Способы минимизации функций. Методы минимизации логических функций

Минимизация логических функций является одной из типовых задач в процессе обучения схемотехнике. Посему считаю, что такая статья имеет место быть, надеюсь Вам понравится.

Зачем это нужно?

Сложность логической функции, а отсюда сложность и стоимость реализующей ее схемы (цепи), пропорциональны числу логических операций и числу вхождений переменных или их отрицаний. В принципе любая логическая функция может быть упрощена непосредственно с помощью аксиом и теорем логики, но, как правило, такие преобразования требуют громоздких выкладок.

К тому же процесс упрощения булевых выражений не является алгоритмическим. Поэтому более целесообразно использовать специальные алгоритмические методы минимизации, позволяющие проводить упрощение функции более просто, быстро и безошибочно. К таким методам относятся, например, метод Квайна, метод карт Карно, метод испытания импликант, метод импликантных матриц, метод Квайна-Мак-Класки и др. Эти методы наиболее пригодны для обычной практики, особенно минимизация логической функции с использованием карт Карно. Метод карт Карно сохраняет наглядность при числе переменных не более шести. В тех случаях, когда число аргументов больше шести, обычно используют метод Квайна-Мак-Класки.

В процессе минимизации той или иной логической функции, обычно учитывается, в каком базисе эффективнее будет реализовать ее минимальную форму при помощи электронных схем.

Минимизация логических функций при помощи карт Карно

Карта Карно - графический способ минимизации переключательных (булевых) функций, обеспечивающий относительную простоту работы с большими выражениями и устранение потенциальных гонок. Представляет собой операции попарного неполного склеивания и элементарного поглощения. Карты Карно рассматриваются как перестроенная соответствующим образом таблица истинности функции. Карты Карно можно рассматривать как определенную плоскую развертку n-мерного булева куба.

Карты Карно были изобретены в 1952 Эдвардом В. Вейчем и усовершенствованы в 1953 Морисом Карно, физиком из «Bell Labs», и были призваны помочь упростить цифровые электронные схемы.

В карту Карно булевы переменные передаются из таблицы истинности и упорядочиваются с помощью кода Грея, в котором каждое следующее число отличается от предыдущего только одним разрядом.

Основным методом минимизации логических функций, представленных в виде СДНФ или СКНФ является операция попарного неполного склеивания и элементарного поглощения. Операция попарного склеивания осуществляется между двумя термами (членами), содержащими одинаковые переменные, вхождения которых (прямые и инверсные) совпадают для всех переменных, кроме одной. В этом случае все переменные, кроме одной, можно вынести за скобки, а оставшиеся в скобках прямое и инверсное вхождение одной переменной подвергнуть склейке. Например:

Возможность поглощения следует из очевидных равенств

Таким образом, главной задачей при минимизации СДНФ и СКНФ является поиск термов, пригодных к склейке с последующим поглощением, что для больших форм может оказаться достаточно сложной задачей. Карты Карно предоставляют наглядный способ отыскания таких термов.

Как известно, булевы функции N переменных, представленные в виде СДНФ или СКНФ могут иметь в своём составе 2N различных термов. Все эти члены составляют некоторую структуру, топологически эквивалентную N–мерному кубу, причём любые два терма, соединённые ребром, пригодны для склейки и поглощения.

На рисунке изображена простая таблица истинности для функции из двух переменных, соответствующий этой таблице 2-мерный куб (квадрат), а также 2-мерный куб с обозначением членов СДНФ и эквивалентная таблица для группировки термов:

В случае функции трёх переменных приходится иметь дело с трёхмерным кубом. Это сложнее и менее наглядно, но технически возможно. На рисунке в качестве примера показана таблица истинности для булевой функции трёх переменных и соответствующий ей куб.

Как видно из рисунка, для трёхмерного случая возможны более сложные конфигурации термов. Например, четыре терма, принадлежащие одной грани куба, объединяются в один терм с поглощением двух переменных:

В общем случае можно сказать, что 2K термов, принадлежащие одной K–мерной грани гиперкуба, склеиваются в один терм, при этом поглощаются K переменных.

Для упрощения работы с булевыми функциями большого числа переменных был предложен следующий удобный приём. Куб, представляющий собой структуру термов, разворачивается на плоскость как показано на рисунке. Таким образом появляется возможность представлять булевы функции с числом переменных больше двух в виде плоской таблицы. При этом следует помнить, что порядок кодов термов в таблице (00 01 11 10) не соответствует порядку следования двоичных чисел, а клетки, находящиеся в крайних столбцах таблицы, соседствуют между собой.

Аналогичным образом можно работать с функциями четырёх, пяти и более переменных. Примеры таблиц для N=4 и N=5 приведены на рисунке. Для этих таблиц следует помнить, что соседними являются клетки, находящиеся в соответственных клетках крайних столбцов и соответственных клетках верхней и нижней строки. Для таблиц 5 и более переменных нужно учитывать также, что квадраты 4х4 виртуально находятся друг над другом в третьем измерении, поэтому соответственные клетки двух соседних квадратов 4х4 являются сосоедними, и соответствующие им термы можно склеивать.

Карта Карно может быть составлена для любого количества переменных, однако удобно работать при количестве переменных не более пяти. По сути Карта Карно - это таблица истинности составленная в 2-х мерном виде. Благодаря использованию кода Грея в ней верхняя строка является соседней с нижней, а правый столбец соседний с левым, т.о. вся Карта Карно сворачивается в фигуру тор (бублик). На пересечении строки и столбца проставляется соответствующее значение из таблицы истинности. После того как Карта заполнена, можно приступать к минимизации.

Если необходимо получить минимальную ДНФ, то в Карте рассматриваем только те клетки которые содержат единицы, если нужна КНФ, то рассматриваем те клетки которые содержат нули. Сама минимизация производится по следующим правилам (на примере ДНФ):

Далее берём первую область и смотрим какие переменные не меняются в пределах этой области, выписываем конъюнкцию этих переменных, если неменяющаяся переменная нулевая, проставляем над ней инверсию. Берём следующую область, выполняем то же самое что и для первой, и т. д. для всех областей. Конъюнкции областей объединяем дизъюнкцией.
Например(для Карт на 2-ве переменные):


Для КНФ всё то же самое, только рассматриваем клетки с нулями, не меняющиеся переменные в пределах одной области объединяем в дизъюнкции (инверсии проставляем над единичными переменными), а дизъюнкции областей объединяем в конъюнкцию. На этом минимизация считается законченной. Так для Карты Карно на рис.1 выражение в формате ДНФ будет иметь вид:

В формате КНФ:

При проектировании цифровых автоматов широко используются методы минимизации булевых функций, позволяющие получать экономичные схемы. Общая задача минимизации булевых функций может быть сформулирована следующим образом: найти аналитическое выражение заданной булевой функции в форме, содержащей минимально возможное число букв.

В основе методов минимизации лежит операция склеивания (алгоритм объединения соседний двоичных чисел):

где А - элементарная конъюнкция.

В выражении слагаемые являются соседними двоичными числами, которые отличаются друг от друга только одним разрядом. При выполнении операции склеивания над двумя соседними числами из набора исключается одна переменная, которая отличает одно число от другого, над четырьмя попарно соседними числами - две переменные, над восемью - три переменные и т.д.

Минимальной дизъюнктивной нормальной формой (МДНФ) булевой функции называется ДНФ, содержащая наименьшее число букв (по отношению ко всем другим ДНФ, представляющим заданную булеву функцию).

Минимизировать функции, то есть находить наиболее простое выражение для исходной функции можно различными методами. Все они практически различаются лишь на первом этапе - этапе получения сокращенной ДНФ. Следует отметить, что, к сожалению, поиск МДНФ всегда связан с некоторым перебором решений. Рассмотрим некоторые из них.

Минимизация сложных логических выражений с помощью матрицы Карно

Дли реализации алгоритма объединения необходимо из всей совокупности обязательных конституентов в совершенной дизъюнктивной нормальной форме функции алгебры логики отыскать соседние. Для отыскания соседних конституентов используются матрицы Карно, решетка соседних чисел, таблицы соседних конституентов.

Матрицы Карно целесообразно использовать для минимизации ФАЛ на наборах из 2,3,4,5 и 6 переменных. Номера столбцов в матрицах Карно образуют младшие разряды, а номера строк - старшие разряды наборов. Номера клеток составляются из номеров строк и столбцов и соответствуют наборам переменных.

Рассмотрим матрицу Карно для функции алгебры логики на наборах из 4-х переменных (табл. 1).

Таблица 1. Матрица Карно

Столбцы и строки в этой матрице обозначены двоичными соседними числами: 00-0I-II-I0. Поэтому номера смежных по горизонтали и вертикали клеток, а также крайних в строках и столбцах клеток являются соседними числами, например:

клетки с номерами и;

клетки с номерами;

клетки с номерами;

клетки с номерами.

Для минимизации функции алгебры логики, заданной в совершенной дизъюнктивной нормальной форме, с помощью матрицы Карно необходимо: подготовить матрицу Карно, вписав в клетки, соответствующие обязательным конституентам, единицы, объединить клетки с единицами в «подкубы», записать минимизированную функции алгебры логики в дизъюнктивной нормальной форме.

В «подкубы» объединяются:

  • - две клетки с номерами, являющимися соседними числами, при этом исключается одна переменная;
  • - четыре клетки (строка, столбец, квадрат, угловые клетки), при этом исключается две переменные;
  • - восемь клеток (две соседних или крайних строки (столбца)), при этом исключается три переменные.

Для обеспечения исключения возможно большего количества переменных размеры «подкубов» должны быть как можно больше, а число их как можно меньше. С этой целью можно одну и ту же клетку с единицей использовать несколько раз, включая в различные «подкубы». Число слагаемых в минимизированной функции алгебры логики равно числу подкубов и клеток с единицами, не объединенных в подкубы.

Пусть необходимо минимизировать следующую функцию алгебры логики:

Матрица Карно, заполненная в соответствии с этой формулой, может быть представлена в виде таблицы 2:

Таблица 2. Матрица Карно

В этой матрице можно выделить два двухклеточных подкуба. В результате минимизации будет получена следующая функция алгебры логики:

Метод Квайна

Для получения минимальной формы логической функции необходимо в совершенной дизъюнктивной нормальной форме функции (СДНФ) произвести все возможные склеивания и поглощения так, что в результате будет получена сокращенная дизъюнктивная нормальная форма функции. (ДНФ).Сокращенная ДНФ в общем случае может содержать лишние простые импликанты, которые необходимо выявить на втором этапе минимизации.

На первом этапе выполняется переход от функции, заданной в форме ДНФ, к сокращенной ДНФ. Суть метода заключается в последовательном выполнении всех возможных склеиваний и затем всех поглощений, что приводит к сокращенной ДНФ. Метод применим к совершенной ДНФ. Из соотношения поглощения следует, что произвольное элементарное произведение поглощается любой его частью. Для доказательства достаточно показать, что произвольная простая импликанта р = xi1 xi2 ... xin может быть получена. В самом деле, применяя к р операцию развертывания (обратную операции склеивания):

по всем недостающим переменным x ik , ..., xim исходной функции f, получаем совокупность S конституент единицы. При склеивании всех конституент из S получим импликанту р. Последнее очевидно, поскольку операция склеивания обратна операции развертывания. Множество S конституент обязательно присутствует в совершенной ДНФ функции f поскольку р - ее импликанта.

В результате выполнения склеивания получается конъюнкция n-1 ранга, а конъюнкции остаются в исходном выражении и участвуют в сравнении с другими членами СДНФ. Таким образом, удается снизить ранг термов.

Склеивание и поглощение выполняются до тех пор, пока имеются члены, не участвовавшие в попарном сравнении. Термы, подвергшиеся операции склеивания, отмечаются. Неотмеченные термы представляют собой простые импликанты и включаются в сокращенную ДНФ. Все отмеченные конъюнкции ранга n-1 подвергаются вновь операции склеивания до получения термов n-2 ранга и так далее до тех пор, пока количество неотмеченных конъюнкций больше 2. В результате выполнения первого этапа получена сокращенная ДНФ.

Полученное логическое выражение не всегда оказывается минимальным. На втором этапе переходят от сокращенной ДНФ к тупиковым ДНФ и среди них выбирают МДНФ.

Для формирования тупиковых ДНФ строится импликантная таблица (матрица), строки которой отмечаются простыми импликантами сокращенной ДНФ, а столбцы конститутиентами единицы исходной СДНФ. В строке напротив каждой простой импликанты ставится метка под теми наборами (конститутиентами единицы), на которых она принимает значение 1. Соответствующие конститутиенты поглощаются (покрываются) данной простой импликантой.

Из общего числа простых импликант необходимо отобрать их минимальное число, исключив лишние. Формирование тупиковых форм и выбор минимального покрытия начинается с выявления обязательных простых импликант, то есть таких, которые (и только они) покрывают некоторый исходный набор. Рассмотрим на примере минимизации логической функции:

f СДНФ = V (1,2,5,6,7)=x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3

1 2 3 4 5

Выполним операцию склеивания:

  • 1 - 3 (x1 ) x2 x3 1
  • 2 - 4 (x1 ) x2 x3 2
  • 3 - 5 (x2 ) x1 x3 3
  • 4 - 5 (x3 ) x1 x2 4

В результате выполнения первого шага склеивания получаем четыре новые конъюнкции, простых импликант не выявлено. Полученные конъюнкции более не склеиваются и образуют сокращенную ДНФ.

f сокр СДНФ =x2 x3 + x2 x3 + x1 x3 + x1 x2

Для выявления обязательных простых импликант и фрормирования на их основе минимального покрытия строится импликантная таблица (таблица 3). В строках импликантгой таблицы записываются простые импликанты, а в столбцах конституэнты единицы. Звездочка ставится если простая импликанта покрывает контитуэнту.

Таблица 3. Импликантная таблица

x 1 x2 x3

X 1 x2 x3

x 1 x2 x3

x 1 x2 x3

x 1 x2 x3

Простые импликанты являются обязательными так как только они покрывают конституэнтыи включаются в минимальное покрытие. Остается одна непокрытая конституэнта x1 x2 x3 которая может быть покрыта одной из двух оставшихся простых импликант. Это приводит к получению двух тупиковых форм.

Метод Блейка - Порецкого

Метод позволяет получать сокращенную ДНФ булевой функции f из ее произвольной ДНФ. Базируется на применении формулы обобщенного склеивания:

справедливость которой легко доказать. Действительно,

Следовательно,

В основу метода положено следующее утверждение: если в произвольной ДНФ булевой функции f произвести все возможные oбобщенные склеивания, а затем выполнить все поглощения, то в результате получится сокращенная ДНФ функции f.

Рассмотрим пример. Пусть булева функция f задана произвольной ДНФ.

Необходимо используя метод Блейка - Порецкого получить сокращенную ДНФ функции f. Проводим обобщенные склеивания. Легко видеть, что первый и второй элемент исходной ДНФ допускают обобщенное склеивание по переменной х 1 . В результате склеивания получим:

Первый и третий элемент исходной ДНФ допускают обобщенное склеивание как по переменной х 1 , так и по х2 . После склеивания по x1 имеем:

После склеивания по x 2 имеем:

Второй и третий элемент ДНФ допускают обобщенное склеивание по переменной х 2 . После склеивания получаем:

Выполнив последнее обобщенное склеивание, приходим к ДНФ:

После выполнения поглощений получаем:

Попытки дальнейшего применения операции обобщенного склеивания и поглощения не дают результата. Следовательно, получена сокращенная ДНФ функции f. Далее задача поиска минимальной ДНФ решается с помощью импликантной матрицы точно так же, как в методе Квайна.

Минимизация не полностью определенных ФАЛ

Если при синтезе логической схемы, реализующей некоторую ФАЛ n переменных, окажется, что некоторые наборы из общего числа 2n никогда не смогут появиться на входах схемы, то данная логическая функция не определена на этих наборах. Тогда 2n наборов переменных можно подразделить на три группы: наборы, на которых функция принимает единичное значение L, нулевое значение D и группа наборов, на которых функция не определена N (неопределенные наборы). ФАЛ, содержащая неопределенные наборы, называется неполностью или частично определенной. Неопределенные наборы могут быть использованы для улучшения качества минимизации. При этом неопределенные наборы (при минимизации, например, картами Вейча, Карно) могут участвовать в образовании контуров как с единичными, так и с нулевыми наборами. Это приводит к формированию более простой минимизированной логической функции.

Универсальным методом минимизации является использование законов и соотношений алгебры логики, которые позволяют проводить минимизацию ФАЛ при любом числе переменных.

  • 1.6. Использование множеств в языке Паскаль
  • 2. Элементы общей алгебры
  • 2.1. Операции на множествах
  • 2.2. Группа подстановок Галуа
  • 2.3. Алгебра множеств (алгебра Кантора)
  • 2.4. Алгебраические системы. Решетки
  • 2.5. Задание множеств конституентами
  • 2.6. Решение уравнений в алгебре множеств.
  • 3. Элементы комбинаторики
  • 3.1. Комбинаторные вычисления
  • 3.2. Основные понятия комбинаторики
  • 3.3. Размещения
  • 3.4. Перестановки
  • 3.5. Сочетания
  • 3.6. Треугольник Паскаля.
  • 3.7. Бином Ньютона
  • 3.8. Решение комбинаторных уравнений
  • 4. Основные понятия теории графов
  • 4.1. Способы задания графов
  • 4.2. Характеристики графов
  • 4.3. Понятие о задачах на графах
  • 4.4. Задача о Ханойской башне
  • 5. Переключательные функции и способы их задания
  • 5.1. Понятие о переключательных функциях
  • 5.2. Двоичные переключательные функции и способы их задания
  • 5.3. Основные бинарные логические операции
  • 5.4. Понятие о переключательных схемах и технической реализации переключательных функций
  • 5.5. Использование логических операций в теории графов
  • 6. Элементарные двоичные переключательные функции и функциональная полнота систем переключательных функций
  • 6.1. Элементарные переключательные функции одной переменной
  • 6.2. Элементарные переключательные (логические) функции двух переменных
  • 6.3. Функциональная полнота систем переключательных функций
  • 6.4. Базисы представления переключательных функций
  • 6.5. Пример анализа и определения свойств пф, заданной десятичным номером
  • 7. Основные законы булевой алгебры и преобразование переключательных функций
  • 7.1. Основные законы булевой алгебры переключательных функций
  • 7.2. Равносильные преобразования. Упрощение формул алгебры переключательных функций
  • 7.3. Преобразование форм представления переключательных функций
  • 8. Минимизация переключательных функций
  • 8.1. Цель минимизации переключательных функций
  • 8.2. Основные понятия и определения, используемые при минимизации
  • 8.3. Аналитические методы минимизации переключательных функций
  • 8.4. Минимизация переключательных функций по картам Карно
  • 8.5. Метод поразрядного сравнения рабочих и запрещенных наборов
  • Минимизация переключательных функций на основе поразрядного сравнения рабочих и запрещенных восьмеричных наборов.
  • 8.6. Минимизация переключательных функций, заданных в базисе {, и, не}
  • 8.7. Минимизация систем переключательных функций
  • 8.8. Минимизация переключательных функций методом неопределенных коэффициентов
  • 9. Понятие об автомате и его математическом описании
  • 9.1. Основные определения теории конечных автоматов
  • 9.2. Описание конечных детерминированных автоматов
  • 9.3. Понятие о технической интерпретации конечных автоматов
  • 9.4. Синтез комбинационных автоматов в заданном базисе
  • 9.5. Булева производная
  • 9.6. Элементарные автоматы памяти на основе комбинационного автомата и задержки
  • 9.7. Синтез автомата – распознавателя последовательности
  • 10. Элементы теории кодирования
  • 10.1. Понятие о кодировании
  • 10.2. Системы счисления, как основа различных кодов
  • 10.3. Понятие о помехоустойчивом кодировании
  • 10.4. Кодирование по Хэммингу
  • 10.5. Кодирование с использованием циклических кодов и математического аппарата умножения и деления полиномов. Сигнатурный анализ
  • 10.6. Понятие о криптографической защите информации
  • 10.7. Понятие о сжатии информации
  • 8.3. Аналитические методы минимизации переключательных функций

    Метод Квайна .

    Метод основан на попарном сравнении и склеивании при возможности всех конституент (членов СДНФ). Для этого каждая конституента сравнивается с последующими, что приводит к получению импликант. Полученные импликанты вновь подвергаются сравнению и при возможности склеиваются – и т.д. до тех пор, пока оставшиеся импликанты уже не будут поддаваться склеиванию. Это и есть простые импликанты, их дизъюнкция представляет собой сокращенную ДНФ.

    Для упорядочения целесообразно разбивать конституенты на группы по числу неинверсированных переменных. В этом случае каждая очередная конституента, начиная сверху, сравнивается только с конституентами группы, соседней снизу, с числом неинверсированных переменных на единицу больше.

    Пусть имеется переключательная функция, заданная СДНФ:

    Разобьем конституенты на группы по числу неинверсированных переменных.

    Римская цифра номера группы соответствует числу неинверсных переменных. Проведем линии, указывающие склеиваемые конституенты. Результатом склеивания является всегда элементарная конъюнкция, представляющая собой общую часть исходных конъюнкций (в частности, конституент).

    Полученные импликанты также допускают склеивание, причем в результате получается одна и та же импликанта
    .

    Дальнейшие склеивания невозможны, поэтому полученные импликанты – простые, а сокращенная ДНФ имеет вид:

    Первый этап выполнен. На втором этапе необходимо исключить лишние простые импликанты. Это делается с помощью специальной импликантной таблицы Квайна (таблицы покрытий). Строки таблицы отмечаются простыми импликантами переключательной функции, т.е. членами сокращенной ДНФ, а столбцы – конституентами единицы, т.е. членами СДНФ переключательной функции.

    Как уже отмечалось, простая импликанта поглощает некоторую конституенту единицы, если является ее собственной частью. Соответствующая клетка импликантной таблицы на пересечении строки данной простой импликанты и столбцов с конституентами единицы отмечается, например, знаком «+». Минимальные ДНФ строятся по импликантной таблице следующим образом:

    1) ищутся столбцы импликантной таблицы, имеющие только один крестик, соответствующие этим крестикам простые импликанты называются базисными и составляют так называемое ядро переключательной функции. Ядро обязательно входит в минимальную ДНФ;

    2) рассматриваются различные варианты выбора совокупности простых импликант, которые накроют крестиками остальные столбцы импликантной матрицы, и выбираются варианты с минимальным суммарным числом букв.

    Ядром нашей функции (табл. 35) являются импликанты
    и х 1 х 2 х 3 , т.е. функция имеет единственную тупиковую и минимальную ДНФ:

    Таблица 35

    Импликантная таблица Квайна

    Конституенты 1 (члены СДНФ)

    импли-канты

    Видно, что импликанта х 2 х 3 х 4 является лишней, так как она покрывает конституенты, уже покрытые импликантами
    , х 1 х 2 х 3 .

    Число крестиков в строке является степенью числа 2; более того, можно убедиться, что оно равно N=2 n - k , где k – число букв в простой импликанте, n – число переменных, от которых зависит функция.

    Если вначале не задана СДНФ, то ее надо получить, используя, например, уже известные нам методы.

    Ясно, что для больших импликантных таблиц трудно визуально выявить варианты с минимальным числом букв. Поэтому используется метод Петрика, позволяющий получать все тупиковые ДНФ по импликантной таблице путем построения так называемого конъюнктивного ее представления. Для этого все простые импликанты обозначаются разными буквами (А, В, С в табл. 35), а затем для каждого столбца строится дизъюнкция всех букв, обозначающих строки таблицы, пересечение которых с данным столбцом отмечено крестиком. Конъюнктивное представление импликантной матрицы образуется как конъюнкция построенных дизъюнкций для всех столбцов. К конъюнктивному представлению импликантной таблицы могут быть применены все соотношения булевой алгебры переключательных функций с целью его упрощения. После раскрытия скобок и выполнения всех возможных поглощений получается дизъюнкция конъюнкций, каждая из которых содержит все импликанты тупиковой ДНФ.

    Это означает, что тупиковая ДНФ содержит две простые импликанты (
    и одновременно С=х 1 х 2 х 3) и имеет вид:

    Метод Квайна-Мак-Класки.

    Метод представляет собой формализацию метода Квайна, ориентированную на использование ЭВМ. Формализация заключается в записи конституент единицы (членов СДНФ) их двоичными номерами. Все номера разбиваются на непересекающиеся группы по числу единиц в двоичном номере. Склеивания производятся только между соседними группами. Ликвидируемый разряд обозначается знаком «–» («тире»). Дальнейшие группы из полученных импликант образуются с учетом однинакового расположения тире. Такое обозначение импликант называется обобщенными кодами. Пусть задана логическая функция

    111101001000110.

    Сгруппируем эти конституенты единицы по числу единиц:

    Дальнейшие склеивания невозможны. Нахождение минимальных ДНФ далее производится по импликантной таблице (табл. 36):

    Это означает, что тупиковые ДНФ содержат по три простые импликанты и имеют вид:

    (две инверсии);

    (три инверсии).

    Таблица 36

    Импликантная таблица Квайна-Мак-Класки

    импликанты

    Конституенты единиц

    Заметим, что склеивание двух импликант с тире возможно только при соответствующем их расположении, например:

    Можно выбрать любую из полученных ТДНФ, а с учетом меньшего числа инверсий – первую.

    Метод Блейка-Порецкого .

    Метод позволяет получать сокращенную ДНФ булевой функции по ее произвольной ДНФ, а не по СДНФ, как в методах Квайна и Квайна-Мак-Класки, используя закон обобщенного склеивания . В основу метода положено следующее утверждение: если в произвольной ДНФ булевой функции провести всевозможные операции, обратные обобщенному склеиванию, а затем выполнить все поглощения, то в результате получится сокращенная ДНФ функции.

    Пусть задана ДНФ функции:

    Видно, что к первой и второй конъюнкциям можно применить закон обобщенного склеивания по переменной х 1 ; получим:

    Аналогично для первой и третьей конъюнкций:

    т.е. все остается, как есть!

    Вторая и третья конъюнкции допускают обобщенное склеивание по х 2:

    Переходим к ДНФ:

    После применения закона идемпотентности (повторения) и поглощения получаем:

    Попытки дальнейшего применения обобщенного склеивания и поглощения не дают результата. Следовательно, получена сокращенная ДНФ функции.

    Таблица 37

    Импликантная таблица для иллюстрации метода Блейка-Порецкого

    импликанты

    Наборы функции

    и ее значения

    Таким образом, рабочие (единичные) наборы можно покрыть тремя простыми импликантами, например,
    ,
    ,
    . В ядро входят импликанты
    ,
    . Тогда тупиковые ДНФ имеют вид:

    (лучше по числу инверсий).

    Алгебры логики

    3.3.1. Минимизация ФАЛ с помощью матрицы Карно

    Матрица Карно представляет собой своеобразную таблицу истинности ФАЛ, которая разбита на клетки. Количество клеток матрицы равно 2 n , где n – число аргументов ФАЛ. Столбцы и строки матрицы обозначаются наборами аргументов. Каждая клетка матрицы соответствует конституэнте единицы ФАЛ (двоичному числу). Двоичное число клетки состоит из набора аргументов строки и столбца. Матрица Карно для ФАЛ, зависящей от двух аргументов, представлена в виде таблицы 3.3., от трех аргументов таблицей 3.4. и от четырех аргументов таблицей 3.5.

    Таблица 3.3.


    Таблица 3.5.

    х 3 х 4 х 1 х 2
    0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0
    0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0
    1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0
    1 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0

    Клетки матриц (таблицы 3.3., 3.4. и 3.5.) пронумерованы десятичными эквивалентами двоичных чисел клеток. Рядом расположенные клетки матриц, как по горизонтали, так и по вертикали, содержат соседние двоичные числа. Кроме этого соседние двоичные числа находятся во всех столбцах верхней и нижней строк, так же как во всех строках крайних столбцов.

    Процесс минимизации ФАЛ с помощью матрицы Карно основан на законе склеивания соседних двоичных чисел. Можно склеивать двоичные числа рядом расположенных клеток, но рекомендуется склеивать наборы аргументов, которыми обозначены строки и столбцы матриц. Рассмотрим склеивание двоичных чисел клеток первого столбца матрицы (табл. 3.5.).

    Клетки 0 и 4, соответственно двоичные числа 0000 и 0100, результат склеивания 0-00.

    Клетки 8 и 12, двоичные числа 1000 и 1100, результат 1-00. Полученные импликанты склеиваются между собой, т.к. тире стоит в одном и том же разряде и двоичные числа импликант являются соседними, окончательный результат - - 00.

    Клетки 8 и 12

    Таким образом, если склеиваются все двоичные числа одного столбца, то пропадают те разряды, которыми обозначены строки. Аналогично, если будут склеиваться все двоичные числа одной строки, например 4, 5, 7, 6, то пропадают все разряды, которыми обозначены столбцы, т.е. результат будет следующий 01- -.

    Если будут склеиваться двоичные числа только двух любых клеток, то прочерк ставиться вместо того разряда двоичных чисел строки или столбца, который изменится при переходе клеток из одной строчки в другую (или из одного столбца в другой). Например, склеиваются числа клеток 5 и 13, получим результат -101, или клеток 7 и 6 результат 011-.

    При склеивании двоичных чисел восьми рядом расположенных клеток пропадает три переменные, например для клеток 3, 7, 15, 11, 2, 6, 14, 10 пропадают переменные х 1 , х 2 , х 3 . Переменные х 1 , х 2 пропадают потому, что склеиваются все клетки столбцов, а х 3 потому, что последние два столбца склеиваются между собой.

    Прежде, чем рассмотреть примеры минимизации ФАЛ с помощь матрицы Карно, необходимо дать классификацию наборов аргументов, с помощью которых определяются функции алгебры логики.

    Известно, что для каждой ФАЛ имеет место количество наборов аргументов 2 n , где n – число аргументов от которых зависит функция или логическое выражение.

    Наборы аргументов делятся на три вида

    1. Наборы аргументов, на которых функция равна единице, называются рабочими.

    2. Наборы аргументов, на которых функция равна нулю, называются запрещенными.

    3. Наборы аргументов, на которых функция может быть равна или единице, или нулю, называются безразличными.

    Если заданная ФАЛ не имеет безразличных наборов, то она может быть представлена в буквенном выражении в виде СДНФ. При наличии в заданной ФАЛ безразличных наборов, ее представление может иметь следующую форму.

    где – десятичные эквиваленты рабочих наборов,

    – десятичные эквиваленты запрещенных наборов.

    Наборы аргументов, которых нет среди рабочих и запрещенных, будут безразличными.

    Пример 3.3. Минимизировать заданную ФАЛ в виде СДНФ с помощью матрицы Карно .

    Следовательно, функция задана только рабочими наборами. Остальные будут запрещенными. Функция зависит только от трех аргументов. Строим матрицу Карно и в ее клетках, которые соответствуют рабочим наборам ставим единицы, а в остальных клетках ставим нули.

    Таблица 3.5.

    х 2 х 3 х 1
    0

    Для минимизации клетки матрицы, в которых стоят единицы, объединяются в контуры. В контур могут включаться две клетки, четыре или все восемь. В данном примере в контур включены четыре рядом расположенные клетки одной строки. Импликантой заданного контура будет 1 - -. Результат минимизации следующий , т.е. произошло сокращение заданной функции в СДНФ на 11 букв.

    Пример 3.4. Минимизировать логическое выражение, заданное рабочими и запрещенными наборами с помощью матрицы Карно.

    Строим матрицу Карно на четыре переменных и заполним клетки единицами и нулями соответственно для рабочих и запрещенных наборов.

    Таблица 3.6.

    х 3 х 4 х 1 х 2 00
    (1)
    (1) (1)

    При объединении клеток с единицами в контуры желательно, чтобы в каждый контур включалось наибольшее число клеток из максимально возможного. Для этого клетки некоторых безразличных наборов используем как клетки рабочих наборов, подставив в них единицы в скобках. В результате получим три контура, содержащие по 4 клетки. В обобщенном коде контура, включающего в себя все клетки одной строки, пропадают переменные х 2 х 3 (10 - -). В обобщенном коде контура, включающего все клетки одного столбца пропадают переменные х 1 х 2 (- - 11) и для контура, содержащего по две клетки двух строк пропадают переменные х 2 (при переходе в контуре из одной строки в другую) и х 3 (при переходе из одного столбца в другой). В результате получим минимальную ДНФ в следующем виде

    Возможные варианты объединения клеток матрицы Карно в контуры показаны на рисунке 3.4.


    х 3 х 4 х 1 х 2

    А = 0 - 0 - З = - 0 - 0
    Н Б = 1 - 1 - К = - - - 1
    В = - - 0 0 Л = - 1 - -
    Г = 1 0 - - М = - - - 0
    Д = - 0 0 1 Н = - 0 - -
    Е = - 0 1 -
    Ж = - 1 - 1

    Рис. 3.1. Возможные варианты объединения клеток матрицы Карно в контуры


    3.3.2. Минимизация функций алгебры логики с помощью матрицы на пять переменных

    Матрица минимизации на пять переменных строится аналогично матрице Карно, т.е. в этой матрице рядом расположенные столбцы и строки должны быть обозначены соседними двоичными числами наборов переменных

    В матрице на пять переменных (таблица 3.7.) строкам соответствуют наборы переменных х 1 х 2 х 3 , а столбцам наборы переменных х 4 х 5 . Каждой клетке матрицы соответствует пятиразрядное двоичное число. В клетках матрицы (табл. 3.7.) проставлены десятичные эквиваленты соответствующих двоичных чисел.

    Таблица 3.7.

    х 4 х 5 х 1 х 2 х 3

    Минимизация ФАЛ с помощью матрицы на пять переменных заключается в объединении клеток с рабочими наборами (включая при необходимости и клетки с безразличными наборами) в контуры и получении для этих контуров соответствующих им обобщенных кодов.

    Особенность здесь заключается в том, что в столбцах матрицы на пять переменных объединять по четыре клетки в контуры можно только или четыре клетки сверху, или четыре клетки внизу, или четыре клетки посередине. Например, для последнего столбца матрицы контуры могут состоять из клеток 2, 6, 14, 10, или 26, 30, 22, 18 или 14, 10, 26, 30.

    Пример 3.6. Минимизировать с помощью матрицы на пять переменных следующее логическое выражение

    Строим матрицу на пять переменных и заполняем клетки рабочих наборов единицами, запрещенных – нулями.

    Объединяем в контуры клетки с рабочими наборами, включая в них необходимые клетки безразличных наборов. Для каждого контура определяем обобщенных код.

    Таблица 3.8.

    х 4 х 5
    х 1 х 2 х 3
    (1) (1) (1)
    (1)
    (1) (1)
    (1) (1)
    (1) (1)
    (1)
    (1) (1)

    Получаем минимальную ДНФ

    Контрольные вопросы

    1. Дать определение сокращенной ДНФ.

    2. Что представляет собой тупиковая ДНФ?

    3. Как выбирается минимальная ДНФ из тупиковых ДНФ?

    4. Для чего используется импликантная таблица и как она строится?

    5. Пояснить аналитический способ минимизации ФАЛ Квайна-Мак-Класски.

    6. Как строится матрица Карно на три и четыре переменных?

    7. Минимизировать аналитическим способом следующие логические выражения, заданные только рабочими наборами

    8. Минимизировать с помощью матрицы Карно логические выражения, заданные рабочими и запрещенными наборами


    Похожая информация.


    Наиболее употребляемая операция при минимизации функций - это операция склеивания.

    AB+ ВB=B (A+ В)=B.

    Рассмотрим три наиболее распространенных метода минимизации.

    1. Пусть будут заданы номера наборов четырех переменных, на которых логическая функция принимает единичное значение: f (2,5,6,7,10,12,13,14)=1.

    Выразим эту логическую функцию в СДНФ (символ конъюнкции писать не будем):

    f (0010,0101, 0110, 0111, 1010, 1100, 1101, 1110) =

    На первом этапе минимизации исходную СДНФ можно упростить за счет использования закона склеивания, тогда получим:

    Обращаем внимание на то, что одну и ту же конституенту (импликанту) можно склеивать с другими конституентами (импликантами) многократно, так как в логике Буля действует закон идемпотентности:

    поэтому любую конституенту можно размножить.

    На втором этапе воспользуемся таблицей Куайна (табл. 8), в соответствии с которой данный метод минимизации получил свое наименование - метод Куайна. В таблице по вертикали перечислены все полученные на первом этапе упрощения импликанты, а по горизонтали - исходные конституенты. Единица в табл. 8 стоит там, где импликанта «накрывает» конституенту. Дело в том, что конституента всегда может быть заменена импликантой или даже отдельным термом по закону поглощения:

    Таблица 8

    После заполнения таблицы Куайна у нас получилось так, что почти в каждой графе оказалось по две единицы; между тем достаточно иметь одну единицу в графе. Поэтому, по возможности, нужно исключить избыточные единицы. Выбор единиц производится из соображений минимальности числа термов (выбранные единицы затемнены). В итоге оказалось, что можно обойтись только тремя импликантами вместо шести:

    С помощью таблиц истинности легко проверить, что полученная в МНФ функция воспроизводит все значения исходной функции. Отметим, что в общем случае решений по критерию минимума термов может быть несколько.

    2. Не менее эффективным способом минимизации логических функций является метод сочетания индексов. Для его изложения составим табл. 9, в графах которой записаны возможные сочетания индексов. В последней графе выписаны значения функции. Анализ таблицы начинается слева по столбцам. Принцип исключения i, j_кода следующий. На пересечении i_столбца, например, с сочетанием индексов 23, и j_строки, например, 3_ей, находится код 10, что соответствует импликанте. Следовательно, в этом столбце везде, где встречается код 10, т. е. в строках 2, 3, 10 и 11, эти коды исключаются, поскольку значение функции в 3_ей строке равно нулю. Теперь возьмем столбец с сочетанием индексов 124. Здесь во 2_ой и 6_ой строках оставлены коды 010, а в 10_ой и 14_ой строках - код 011. Сделано это потому, что эти коды встречаются только на строках со значением функции, равным единице. Напротив, код 110 этого же столбца встречается как при единичных значениях функции, так и при нулевых.

    Таблица 9

    Итак, все коды на строках, заканчивающихся нулевыми значениями функции, исключаются автоматически. Если эти коды попадают на строки, заканчивающиеся единичным значением функции, то они также не учитываются. Остаются только те коды, которые расположены на строках с единичным значением функции (эти коды затемнены).

    Далее руководствуются следующим правилом. Для того чтобы функция приняла значение, равное единице, достаточно того, чтобы только какая-нибудь одна импликанта на строке приняла единичное значение. Прежде всего, оставляем минимальную импликанту, которая перекрывает единицы в строках 2, 6, 10 и 14. Затем, естественно, обращаемся к 12_ой строке. Здесь оставляем единственный на строке код 011, что отвечает импликанте. Эта же импликанта ответственна за 13_ую строку, оканчивающуюся тоже единицей. Осталось рассмотреть 5_ую и 7_ую строки. Общей для них является импликанта: . Таким образом, тремя импликантами мы перекрыли все единичные значения функции, что совпадает с результатом, полученным на основе таблиц Куайна.

    3. Существует графический способ склеивания, который получил название метод карты Карно (представлен в табл. 10). Выделяем смежные единицы, это и будут слагаемые нашей функции.

    Таблица 10

    Получили два слагаемых

    Хотя табл. 9 более громоздка, чем табл. 8, метод сочетания индексов не считается более сложным, чем метод Куайна, если помнить, что до составления таблиц Куайна необходимо произвести многочисленные склейки конституент и импликант. Реализация на компьютере алгоритма метода сочетания индексов оказывается сравнительно простой. И напротив, внешняя простота и наглядность третьего метода минимизации логических функций с помощью карт Карно оборачивается сложной программой при реализации алгоритма на компьютере.

    Таблица 11

    Таблица 12

    Карта Карно для четырех переменных представлена в виде табл. 11. Каждая клетка карты соответствует конституенте. Заполненная карта представлена табл. 12 (функция взята та же, что и в первых двух методах). Согласно закону склеивания, две смежные конституенты с единичными значениями всегда можно объединить для получения соответствующей импликанты. Причем смежными считаются и те, которые лежат на границах карты. Какие именно единицы требуется объединить для получения подходящей импликанты, легко определить визуально. Следует также помнить, что в соответствии с законом идемпотентности одна и та же единица табл. 12 может склеиваться с двумя или тремя смежными единицами.