Принятие решения в случае динамического программирования. Динамическое программирование, основные принципы

Допустим, есть задача, которую мы уже решили динамическим программированием, например, извечные числа Фибоначчи.
Давайте немного переформулируем её. Пусть у нас есть вектор , из которого мы хотим получить вектор . Чуть-чуть раскроем формулы: . Можно заметить, что из вектора можно получить вектор путем умножения на какую-то матрицу, ведь в итоговом векторе фигурируют только сложенные переменные из первого вектора. Эту матрицу легко вывести, вот она: . Назовём её матрицей перехода.

Это значит, что если взять вектор и умножить его на матрицу перехода n - 1 раз, то получим вектор , в котором лежит fib[n] - ответ на задачу.

А теперь, зачем всё это надо. Умножение матриц обладает свойством ассоциативности, то есть (но при этом не обладает коммутативностью, что по-моему удивительно). Это свойство даёт нам право сделать так: .

Это хорошо тем, что теперь можно применить метод быстрого возведения в степень , который работает за . Итого мы сумели посчитать N -ое число Фибоначчи за логарифм арифметических операций.

А теперь пример посерьёзнее:

Пример №3: Пилообразная последовательность
Обозначим пилообразную последовательность длины N как последовательность, у которой для каждого не крайнего элемента выполняется условие: он или меньше обоих своих соседей или больше. Требуется посчитать количество пилообразных последовательностей из цифр длины N . Выглядит это как-то так:

Решение

Для начала решение без матрицы перехода:

1) Состояние динамики: dp[n] - количество пилообразных последовательностей длины n , заканчивающихся на цифру last . Причём если less == 0 , то последняя цифра меньше предпоследней, а если less == 1 , значит больше.
2) Начальные значения:
for last in range(10): dp = 9 - last dp = last 3) Пересчёт динамики:
for prev in range(10): if prev > last: dp[n] += dp if prev < last: dp[n] += dp 4) Порядок пересчёта: мы всегда обращаемся к предыдущей длине, так что просто пара вложенных for "ов.
5) Ответ - это сумма dp[N] .

Теперь надо придумать начальный вектор и матрицу перехода к нему. Вектор, кажется, придумывается быстро: все состояния, обозначающие длину последовательности N . Ну а матрица перехода выводится, смотря на формулы пересчёта.

Вектор и матрица перехода

Динамика по подотрезкам

Это класс динамики, в котором состояние - это границы подотрезка какого-нибудь массива. Суть в том, чтобы подсчитать ответы для подзадач, основывающихся на всех возможных подотрезках нашего массива. Обычно перебираются они в порядке увеличения длины, и пересчёт основывается, соответственно на более коротких отрезках.
Пример №4: Запаковка строки
Вот Развернутое условие . Я вкратце его перескажу:

Определим сжатую строку:
1) Строка состоящая только из букв - это сжатая строка. Разжимается она в саму себя.
2) Строка, являющаяся конкатенацией двух сжатых строк A и B . Разжимается она в конкатенацию разжатых строк A и B .
3) Строка D(X) , где D - целое число, большее 1 , а X - сжатая строка. Разжимается она в конкатенацию D строк, разжатых из X .
Пример: “3(2(A)2(B))C” разжимается в “AABBAABBAABBC” .

Необходимо по строке s узнать длину самой короткой сжатой строки, разжимающийся в неё.

Решение

Решается эта задача, как вы уже наверняка догадались, динамикой по подотрезкам.

1) Состояние динамики: d[l][r] - сжатая строка минимальной длины, разжимающаяся в строку s
2) Начальные состояния: все подстроки длины один можно сжать только в них самих.
3) Пересчёт динамики:
У лучшего ответа есть какая-то последняя операция сжатия: либо это просто строка из заглавных букв, или это конкатенация двух строк, или само сжатие. Так давайте переберём все варианты и выберем лучший.

Dp_len = r - l dp[l][r] = dp_len # Первый вариант сжатия - просто строка. for i in range(l + 1, r): dp[l][r] = min(dp[l][r], dp[l][i] + dp[i][r]) # Попробовать разделить на две сжатые подстроки for cnt in range(2, dp_len): if (dp_len % cnt == 0): # Если не делится, то нет смысла пытаться разделить good = True for j in range(1, (dp_len / cnt) + 1): # Проверка на то, что все cnt подстрок одинаковы good &= s == s if good: # Попробовать разделить на cnt одинаковых подстрок и сжать dp[l][r] = min(dp[l][r], len(str(cnt)) + 1 + dp[l] + 1) 4) Порядок пересчёта: прямой по возрастанию длины подстроки или ленивая динамика.
5) Ответ лежит в d .

Пример №5: Дубы

Динамика по поддеревьям

Параметром состояния динамики по поддеревьям обычно бывает вершина, обозначающая поддерево, в котором эта вершина - корень. Для получения значения текущего состояния обычно нужно знать результаты всех своих детей. Чаще всего реализуют лениво - просто пишут поиск в глубину из корня дерева.
Пример №6: Логическое дерево
Дано подвешенное дерево, в листьях которого записаны однобитовые числа - 0 или 1 . Во всех внутренних вершинах так же записаны числа, но по следующему правилу: для каждой вершины выбрана одна из логических операций: «И» или «ИЛИ». Если это «И», то значение вершины - это логическое «И» от значений всех её детей. Если же «ИЛИ», то значение вершины - это логическое «ИЛИ» от значений всех её детей.

Требуется найти минимальное количество изменений логических операций во внутренних вершинах, такое, чтобы изменилось значение в корне или сообщить, что это невозможно.

Решение

1) Состояние динамики: d[v][x] - количество операций, требуемых для получения значения x в вершине v . Если это невозможно, то значение состояния - +inf .
2) Начальные значения: для листьев, очевидно, что своё значение можно получить за ноль изменений, изменить же значение невозможно, то есть возможно, но только за +inf операций.
3) Формула пересчёта:
Если в этой вершине уже значение x , то ноль. Если нет, то есть два варианта: изменить в текущей вершине операцию или нет. Для обоих нужно найти оптимальный вариант и выбрать наилучший.

Если операция «И» и нужно получить «0», то ответ это минимум из значений d[i] , где i - сын v .
Если операция «И» и нужно получить «1», то ответ это сумма всех значений d[i] , где i - сын v .
Если операция «ИЛИ» и нужно получить «0», то ответ это сумма всех значений d[i] , где i - сын v .
Если операция «ИЛИ» и нужно получить «1», то ответ это минимум из значений d[i] , где i - сын v .

4) Порядок пересчёта: легче всего реализуется лениво - в виде поиска в глубину из корня.
5) Ответ - d xor 1] .

Динамика по подмножествам

В динамике по подмножествам обычно в состояние входит маска заданного множества. Перебираются чаще всего в порядке увеличения количества единиц в этой маске и пересчитываются, соответственно, из состояний, меньших по включению. Обычно используется ленивая динамика, чтобы специально не думать о порядке обхода, который иногда бывает не совсем тривиальным.
Пример №7: Гамильтонов цикл минимального веса, или задача коммивояжера
Задан взвешенный (веса рёбер неотрицательны) граф G размера N . Найти гамильтонов цикл (цикл, проходящий по всем вершинам без самопересечений) минимального веса.

Решение

Так как мы ищем цикл, проходящий через все вершины, то можно выбрать за «начальную» вершину любую. Пусть это будет вершина с номером 0 .

1) Состояние динамики: dp[v] - путь минимального веса из вершины 0 в вершину v , проходящий по всем вершинам, лежащим в mask и только по ним.
2) Начальные значения: dp = 0 , все остальные состояния изначально - +inf .
3) Формула пересчёта: Если i -й бит в mask равен 1 и есть ребро из i в v , то:
dp[v] = min(dp[v], dp[i] + w[i][v]) Где w[i][v] - вес ребра из i в v .
4) Порядок пересчёта: самый простой и удобный способ - это написать ленивую динамику, но можно поизвращаться и написать перебор масок в порядке увеличения количества единичных битов в ней.
5) Ответ лежит в d[(1 << N) - 1] .

Динамика по профилю

Классическими задачами, решающимися динамикой по профилю, являются задачи на замощение поля какими-нибудь фигурами. Причём спрашиваться могут разные вещи, например, количество способов замощения или замощение минимальным количеством фигур.

Эти задачи можно решить полным перебором за , где a - количество вариантов замощения одной клетки. Динамика по профилю же оптимизирует время по одной из размерностей до линейной, оставив от себя в экспоненте только коэффициент. Получится что-то такое: .

Профиль - это k (зачастую один) столбцов, являющиеся границей между уже замощённой частью и ещё не замощённой. Эта граница заполнена только частично. Очень часто является частью состояния динамики.

Почти всегда состояние - это профиль и то, где этот профиль. А переход увеличивает это местоположение на один. Узнать, можно ли перейти из одного профиля в другой можно за линейное от размера профиля время. Это можно проверять каждый раз во время пересчёта, но можно и предподсчитать. Предподсчитывать будем двумерный массив can - можно ли от одной маски перейти к другой, положив несколько фигурок, увеличив положение профиля на один. Если предподсчитывать, то времени на выполнение потребуется меньше, а памяти - больше.

Пример №8: Замощение доминошками
Найти количество способов замостить таблицу N x M с помощью доминошек размерами 1 x 2 и 2 x 1 .

Решение

Здесь профиль - это один столбец. Хранить его удобно в виде двоичной маски: 0 - не замощенная клетка столбца, 1 - замощенная. То есть всего профилей .

0) Предподсчёт (опционально): перебрать все пары профилей и проверить, что из одного можно перейти в другой. В этой задаче это проверяется так:

Если в первом профиле на очередном месте стоит 1 , значит во втором обязательно должен стоять 0 , так как мы не сможем замостить эту клетку никакой фигуркой.

Если в первом профиле на очередном месте стоит 0 , то есть два варианта - или во втором 0 или 1 .
Если 0 , это значит, что мы обязаны положить вертикальную доминошку, а значит следующую клетку можно рассматривать как 1 . Если 1 , то мы ставим вертикальную доминошку и переходим к следующей клетке.

Примеры переходов (из верхнего профиля можно перейти в нижние и только в них):

После этого сохранить всё в массив can - 1 , если можно перейти, 0 - если нельзя.
1) Состояние динамики: dp - количество полных замощений первых pos - 1 столбцов с профилем mask .
2) Начальное состояние: dp = 1 - левая граница поля - прямая стенка.
3) Формула пересчёта:
dp += dp * can
4) Порядок обхода - в порядке увеличения pos .
5) Ответ лежит в dp.

Полученная асимптотика - .

Динамика по изломанному профилю

Это очень сильная оптимизация динамики по профилю. Здесь профиль - это не только маска, но ещё и место излома. Выглядит это так:

Теперь, после добавления излома в профиль, можно переходить к следующему состоянию, добавляя всего одну фигурку, накрывающую левую клетку излома. То есть увеличением числа состояний в N раз (надо помнить, где место излома) мы сократили число переходов из одного состояния в другое с до . Асимптотика улучшилась с до .

Переходы в динамике по изломанному профилю на примере задачи про замощение доминошками (пример №8):

Восстановление ответа

Иногда бывает, что просто знать какую-то характеристику лучшего ответа недостаточно. Например, в задаче «Запаковка строки» (пример №4) мы в итоге получаем только длину самой короткой сжатой строки, но, скорее всего, нам нужна не её длина, а сама строка. В таком случае надо восстановить ответ.

В каждой задаче свой способ восстановления ответа, но самые распространенные:

  • Рядом со значением состояния динамики хранить полный ответ на подзадачу. Если ответ - это что-то большое, то может понадобиться чересчур много памяти, поэтому если можно воспользоваться другим методом, обычно так и делают.
  • Восстанавливать ответ, зная предка(ов) данного состояния. Зачастую можно восстановить ответ, зная только как он был получен. В той самой «Запаковке строки» можно для восстановления ответа хранить только вид последнего действия и то, из каких состояний оно было получено.
  • Есть способ, вообще не использующий дополнительную память - после пересчёта динамики пойти с конца по лучшему пути и по дороге составлять ответ.

Небольшие оптимизации

Память
Зачастую в динамике можно встретить задачу, в которой состояние требует быть посчитанными не очень большое количество других состояний. Например, при подсчёте чисел Фибоначчи мы используем только два последних, а к предыдущим уже никогда не обратимся. Значит, можно про них забыть, то есть не хранить в памяти. Иногда это улучшает асимптотическую оценку по памяти. Этим приёмом можно воспользоваться в примерах №1, №2, №3 (в решении без матрицы перехода), №7 и №8. Правда, этим никак не получится воспользоваться, если порядок обхода - ленивая динамика.
Время
Иногда бывает так, что можно улучшить асимптотическое время, используя какую-нибудь структуру данных. К примеру, в алгоритме Дейкстры можно воспользоваться очередью с приоритетами для изменения асимптотического времени.

Замена состояния

В решениях динамикой обязательно фигурирует состояние - параметры, однозначно задающие подзадачу, но это состояние не обязательно одно единственное. Иногда можно придумать другие параметры и получить с этого выгоду в виде снижения асимптотического времени или памяти.
Пример №9: Разложение числа
Требуется найти количество разложений числа N на различные слагаемые. Например, если N = 7 , то таких разложений 5:
  • 3 + 4
  • 2 + 5
  • 1 + 7
  • 1 + 2 + 4

На уроке будет рассмотрено понятие динамического программирования и исторический аспект его появления. Рассмотрены задачи динамического программирования и некоторые примеры их решения


Само понятие «динамическое программирование» впервые было использовано в 1940-х годах Ричардом Беллманом для описания процесса нахождения решения задачи, где ответ на одну задачу может быть получен только после решения другой задачи, «предшествующей» ей.
Таким образом, американский математик и один из ведущих специалистов в области математики и вычислительной техники — Ричард Эрнст Беллман — стал прородителем динамического программирования.

Позднее формулировка понятия была доработана и усовершенствованна до современного вида самим же Беллманом.

Слово «программирование» в контексте «динамическое программирование» на самом деле к классическому пониманию программирования (написанию кода на языке программирования) практически никакого отношения не имеет . Слово «Программирование» имеет такой же смысл как в словосочетании «математическое программирование», которое является синонимом слова «оптимизация».

Поэтому программы будут использоваться в качестве оптимальной последовательности действий для получения решения задачи.

В общем же для начала, неформальное определение понятия динамического программирования может звучать так:

Динамическое программирование — это техника или метод, которая позволяет решать некоторые задачи комбинаторики, оптимизации и другие задачи, обладающие определенным свойством (свойством сооптимальности у подзадач).

Задачи оптимизации , как правило, связаны с задачей максимизации или минимизации той или иной целевой функции (например, максимизировать вероятность того, что система не сломается, максимизировать мат. ожидание получения прибыли и т.д.).

Задачи комбинаторики , как правило, отвечают на вопрос, сколько существует объектов, обладающих теми или иными свойствами, или сколько существует комбинаторных объектов, обладающих заданными свойствами.

То есть, ДП решает не все задачи, а лишь некоторые, определенный класс подзадач. Но этот класс подзадачи используется во многих областях знаний: программирование, математика, лингвистика, статистика, теория игр, экономика, в компьютерных науках и т.п.

Задачи, решаемые при помощи динамического программирования, должны обладать свойством сооптимальности , о котором будет сказано в дальнейших уроках.

Неформальное объяснение свойства оптимальности у подзадач может быть продемонстрировано с помощью диаграммы:
Есть задача, которую мы хотим решить при помощи ДП, т.е. найти какой-то план ее решения. Допустим эта задача сложна и сразу решить мы ее не можем. Мы берем малую подзадачу и решаем сначала ее (для x1). Затем используя это малое решение x1 , и не меняя структуру этого решения, решаем следующую задачу уже с x1 и x2 . И т.д.

Рис. 1.1. Неформальное объяснение свойства оптимальности у подзадач

Более подробно неформальное объяснение рассматривается .

Примеры, решаемых при помощи динамического программирования задач

Сначала рассмотрим задачи оптимизации (задачи 1-5):

  1. Маршрут оптимальной длины
  2. Пример: Есть некоторая карта дорог, представленная в виде графа. Наша цель: добраться из пункта А в пункт Б . Это сделать надо так, чтобы минимизировать расстояние или потраченное топливо.

    Целевой функцией здесь является расстояние от А до Б . Т.е. наша цель — минимизировать расстояние.

    А что является переменной выбора ? Для того, чтобы найти кратчайший путь, надо каждый раз принимать решения. Т.е. в каждой точке или на каждом перекрестке необходимо принимать решения: куда повернуть или ехать прямо.

    Важно: Из этой задачи уже можно увидеть общую структуру задач, решаемых при помощи динамического программирования: в каждой задаче есть целевая функция и переменная выбора .

  3. Замена машины (минимизация расходов)
  4. Пример: Каждый год мы принимаем решение, ездить ли на старой машине еще год и понести при этом издержки на поддержку и обслуживание старой машины или же продать эту машину и купить новую (и понести при этом издержки на покупку).

    Целевая функция: минимизация расходов (либо на издержки на поддержку старого автомобиля, либо на покупку нового).

    Переменная выбора: каждый год принимать решение продать машину или оставить.

  5. Биржевой портфель
  6. Пример: Игра на бирже, приобретение акций каких-либо компаний


    Целевая функция: максимизация средних доходов, т.к. на бирже доход получается вероятностным путем, т.е. это статистический процесс, вероятностный.

    Переменная выбора: то, какой портфель вложений будет: сколько акций и какой фирмы нам необходимо купить.

  7. Составление плана оптимального производства (логистика)
  8. Пример: Есть завод, изготавливающий мебель. На заводе работает определенное количество работников, которые могут изготовить соответствующее кол-во определенной мебели (стулья, столы, шкафы и т.п.)


    Целевая функция : максимизация прибыли.

    Переменная выбора: выбор того, сколько необходимо изготовить стульев или столов, чтобы хватило рабочей силы.

  9. Игры (вероятностные или не вероятностные)
  10. Пример: Участие в различных играх


    Целевая функция: максимизация вероятности выигрыша или максимизация среднего выигрыша и т.д.

    Переменная выбора здесь зависит от конкретной игры.

    Задачи 1 — 5 — это примеры задач оптимизации.

    Комбинаторика:

  11. Графы и деревья
  12. Пример: Задача на решение того, сколько существует деревьев, у которых определенное число листьев; или сколько существует графов для решения такого-то задания и т.п.

  13. Задача о размене монет или количество способов вернуть сдачу
  14. Пример: Есть монеты разного достоинства, какими способами можно вернуть сдачу.

Это краткое описание задач для динамического программирования, которые подробно будут рассмотрены позднее.

Понятие динамического программирования

Неформальное объяснение оптимальности подзадач ДП.

Рассмотрим неформальную идею ДП.

Итак, возьмем пример с заводом, изготавливающим мебель.

Для достижения цели максимизации прибыли необходимо решить множество подзадач:

  • сколько стульев произвести — переменная X1 ,
  • сколько столов произвести — переменная X2 ,
  • сколько нанять работников — переменная X3 ,
  • … Хn .

При большом количестве подзадач сложно понять, как решать такую задачу. Как правило, решить одну малую задачу проще, чем решить большую задачу , состоящую из маленьких.

Поэтому ДП предлагает следующее:

  • берем одну подзадачу с переменной X1 , об остальных подзадачах пока забываем.
  • Например, завод производит только стулья. У директора стоит задача получения максимальной прибыли с продажи стульев.

  • После того, как найдем оптимальное решение для первой подзадачи, берем подзадачу для двух переменных Х1 и Х2 , и решаем ее с помощью уже найденного решения для первой подзадачи .
  • Получаем решение уже для большей подзадачи, где фигурируют переменные Х1 и Х2 . Затем, используя полученное решение, берем подзадачи, охватывающие X1 , X2 и Х3 .
  • И так продолжаем пока не получим решение для всей общей задачи.

Формальная идея ДП

Часто при постановке задачи кажущимся оптимальным решением является перебор всех возможных вариантов . Однако, вследствии очень большого количества таких вариантов и, как результат, перегрузки памяти компьютера, такой способ не всегда приемлем.

Кроме того, может возникнуть такой вопрос: для того чтобы найти, например, минимум или максимум, почему бы нам не найти производную? или не использовать множества Ла-Гранжа, или другие методы аппарата математического анализа? Зачем нужно ДП, если есть большой арсенал средств?

Дело в том, что:

В основе динамического программирования лежит идея решения поставленной задачи путем деления ее на отдельные части (подзадачи, этапы), решение этих подзадач и последующего объединения этих решений в одно общее решение. Часто большинство из подзадач абсолютно одинаковы.

При этом важно, что при решении более сложной задачи, мы не решаем заново маленькую подзадачу, а используем уже решенный ответ этой подзадачи.
На графике это может выглядеть так:


Важно: По этой причине разделение задачи на подзадачи и решение этих подзадач только один раз (!) , сокращая этим количество общих вычислений — более оптимальный способ, который и заложен в динамическом программировании

Когда мы решаем задачу с производными, множествами Ла-Гранжа и т.п., то мы работаем с непрерывными функциями. При решении же задач ДП мы будем работать в основном с дискретными функциями, поэтому говорить здесь о применении непрерывных функций неуместно.
По этой причине во многих задачах, но не во всех, применение аппарата математического анализа будет неприемлемым.

Простой пример решения задач при помощи ДП

Рассмотрим вариант решения задачи с помощью динамического программирования.

Пример: Необходимо вычислить сумму n чисел: 1 + 2 + 3 + ... + n


В чем состоит якобы «сложность» данной задачи: в том, что необходимо сразу взять большое количество чисел и получить ответ.

Попробуем применить к задаче идеи ДП и решить ее, разбивая на простые подзадачи.
(В ДП всегда необходимо сначала определить начальные условия или условие)

  • Начнем с суммы одного первого элемента, т.е. просто берем первый элемент:
    F(1) = 1
  • теперь с помощью решения для первого элемента, решим
    F(2) = F(1) + 2 = 1 + 2 = 3 , т.е. надо взять сумму первого элемента и добавить к нему второй элемент
  • F(3) = F(2) + 3 = 6
  • по аналогии продолжаем и получаем целевую функцию:
    F(n) = F(n-1) + An


Итак, что мы сделали: определили порядок и вычленили подзадачи, затем решили каждую из них, опираясь на решение предыдущей.

Простой пример, где пока неоправданно используется ДП (искусственно), демонстрирует принцип идей ДП.

Рассмотрим еще один пример.

Пример: имеется лесенка из n ступенек, перед которой находится человек, который за 1 шаг умеет подниматься либо на следующую ступеньку, либо перепрыгивает через одну ступеньку. Вопрос: сколькими способами он может попасть на последнюю ступеньку?


Решение:

Рассмотрим самые простые варианты (подзадачи):

Рассмотрим пример из i ступенек

Как мы можем попасть на i ступеньку:

  1. с i-1 ступеньки, а на i-1 ступеньку мы могли попасть a i-1 способами
  2. с i-2 ступеньки, а на i-2 ступеньку мы могли попасть a i-2 способами

Например, как попасть на 4-ю ступеньку :

Т.о., общее количество способов попасть на i ступеньку:
f(a i) = f(a i-1) + f(a i-2)

Определим начальные значения , с которых следует начинать решать задачу.
Если начинать с 1, то формула соответствует нахождению последовательности чисел Фибоначчи.

Мы видим, что задача по сути комбинаторная (т.е. количество способов сделать что-либо) свелась к вычислению некоторой рекуррентной последовательности.

Задание 1: реализовать пример для первых десяти ступенек (по сути, первые 10 чисел ряда Фибоначчи), используя рекурсию.

Дополните код:

1 2 3 4 5 6 7 8 9 10 11 12 13 var c: integer ; procedure getKolSposob(i, n: integer ) ; begin writeln (i+ n, " " ) ; inc(c) ; if ... then getKolSposob(...,... ) end ; begin c: = 1 ; getKolSposob(0 , 1 ) ; end .

var c:integer; procedure getKolSposob(i,n: integer); begin writeln (i+n," "); inc(c); if ... then getKolSposob(...,...) end; begin c:=1; getKolSposob(0,1); end.


Задание 2:
Решение 15-го типа заданий ЕГЭ (Графы. Поиск количества путей).

В рассмотренных выше моделях управленческих задач не учитывался время. Это так называемые одноэтапные модели, которые позволяют анализировать статические, не зависящие от времени процессы, допустим, когда изменениями исследуемого процесса во времени можно пренебречь. Управленческое решение по такого моделирования имеет смысл или в условиях стабильности системы, или на короткий промежуток в будущем.

В реальности все экономические процессы и явления функционируют и развиваются во времени, то есть по своей природе динамичны. Это требует от менеджеров решения практических задач, в которых необходимо учитывать возможные изменения экономических процессов во времени при условии, что процессом можно управлять, то есть влиять на ход его развития.

Динамическое программирование - это математический аппарат, с помощью которого решаются многошаговые задачи оптимального управления. В таком программировании для управления процессом среди множества всех допустимых решений ищут оптимальное в смысле определенного критерия, то есть такое решение, которое дает экстремальное (больше или меньше) значения целевой функции - некоторой числовой характеристики процесса. Во многостепенность понимают или многоступенчатую структуру процесса, или распределение управления на ряд последовательных этапов, соответствующих, как правило, различным моментам времени. Таким образом, слово "программирование" означает принятие управленческих решений, а слово "динамическое" указывает на существенное значение времени и порядка выполнения операций в процессах и методах, которые рассматриваются.

В задачи динамического программирования относятся задачи календарного планирования, распределения инвестиций, управление запасами, текущего и капитального ремонта, выбора методов проведения рекламы и тому подобное.

В одних задачах динамического программирования управленческий процесс распадается на этапы естественным путем, например месяц, квартал, год. В других ситуациях разделение на этапы может иметь условный характер. Особенность всех задач динамического программирования заключается в том, что на каждом этапе можно учитывать предыдущие изменения, управлять ходом событий, оценивая при этом качество такого управления. Итак, динамическое программирование позволяет принять ряд управленческих решений, обеспечивает оптимальность развития системы в целом.

Рассмотрим общую постановку задачи этого программирования. Пусть исследуется некоторый экономический процесс, имеющий п последовательных этапов. На каждом 7-м этапе процесс может быть в разных состояниях бы, каждый из которых характеризуется конечным множеством параметров. С каждым этапом задачи связано принятие определенного управленческого решения хи, которое переводит систему из одного состояния в другое. Предполагается, что состояние si системы в конце 7-го этапа определяется только предыдущим состоянием si_1 и управлением хи на 7-м этапе и не зависит от предыдущих состояний и управлений. Тогда состояние si системы записывается в виде зависимости

Si = ф (в, _!, Хи), i = 1, П.

Эффективность всего процесса управления может быть представлена как сумма эффективностей управленческих решений отдельных этапов, то есть

При названных условиях задача динамического программирования формулируется так: определить такую допустимую последовательность управленческих решений X = {x1, x2, хп}, которая переводит систему из начального состояния 50 в завершающий состояние sn и при которой достигается максимальная эффективность управления.

Планируя многоэтапный процесс управления, в задачах динамического программирования необходимо на каждом этапе выбирать управленческое решение с учетом его последствий на тех этапах, которые еще впереди. Только на последнем этапе можно принять управленческое решение, которое даст максимальный эффект, поскольку следующий шаг для него не существует. Поэтому задачи динамического программирования решаются с конца.

Максимум целевой функции на заключительном п-м этапе равна

^ п-О = шах / п ^ п-и хп).

Соответственно, на (п - 1) -етапи имеем

г * п-1 (5п-2) = ШaХ ((fn-1 (sn-2, хп-1) + г * п ^ п-1)).

Учитывая эту закономерность, для произвольного k-этапа можем записать рекуррентную зависимость

г * (пятый-1) = Шахи (Л (ик-1, хк) + г * + 1)).

Такая рекуррентная зависимость представляет собой математическую запись принципа оптимальности Беллмана.

Определив по рекуррентными зависимостями условно-оптимальный эффект на начальном этапе, проводят безусловную оптимизацию управления в "обратном" направлении, в результате чего находят последовательность управленческих решений, обеспечивает максимальную эффективность системы в целом.

Основные особенности метода динамического программирования

1. Идея и метод динамического программирования больше приспособлены к дискретных задач, которыми в большинстве являются задачи управления.

2. Метод динамического программирования можно применять при любом способа задания целевой функции и с любой допустимой множеством состояний и управлений. Этого преимущества лишены классические методы оптимизации и другие вычислительные методы математического программирования.

3. Вычислительные схемы метода динамического программирования в дискретном случае связанные с переборкой оптимальных значений показателя эффективности и управления на к-м шаге для всех возможных значений переменной состояния, но объем расчетов при этом значительно меньше, чем при прямом переборки вариантов. Это связано с тем, что на этапе условной оптимизации неудачные варианты сразу отбрасываются, а сохраняются лишь условно оптимальные на данном этапе.

4. Метод динамического программирования дает возможность анализа чувствительности к изменению исходных данных состояний sk и их количества п. Фактически здесь на каждом шагу решается не одна задача, а множество однотипных задач для различных состояний sk и различных к (1 <к <п) . Поэтому с изменением исходных данных нельзя не решать задачу заново, а сделать только несложные добавление к уже выполненных расчетов, то есть продолжить уже решенную задачу за счет увеличения количества шагов п или количества значений sk.

Выводы

1. Появление нелинейных моделей связана с необходимостью учитывать и проявлять нелинейные закономерности, которые влияют на принятие оптимального решения. Такие закономерности включаются в ограничения задачи и целевую функцию.

2. По характеру функций и ограничений, которыми описываются задачи нелинейного программирования, их можно классифицировать следующим образом: классические задачи оптимизации; задачи с нелинейной целевой функцией и линейными ограничениями; задачи выпуклого, квадратичного, сепарабельного программирования.

3. В отличие от задач линейного программирования, для решения нелинейных задач не существует универсального метода. В каждом конкретном случае необходимо выбирать лучший метод.

4. Динамическое программирование - это математический аппарат, с помощью которого решаются многошаговые задачи оптимального управления. Во многостепенность понимают или многоступенчатую структуру процесса, или распределения управления на ряд последовательных этапов, соответствующих, как правило, различным моментам времени.

5. В задачи динамического программирования относятся задачи календарного планирования, распределения инвестиций, управление запасами, текущего и капитального ремонта, выбора методов проведения рекламы и тому подобное. Особенность всех задач динамического программирования заключается в том, что на каждом этапе можно учитывать предыдущие изменения и управлять ходом событий, оценивая при этом качество такого управления.

6. Решение задач динамического программирования базируется на принципе оптимальности Беллмана. В процессе оптимизации управления методом динамического программирования многошаговый процесс выполняется дважды. Первый раз - от конца к началу, в результате чего находят условно оптимальные управления. Второй - от начала до конца, в результате чего находят оптимальное управление процессом в целом.

Динамического программирования

1. Динамическое программирование. Основные понятия…………………2

2. Суть метода динамического программирования………………………..4

3. Пример решения задачи методом динамического программирования………………………………………………………...7

Список используемых источников……………………………………...11

1. Динамическое программирование. Основные понятия.

Динамическое программирование (ДП) в теории вычислительных систем - способ решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой, выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.

Ключевая идея в динамическом программировании достаточно проста. Как правило, чтобы решить поставленную задачу, требуется решить отдельные части задачи (подзадачи), после чего объединить решения подзадач в одно общее решение. Часто многие из этих подзадач одинаковы. Подход динамического программирования состоит в том, чтобы решить каждую подзадачу только один раз, сократив тем самым количество вычислений. Это особенно полезно в случаях, когда число повторяющихся подзадач экспоненциально велико.

Динамическое программирование представляет собой математический аппарат, который подходит к решению некоторого класса задач путем их разложения на части, небольшие и менее сложные задачи. При этом отличительной особенностью является решение задач по этапам, через фиксированные интервалы, промежутки времени, что и определило появление термина динамическое программирование. Следует заметить, что методы динамического программирования успешно применяются и при решении задач, в которых фактор времени не учитывается. В целом математический аппарат можно представить как пошаговое или поэтапное программирование. Решение задач методами динамического программирования проводится на основе сформулированного Р. Э. Беллманом принципа оптимальности: оптимальное поведение обладает тем свойством, что каким бы ни было первоначальное состояние системы и первоначальное решение, последующее решение должно определять оптимальное поведение относительно состояния, полученного в результате первоначального решения.
Из этого следует, что планирование каждого шага должно проводиться с учетом общей выгоды, получаемой по завершении всего процесса, что и позволяет оптимизировать конечный результат по выбранному критерию.



Таким образом, динамическое программирование в широком смысле представляет собой оптимальное управление процессом, посредством изменения управляемых параметров на каждом шаге, и, следовательно, воздействуя на ход процесса, изменяя на каждом шаге состояние системы.

В целом динамическое программирование представляет собой стройную теорию для восприятия и достаточно простую для применения в коммерческой деятельности при решении как линейных, так и нелинейных задач.

Динамическое программирование является одним из разделов оптимального программирования. Для него характерны специфические методы и приемы, применительные к операциям, в которых процесс принятия решения разбит на этапы (шаги). Методами динамического программирования решаются вариантные оптимизационные задачи с заданными критериями оптимальности, с определенными связями между переменными и целевой функцией, выраженными системой уравнений или неравенств. При этом, как и в задачах, решаемых методами линейного программирования, ограничения могут быть даны в виде равенств или неравенств. Однако если в задачах линейного программирования зависимости между критериальной функцией и переменными обязательно линейны, то в задачах динамического программирования эти зависимости могут иметь еще и нелинейный характер. Динамическое программирование можно использовать как для решения задач, связанных с динамикой процесса или системы, так и для статических задач, связанных, например, с распределением ресурсов. Это значительно расширяет область применения динамического программирования для решения задач управления. А возможность упрощения процесса решения, которая достигается за счет ограничения области и количества, исследуемых при переходе к очередному этапу вариантов, увеличивает достоинства этого комплекса методов.

Вместе с тем динамическому программированию свойственны и недостатки. Прежде всего, в нем нет единого универсального метода решения. Практически каждая задача, решаемая этим методом, характеризуется своими особенностями и требует проведения поиска наиболее приемлемой совокупности методов для ее решения. Кроме того, большие объемы и трудоемкость решения многошаговых задач, имеющих множество состояний, приводят к необходимости отбора задач малой размерности либо использования сжатой информации. Последнее достигается с помощью методов анализа вариантов и переработки списка состояний.

Для процессов с непрерывным временем динамическое программирование рассматривается как предельный вариант дискретной схемы решения. Получаемые при этом результаты практически совпадают с теми, которые получаются методами максимума Л. С. Понтрягина или Гамильтона-Якоби-Беллмана.

Динамическое программирование применяется для решения задач, в которых поиск оптимума возможен при поэтапном подходе, например, распределение дефицитных капитальных вложений между новыми направлениями их использования; разработка правил управления спросом или запасами, устанавливающими момент пополнения запаса и размер пополняющего заказа; разработка принципов календарного планирования производства и выравнивания занятости в условиях колеблющегося спроса на продукцию; составление календарных планов текущего и капитального ремонтов оборудования и его замены; поиск кратчайших расстояний на транспортной сети; формирование последовательности развития коммерческой операции и т. д.


Суть метода динамического программирования.

В основу метода динамического программирования положен принцип оптимальности , сформулированный в 1957 г. американским математиком Ричардом Беллманом: «Оптимальное поведение обладает тем свойством, что каковы бы ни были первоначальные состояние и решение в начальный момент времени, последующие решения должны составлять оптимальное поведение относительно состояния, получающегося в результате первого решения».

Физическая сущность принципа оптимальности заключается в том, что ошибка выбора решения в данный момент не может быть исправлена в будущем.

Рассматривается следующая общая задача. Имеется некоторая физическая система, в которой происходит какой-то процесс, состоящий из n шагов. Эффективность процесса характеризуется некоторым показателем W , который называют выигрышем . Пусть общий выигрыш W за все n шагов процесса складывается из выигрышей на отдельных шагах

где w i - выигрыш на i -м шаге. Если W обладает таким свойством, то его называют аддитивным критерием .

Процесс, о котором идет речь, представляет собой управляемый процесс, т.е. имеется возможность выбирать какие-то параметры, влияющие на его ход и исход, причем на каждом шаге выбирается какое-то решение, от которого зависит выигрыш на данном шаге. Это решение называется шаговым управлением . Совокупность всех шаговых управлений представляет собой управление процессом в целом. Обозначим его буквой U , а шаговые управления - буквами . Тогда

Шаговые управления в общем случае не числа, а, как правило, векторы, функции и т.п.

В модели динамического программирования процесс на каждом шаге находится в одном из состояний s множества состояний S . Считается, что всякому состоянию сопоставлены некоторые шаговые управления. Эти управления таковы, что управление, выбранное в данном состоянии при любой предыстории процесса, определяет полностью следующее состояние процесса. Обычно выделены два особых состояния: s 0 - начальное и s w - конечное.

Итак, пусть каждому состоянию поставлено множество допустимых шаговых управлений , и каждому шаговому управлению , соответствует - состояние, в которое процесс попадает из s i в результате использования шагового управления u . Пусть процесс находится в начальном состоянии s 0 . Выбор переводит процесс в состояние s 1 = σ(s 0 ,u 1), выбор - в состояние s 2 = σ(s 1 ,u 2) и т.д. В результате получается траектория процесса, которая состоит из последовательности пар

и заканчивается конечным состоянием. Для единообразия можно считать, что включает только одно состояние , оставляющее процесс в том же конечном состоянии. Следует отметить, что множества допустимых состояний и управлений

конечны и U s для различных s не пересекаются.

В общем виде задача динамического программирования формулируется следующим образом: найти такую траекторию процесса, при которой выигрыш (2.1)будет максимальным.

То управление, при котором достигается максимальный выигрыш, называется оптимальным управлением . Оно состоит из совокупности шаговых управлений

Тот максимальный выигрыш, который достигается при этом управлении обозначим W max :

W max = max U {W (u )}. (2.5)

Рассмотрим на примере задачи о рюкзаке, что понимается под шагом, состоянием, управлением и выигрышем.

Загрузку рюкзака можно представить себе как процесс, состоящий из n шагов. На каждом шаге требуется ответить на вопрос: взять данный предмет в рюкзак, или нет? Таким образом, шаг процесса - присваивание переменной x i значения 1 или 0.

Теперь определим состояния. Очевидно, что текущее состояние процесса характеризует остаточная грузоподъёмность рюкзака - вес, который остался в нашем распоряжении до конца (до полной укладки рюкзака). Следовательно, под состоянием перед i -м шагом понимается величина

(2.6)

при этом s 0 является начальным состоянием, которому соответствует величина b - исходная грузоподъемность рюкзака.

Управление на i -м шаге означает присваивание двоичной переменной x i значения 0 или 1. Значит, на каждом шаге имеем всего два управления. Причем допустимость управления u i , устанавливающего x i = 1, определяется условием

(2.8)

Шаговый выигрыш можно определить как . Поэтому

(2.10)

Требуется найти оптимальное управление , при котором величина выигрыша (2.10) обращается в максимум.


3. Пример решения задачи методом динамического программирования.

Задание . Инвестор выделяет средства в размере 5 тыс. ден. ед., которые должны быть распределены между тремя предприятиями.

Требуется, используя принцип оптимальности Беллмана, построить план распределения инвестиций между предприятиями, обеспечивающий наибольшую общую прибыль, если каждое предприятие при инвестировании в него средств x тыс. ден. ед. приносит прибыль p;(x) тыс. ден. ед. (i=1, 2 и 3) по следующим данным:


Решение . Составим математическую модель задачи.

1.Число шагов равно 3.

2.Пусть s - количество средств, имеющихся в наличии перед данным шагом, и характеризующих состояние системы на каждом шаге.

3. Управление на i-ом шаге (i=1,2,3) выберем x i - количество средств, инвестируемых в i- ое предприятие.

4. Выигрыш p i (x i) на i-ом шаге - это прибыль, которую приносит i-ое предприятие при инвестировании в него средств xi. Если через выигрыш в целом обозначить общую прибыль W, то W=p 1 (x 1)+ p 2 (x 2)+ p 3 (x 3).

5. Если в наличии имеются средства в количестве s тыс. ден. ед. и в i-ое предприятие инвестируется x тыс. ден. ед, то для дальнейшего инвестирования остается (s-x) тыс. ден. ед. Таким образом, если на i-ом шаге система находилась в состоянии s и выбрано управление x, то на (i+1)-ом шаге система будет находится в состоянии (s-x), и, следовательно, функция перехода в новое состояние имеет вид: f i (s, x) = s-x.

6.На последнем (i=3) шаге оптимальное управление соответствует количеству средств, имеющихся в наличии, а выигрыш равен доходу, приносимым последним предприятием: x 3 (s)=s, W 3 (s)=p 3 (s).

7.Согласно принципу оптимальности Беллмана, управление на каждом шаге нужно выбирать так, чтобы оптимальной была сумма выигрышей на всех оставшихся до конца процесса шагах, включая выигрыш на данном шаге. Основное функциональное уравнение примет вид

W 2 (s) = max{p 2 (x) + W 3 (s - x)}

Проведем пошаговую оптимизацию, по результатам которой заполним таблицу.

s i=3 i=2 i=1
x 3 (s) W 3 (s) x 2 (s) W 2 (s) x i (s) W i (s)
4,27 4,27
7,64 7,64
10,25 10,97
15,93 15,93
16,12 19,26 19,26

В первой колонке таблицы записываются возможные состояния системы, в верхней строке - номера шагов с оптимальным управлением и выигрышем на каждом шаге, начиная с последнего. Так как для последнего шага i=3 функциональное уравнение имеет вид x 3 (s)=s, W3(s)=p3(s), то две колонки таблицы, соответствующие i=3, заполняются автоматически по таблице исходных данных.

На шаге i=2 основное функциональное уравнение имеет вид

W 2 (s) = max{p 2 (x) + W 3 (s - x)}


Поэтому для проведения оптимизации на этом шаге заполним таблицу для различных состояний s при шаге i=3.

s x s-x p 2 (x) W 3 (s-x) p 2 (x)+W 3 (s-x) W 2 (s)
4,27 4,27 4,27
3,33 3,33
7,64 7,64 7,64
3,33 4,27 7,6
4,87 4,87
10,25 10,25 10,97
3,33 7,64 10,97
4,87 4,27 9,14
5,26 5,26
15,93 15,93 15,93
3,33 10,25 13,58
4,87 7,64 12,51
5,26 4,27 9,53
7,34 7,34
16,12 16,12 19,26
3,33 15,93 19,26
4,87 10,25 15,12
5,26 7,64 12,9
7,34 4,27 11,61
9,49 9,49

На шаге i=1 основное функциональное уравнение имеет вид

W x (s) = max{ p x (x) + W 2 (s - x)}

а состояние системы перед первым шагом s=5, поэтому для проведения оптимизации на этом шаге заполним таблицу.

s x s-x p i (x) W 2 (s-x) p i (x)+W 2 (s-x) Wi(s)
19,26 19,26 19,26
3,22 15,93 19,15
3,57 10,97 14,54
4,12 7,64 11,76
4,27 8,27
4,85 4,85

Видно, что наибольшее значение выигрыша составляет 19,26. При этом оптимальное управление на первом шаге составляет x 1 (s 1)=0 (s 1 =5), на втором шаге x 2 (s 2) =1 (s 2 =s 1 -x 1 =5) и на третьем шаге x 3 (s 3) =4 (s 3 =s 2 -x 2 =4).

Это означает, что (0, 1, 4) - оптимальный план распределения инвестиций между предприятиями.

Таким образом, для получения наибольшей общей прибыли в размере 19,26 тыс. ден. ед., необходимо вложить 1 тыс. ден. ед. во второе предприятие и 4 тыс. ден. ед. в третье предприятие.

Список используемых источников

1. Беллман Р., Динамическое программирование, пер. с англ., М., 1960

2. Болтянский В. Г.,Математические методы оптимального управления, М., 1966