сети Internet используются практически все известные линии связи от низкоскоростных телефонных линий до высокоскоростных цифровых спутниковых каналов.

Фактически Internet состоит из множества локальных и глобальных сетей, принадлежащих различным компаниям и предприятиям, связанных между собой различными линиями связи. Internet можно представить себе в виде мозаики сложенной из небольших сетей разной величины, которые активно взаимодействуют одна с другой, пересылая файлы, сообщения и т.п.

Компьютерная сеть - объединение нескольких ЭВМ для совместного решения информационных, вычислительных, учебных и других задач.

Основное назначение компьютерных сетей - совместное использование ресурсов и осуществление интерактивной связи как внутри одной фирмы, так и за ее пределами.