Как называются выводы биполярного транзистора. Биполярный транзистор: принцип работы

Существуют различные виды полупроводниковых приборов – тиристоры, триоды, они классифицируются по назначению и типу конструкции. Полупроводниковые биполярные транзисторы способны переносить одновременно заряды двух типов, в то время, как полевые только одного.

Конструкция и принцип работы

Ранее вместо транзисторов в электрических схемах использовались специальные малошумящие электронные лампы, но они были больших габаритов и работали за счет накаливания. Биполярный транзистор ГОСТ 18604.11-88 – это полупроводниковый электрический прибор, который является управляемым элементом и характеризуется трехслойной структурой, применяется для управления СВЧ. Может находиться в корпусе и без него. Они бывают p-n-p и n–p–n типа. В зависимости от порядка расположения слоев, базой может быть пластина p или n, на которую наплавляется определенный материал. За счет диффузии во время изготовления получается очень тонкий, но прочный слой покрытия.

Фото – мпринципиальные схемы включения

Чтобы определить, какой перед Вами транзистор, нужно найти стрелку эммитерного перехода. Если её направление идет в сторону базы, то структура pnp, если от неё – то npn. Некоторые полярные импортные аналоги (IGBT и прочие) могут иметь буквенное обозначение перехода. Помимо этого бывают еще биполярные комплементарные транзисторы. Это устройства, у которых одинаковые характеристики, но разные типы проводимости. Такая пара нашла применение в различных радиосхемах. Данную особенность нужно учитывать, если необходима замена отдельных элементов схемы.


Фото – конструкция

Область, которая находится в центре, называется базой, с двух сторон от неё располагаются эммитер и коллектор. База очень тонкая, зачастую её толщина не превышает пары 2 микрон. В теории существует такое понятие, как идеальный биполярный транзистор. Это модель, у которой расстояние между эммитерной и коллекторной областями одинаковое. Но, зачастую, эммиторный переход (область между базой и эммитером) в два раза больше коллекторного (участок между основой и коллектором).


Фото – виды биполярных триодов

По виду подключения и уровню пропускаемого питания, они делятся на:

  1. Высокочастотные;
  2. Низкочастотные.

По мощности на:

  1. Маломощные;
  2. Средней мощности;
  3. Силовые (для управления необходим транзисторный драйвер).

Принцип работы биполярных транзисторов основан на том, что два срединных перехода расположены по отношению друг к другу в непосредственной близости. Это позволяет существенно усиливать проходящие через них электрические импульсы. Если приложить к разным участкам (областям) электрическую энергию разных потенциалов, то определенная область транзистора сместится. Этим они очень похожи на диоды.


Фото – пример

Например, при положительном открывается область p-n, а при отрицательном она закрывается. Главной особенностью действия транзисторов является то, что при смещении любой области база насыщается электронами или вакансиями (дырками), это позволяет снизить потенциал и увеличить проводимость элемента.

Существуют следующие ключевые виды работы:

  1. Активный режим;
  2. Отсечка;
  3. Двойной или насыщения;
  4. Инверсионный.

Перед тем, как определить режим работы в биполярных триодах, нужно разобраться, чем они отличаются друг от друга. Высоковольтные чаще всего работают в активном режиме (он же ключевой режим), здесь во время включения питания смещается переход эмиттера, а на коллекторном участке присутствует обратное напряжение. Инверсионный режим – это антипод активного, здесь все смещено прямо-пропорционально. Благодаря этому, электронные сигналы значительно усиливаются.

Во время отсечки исключены все типы напряжения, уровень тока транзистора сведен к нулю. В этом режиме размыкается транзисторный ключ или полевой триод с изолированным затвором, и устройство отключается. Есть еще также двойной режим или работа в насыщении, при таком виде работы транзистор не может выступать как усилитель. На основании такого принципа подключения работают схемы, где нужно не усиление сигналов, а размыкание и замыкание контактов.

Из-за разности уровней напряжения и тока в различных режимах, для их определения можно проверить биполярный транзистор мультиметром, так, например, в режиме усиления исправный транзистор n-p-n должен показывать изменение каскадов от 500 до 1200 Ом. Принцип измерения описан ниже.

Основное назначение транзисторов – это изменение определенных сигналов электрической сети в зависимости от показателей тока и напряжения. Их свойства позволяют управлять усилением посредством изменения частоты тока. Иными словами, это преобразователь сопротивления и усилитель сигналов. Используется в различной аудио- и видеоаппаратуре для управления маломощными потоками электроэнергии и в качестве УМЗЧ, трансформаторах, контроля двигателей станочного оборудования и т. д.

Видео: как работает биполярные транзисторы

Проверка

Самый простой способ измерить h21e мощных биполярных транзисторов – это прозвонить их мультиметром. Для открытия полупроводникового триода p-n-p подается отрицательное напряжение на базу. Для этого мультиметр переводится в режим омметра на -2000 Ом. Норма для колебания сопротивления от 500 до 1200 Ом.

Чтобы проверить другие участки, нужно на базу подать плюсовое сопротивление. При этой проверке индикатор должен показать большее сопротивление, в противном случае, триод неисправен.

Иногда выходные сигналы перебиваются резисторами, которые устанавливают для снижения сопротивления, но сейчас такая технология шунтирования редко используется. Для проверки характеристики сопротивления импульсных транзисторов n-p-n нужно подключать к базе плюс, а к выводам эммитера и коллектора – минус.

Технические характеристики и маркировка

Главными параметрами, по которым подбираются эти полупроводниковые элементы, является цоколевка и цветовая маркировка.

Фото – цоколевка маломощных биполярных триодов Фото – цоколевка силовых

Также используется цветовая маркировка.


Фото – примеры цветовой маркировки Фото – таблица цветов

Многие отечественные современные транзисторы также обозначаются буквенным шифром, в который включается информация о группе (полевые, биполярные), типе (кремниевые и т. д.,) годе и месяце выпуска.


Фото – расшифровка

Основные свойства (параметры) триодов:

  1. Коэффициент усиления по напряжению тока;
  2. Входящее напряжение;
  3. Составные частотные характеристики.

Для их выбора еще используются статические характеристики, которые включают сравнение входных и выходных ВАХ.

Необходимые параметры можно вычислить, если произвести расчет по основным характеристикам (распределение токов каскада, расчет ключевого режима). Коллекторный ток: Ik=(Ucc-Uкэнас)/Rн

  • Ucc – напряжение сети;
  • Uкэнас – насыщение;
  • Rн – сопротивление сети.

Потери мощности при работе:

P=Ik*Uкэнас

Купить биполярные транзисторы SMD, IGBT и другие можно в любом электротехническом магазине. Их цена варьируется от нескольких центов до десятка долларов, в зависимости от назначения и характеристик.

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ


Биполярным транзистором называют полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и предназначеный для усиления сигнала.

Биполярные транзисторы являются полупроводниковыми приборами универсального назначения и широко применяются в различных усилителях, генераторах, в импульсных и ключевых устройствах.

Биполярные транзисторы можно классифицировать по материалу: германиевые и кремниевые; по виду проводимости: типа р- n -р и n - p - n ; по мощности: малая (Р мах < 0,3Вт), средняя (Р мах = 1,5Вт) и большая (Р мах > 1,5Вт); по частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.

В таких транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок. Отсюда пошло их название: биполярные.

Биполярный транзистор представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n -р- n средняя область имеет дырочную, а крайние области – электронную электропроводность.

Транзисторы типа р- n -р имеют среднюю область с электронной, а крайние - с дырочной проводностью.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, вторая – коллектором. Таким образом в транзисторе имеются два р- n - перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором.

Эмиттером - это область транзистора для инжекции носителей заряда в базу. Коллектором - область, назначением которой является извлечение носителей заряда из базы. Базой называется область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера гораздо выше проводимости базы, а проводимость коллектора меньше проводимости эмиттера.

В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

Принцип действия транзистора на примере транзистора р- n -р –типа, включенного по схеме с общей базой (ОБ).

Внешние напряжения двух источников питания ЕЭ и Е к подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода П1 в прямом направлении, а коллекторного перехода П2 – в обратном направлении.

Если к коллекторному переходу приложено обратное напряжение, а цепь эмиттера разомкнута, то в цепи коллектора протекает небольшой обратный ток I ко . Он возникает под действием обратного напряжения и создается направленным перемещением неосновных носителей заряда дырок базы и электронов коллектора через коллекторный переход. Обратный ток протекает по цепи: +Е к , база-коллектор, −Е к .

При включении в цепь эмиттера постоянного напряжения ЕЭ в прямом направлении потенциальный барьер эмиттерного перехода понижается. Начинается инжектирование дырок в базу.

Внешнее напряжение, приложенное к транзистору, оказывается приложенным в основном к переходам П1 и П2, т.к. они имеют большое сопротивление по сравнению с сопротивлением базовой, эмиттерной и коллекторной областей. Поэтому инжектированные в базу дырки перемещаются в ней посредством диффузии. При этом дырки рекомбинируют с электронами базы. Поскольку концентрация носителей в базе значительно меньше, чем в эмиттере, то рекомбинируют очень немногие дырки. При малой толщине базы почти все дырки будут доходить до коллекторного перехода П2. На место рекомбинированных электронов в базу поступают электроны от источника питания Е к . Дырки, рекомбинировавшие с электронами в базе, создают ток базы I Б.

Под воздействием обратного напряжения Е к, потенциальный барьер коллекторного перехода повышается, а толщина перехода П2 увеличивается. Вошедшие в область коллекторного перехода дырки попадают в ускоряющее поле, созданное на переходе коллекторным напряжением, и втягиваются коллектором, создавая коллекторный ток I к . Коллекторный ток протекает по цепи: +Е к , база-коллектор, -Е к .

Таким образом, в б иполярном транзисторе протекает три вида тока: эмиттера, коллектора и базы.

В проводе, являющемся выводом базы, токи эмиттера и коллектора направлены встречно. Ток базы равен разности токов эмиттера и коллектора: I Б = I Э − I К.

Физические процессы в транзисторе типа n -р- n протекают аналогично процессам в транзисторе типа р- n -р.

Полный ток эмиттера I Э определяется количеством инжектированных эмиттером основных носителей заряда. Основная часть этих носителей заряда достигая коллектора, создает коллекторный ток I к . Незначительная часть инжектированных в базу носителей заряда рекомбинируют в базе, создавая ток базы I Б. Следовательно, ток эмиттера разделятся на токи базы и коллектора, т.е. I Э = I Б + I к .

Выходной ток транзистора зависит от входного тока. Поэтому транзистор- прибор, управляемый током.

Изменения тока эмиттера, вызванные изменением напряжения эмиттерного перехода, полностью передаются в коллекторную цепь, вызывая изменение тока коллектора. А т.к. напряжение источника коллекторного питания Е к значительно больше, чем эмиттерного Е э , то и мощность, потребляемая в цепи коллектора Р к , будет значительно больше мощности в цепи эмиттера Р э . Таким образом, обеспечивается возможность управления большой мощностью в коллекторной цепи транзистора малой мощностью, затрачиваемой в эмиттерной цепи, т.е. имеет место усиление мощности.

Схемы включения биполярных транзисторов

Транзистор, в схему включают так, что один из его выводов является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК . Для транзистора n -р- n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора, полярность включения источников питания должна быть выбрана такой, чтоб эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.

Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

Характеристики транзистора, включенного по схеме ОБ

I Э = f (U ЭБ) при U КБ = const (а).

I К = f (U КБ) при I Э = const (б).

Статические характеристики биполярного транзистора, включенного по схеме ОБ. Выходные ВАХ имеют три характерные области: 1 – сильная зависимость I к от U КБ; 2 – слабая зависимость I к от U КБ; 3 – пробой коллекторного перехода. Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения U КБ.

Характеристики транзистора, включенного по схеме ОЭ:

Входной характеристикой является зависимость:

I Б = f (U БЭ) при U КЭ = const (б).

Выходной характеристикой является зависимость:

I К = f (U КЭ) при I Б = const (а).


Режим работы биполярного транзистора

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р- n - перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р- n - перехода открыты), то транзистор работает в режиме насыщения. В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы - усиление, генерирация.

усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером. Основными элементами схемы являются источник питания Е к , управляемый элемент – транзистор VT и резистор R к . Эти элементы образуют выходную цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы. Другие элементы схемы выполняют вспомогательную роль. Конденсатор С р является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Е к .

Резистор R Б, включенный в цепь базы, обеспечивает работу транзистора при отсутствии входного сигнала. Режим покоя обеспечивается током базы покоя I Б = Е к / R Б. С помощью резистора R к создается выходное напряжение. R к выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

Е к = U кэ + I к R к ,

сумма падения напряжения на резисторе R к и напряжения коллектор-эмиттер U кэ транзистора всегда равна постоянной величине – ЭДС источника питания Е к .

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Е к в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.

В этой статье постараемся описать принцип работы самого распространенного типа транзистора — биполярного. Биполярный транзистор является одним из главных активных элементов радиоэлектронных устройств. Предназначение его – работа по усилению мощности электрического сигнал поступающего на его вход. Усиление мощности осуществляется посредством внешнего источника энергии. Транзистор — это радиоэлектронный компонент, обладающий тремя выводами

Конструкционная особенность биполярного транзистора

Для производства биполярного транзистора нужен полупроводник дырочного или электронного типа проводимости, который получают методом диффузии либо сплавления акцепторными примесями. В результате этого с обоих сторон базы образуются области с полярными видами проводимостей.

Биполярные транзисторы по проводимости бывают двух видов: n-p-n и p-n-p. Правила работы, которым подчинен биполярный транзистор, имеющий n-p-n проводимость (для p-n-p необходимо поменять полярность приложенного напряжения):

  1. Положительный потенциал на коллекторе имеет большее значение по сравнению с эмиттером.
  2. Любой транзистор имеет свои максимально допустимые параметры Iб, Iк и Uкэ, превышение которых в принципе недопустимо, так как это может привести к разрушению полупроводника.
  3. Выводы база — эмиттер и база — коллектор функционируют наподобие диодов. Как правило, диод по направлению база — эмиттер открыт, а по направлению база — коллектор смещен в противоположном направлении, то есть поступающее напряжение мешает протеканию электрического тока через него.
  4. Если пункты с 1 по 3 выполнены, то ток Iк прямо пропорционален току Iб и имеет вид: Iк = hэ21*Iб, где hэ21 является коэффициентом усиления по току. Данное правило характеризует главное качество транзистора, а именно то, что малый ток базы оказывает управление мощным током коллектора.

Для разных биполярных транзисторов одной серии показатель hэ21 может принципиально разниться от 50 до 250. Его величина так же зависит от протекающего тока коллектора, напряжения между эмиттером и коллектором, и от температуры окружающей среды.

Изучим правило №3. Из него вытекает, что напряжение, приложенное между эмиттером и базой не следует значительно увеличивать, поскольку, если напряжение базы будет больше эмиттера на 0,6…0,8 В (прямое напряжение диода), то появится крайне большой ток. Таким образом, в работающем транзисторе напряжения на эмиттере и базе взаимосвязаны по формуле: Uб =Uэ + 0,6В (Uб=Uэ+Uбэ)

Еще раз напомним, что все указанные моменты относятся к транзисторам, имеющим n-p-n проводимость. Для типа p-n-p все следует изменить на противоположное.

Еще следует обратить внимание на то, что ток коллектора не имеет связи с проводимостью диода, поскольку, как правило, к диоду коллектор — база поступает обратное напряжение. В добавок, ток протекающий через коллектор весьма мало зависит от потенциала на коллекторе (данный диод аналогичен малому источнику тока)

При включении транзистора в режиме усиления, эмиттерный переход получается открытым, а переход коллектора закрыт. Это получается путем подключения источников питания.

Поскольку эмиттерный переход открыт, то через него будет проходить эмиттерный ток, возникающий из-за перехода дырок из базы в эмиттер, а так же электронов из эмиттера в базу. Таки образом, ток эмиттера содержит две составляющие – дырочную и электронную. Коэффициент инжекции определяет эффективность эмиттера. Инжекцией зарядов именуют перенос носителей зарядов из зоны, где они были основными в зону, где они делаются неосновными.

В базе электроны рекомбинируют, а их концентрация в базе восполняется от плюса источника ЕЭ. В результате этого в электрической цепи базы будет течь довольно слабый ток. Оставшиеся электроны, не успевшие рекомбинировать в базе, под разгоняющим воздействием поля запертого коллекторного перехода, как неосновные носители, будут перемещаться в коллектор, создавая коллекторный ток. Перенос носителей зарядов из зоны, где они были неосновными, в зону, где они становятся основными, именуется экстракцией электрических зарядов.

Добрый день, друзья!

Сегодня мы продолжим знакомиться с электронными «кирпичиками» компьютерного «железа». Мы уже рассматривали с вами, как устроены полевые транзисторы, которые обязательно присутствуют на каждой материнской плате компьютера.

Усаживайтесь поудобнее – сейчас мы сделаем интеллектуально усилие и попытаемся разобраться, как устроен

Биполярный транзистор

Биполярный транзистор – это полупроводниковый прибор, который широко применяется в электронных изделиях, в том числе и компьютерных блоках питания.

Слово «транзистор» (transistor) образовано от двух английских слов – «translate» и «resistor», что означает «преобразователь сопротивления».

Слово «биполярный» говорит о том, что ток в приборе вызывается заряженными частицами двух полярностей – отрицательной (электронами) и положительной (так называемыми «дырками»).

«Дырка» — это не жаргон, а вполне себе научный термин. «Дырка» — это не скомпенсированный положительный заряд или, иными словами, отсутствие электрона в кристаллической решетке полупроводника.

Биполярный транзистор представляет собой трехслойную структуру с чередующимися видами полупроводников.

Так как существуют полупроводники двух видов, положительные (positive, p-типа) и отрицательные (negative, n-типа), то может быть два типа такой структуры – p-n-p и n-p-n.

Средняя область такой структуры называется базой, а крайние области – эмиттером и коллектором.

На схемах биполярные транзисторы обозначаются определенным образом (см рисунок). Видим, что транзистор представляет собой, по существу, да p-n перехода, соединенных последовательно.

Вопрос на засыпку – почему нельзя заменить транзистор двумя диодами? Ведь в каждом из них есть p-n переход, не так ли? Включил два диода последовательно – и дело в шляпе!

Нет! Дело в том, что базу в транзисторе во время изготовления делают очень тонкой, чего никак нельзя достичь при соединении двух отдельных диодов.

Принцип работы биполярного транзистора

Основной принцип работы транзистора заключается в том, что небольшой ток базы может управлять гораздо бОльшим током коллектора — в диапазоне практически от нуля до некоей максимально возможной величины.

Отношение тока коллектора к току базы называется коэффициентом усиления по току и может составлять величину от нескольких единиц до нескольких сотен.

Интересно отметить, что у маломощных транзисторов он чаще всего больше, чем у мощных (а не наоборот, как можно было бы подумать).

Разница в том, что в отличие от затвора ПТ, при управлении ток базы всегда присутствует, т.е. на управление всегда тратится какая-то мощность.

Чем больше напряжение между эмиттером и базой, тем больше ток базы и, соответственно, больше ток коллектора. Однако любой транзистор имеет максимально допустимые значения напряжений между эмиттером и базой и между эмиттером и коллектором. За превышение этих параметров придется расплачиваться новым транзистором.

В рабочем режиме обычно переход база-эмиттер открыт, а переход база-коллектор закрыт.

Биполярный транзистор, подобно реле, может работать и в ключевом режиме. Если подать некоторый достаточный ток в базу (замкнуть кнопку S1), транзистор будет хорошо открыт. Лампа зажжется.

При этом сопротивление между эмиттером и коллектором будет небольшим.

Падение напряжения на участке эмиттер – коллектор будет составлять величину в несколько десятых долей вольта.

Если затем прекратить подавать ток в базу (разомкнуть S1), транзистор закроется, т.е. сопротивление между эмиттером и коллектором станет очень большим.

Лампа погаснет.

Как проверить биполярный транзистор?

Так как биполярный транзистор представляет собой два p-n перехода, то проверить его цифровым тестером достаточно просто.

Надо установить переключатель работы тестера в положение , присоединив один щуп к базе, а второй – поочередно к эмиттеру и коллектору.

По сути, мы просто последовательно проверяем исправность p-n переходов.

Такой переход может быть или открыт, или закрыт.

Затем надо изменить полярность щупов и повторить измерения.

В одном случае тестер покажет падение напряжение на переходах эмиттер – база и коллектор – база 0,6 – 0,7 В (оба перехода открыты).

Во втором случае оба перехода будут закрыты, и тестер зафиксирует это.

Следует отметить, что в рабочем режиме чаще всего один из переходов транзистора открыт, а второй закрыт.

Измерение коэффициента передачи биполярного транзистора по току

Если в тестере имеется возможность измерения коэффициента передачи по току, то проверить работоспособность транзистора можно, установив выводы транзистора в соответствующие гнезда.

Коэффициент передачи по току – это отношение тока коллектора к току базы.

Чем больше коэффициент передачи, тем большим током коллектора может управлять ток базы при прочих равных условиях.

Цоколевку (наименование выводов) и другие данные можно взять из data sheets (справочных данных) на соответствующий транзистор. Data sheets можно найти в Интернете через поисковые системы.

Тестер покажет на дисплее коэффициент передачи (усиления) тока, который нужно сравнить со справочными данными.

Коэффициент передачи тока маломощных транзисторов может достигать нескольких сотен.

У мощных транзисторов он существенно меньше – несколько единиц или десятков.

Однако существуют мощные транзисторы с коэффициентом передачи в несколько сотен или тысяч. Это так называемые пары Дарлингтона.

Пара Дарлингтона представляет собой два транзистора. Выходной ток первого транзистора является входным током для второго.

Общий коэффициент передачи тока – это произведение коэффициентов первого и второго транзисторов.

Пара Дарлингтона делается в общем корпусе, но ее можно сделать и из двух отдельных транзисторов.

Встроенная диодная защита

Некоторые транзисторы (мощные и высоковольтные) могут быть защищены от обратного напряжения встроенным диодом.

Таким образом, если подключить щупы тестера к эмиттеру и коллектору в режиме проверки диодов, то он покажет те же 0,6 – 0,7 В (если диод смещен в прямом направлении) или «запертый диод» (если диод смещен в обратном направлении).

Если же тестер покажет какое-то небольшое напряжение, да еще в обоих направлениях, то транзистор однозначно пробит и подлежит замене . Закоротку можно определить и в режиме измерения сопротивления – тестер покажет малое сопротивление.

Встречается (к счастью, достаточно редко) «подлая» неисправность транзисторов. Это когда он поначалу работает, а по истечению некоторого времени (или по прогреву) меняет свои параметры или отказывает вообще.

Если выпаять такой транзистор и проверить тестером, то он успеет остыть до присоединения щупов, и тестер покажет, что он нормальный. Убедиться в этом лучше всего заменой «подозрительного» транзистора в устройстве.

В заключение скажем, что биполярный транзистор – одна из основных «железок» в электронике. Хорошо бы научиться узнавать – «живы» эти «железки» или нет. Конечно, я дал вам, уважаемые читатели, очень упрощенную картину.

В действительности, работа биполярного транзистора описывается многими формулами, существуют многие их разновидности, но это сложная наука. Желающим копнуть глубже могу порекомендовать чудесную книгу Хоровица и Хилла «Искусство схемотехники».

Транзисторы для ваших экспериментов можно купить

До встречи на блоге!

Название полупроводникового прибора транзистор образовано из двух слов: transfer – передача + resist – сопротивление. Потому что его действительно можно представить в виде некоторого сопротивления, которое будет регулироваться напряжением одного электрода. Транзистор иногда еще называют полупроводниковым триодом.

Создан первый биполярный транзистор был в 1947 году, а в 1956 году за его изобретение трое ученых были удостоены нобелевской премии по физике.

Биполярный транзистор – это полупроводниковый прибор, который состоит из трех полупроводников с чередующимся типом примесной проводимости. К каждому слою подключен и выведен электрод. В биполярном транзисторе используются одновременно заряды, носители которых электроны (n - “ negative ”) и дырки (p – “ positive ”), то есть носители двух типов, отсюда и образование приставки названия «би» - два.

Транзисторы различаются по типу чередования слоев:

P n p -транзистор (прямая проводимость);

Npn- транзистор (обратная проводимость).

База (Б) – это электрод, который подключен к центральному слою биполярного транзистора. Электроды от внешних слоев именуются эмиттер (Э) и коллектор (К).

Рисунок 1 – Устройство биполярного транзистора

На схемах обозначаются « VT », в старой русскоязычной документации можно встретить обозначения «Т», «ПП» и «ПТ». Изображаются биполярные транзисторы на электрических схемах, в зависимости от чередования проводимости полупроводников, следующим образом:


Рисунок 2 – Обозначение биполярных транзисторов

На рисунке 1, изображенном выше, отличие между коллектором и эмиттером не видны. Если посмотреть на упрощенное представление транзистора в разрезе, то видно, что площадь p - n перехода коллектора больше чем у эмиттера.


Рисунок 3 – Транзистор в разрезе

База изготовляется из полупроводника со слабой проводимостью, то есть сопротивление материала велико. Обязательное условие – тонкий слой базы для возможности возникновения транзисторного эффекта. Так как площадь контакта p - n перехода у коллектора и эмиттера разные, то менять полярность подключения нельзя. Эта характерность относит транзистор к несимметричным устройствам.

Биполярный транзистор имеет две ВАХ (вольт амперные характеристики): входную и выходную.

Входная ВАХ – это зависимость тока базы (I Б ) от напряжения база-эмиттер (U БЭ ).



Рисунок 4 – Входная вольтамперная характеристика биполярного транзистора

Выходная ВАХ – это зависимость тока коллектора (I К ) от напряжения коллектор-эмиттер (U КЭ ).



Рисунок 5 – Выходная ВАХ транзистора

Принцип работы биполярного транзистора рассмотрим на npn типе, для pnp аналогично, только рассматриваются не электроны, а дырки. Транзистор имеет два p-n перехода . В активном режиме работы один из них подключен с прямым смещением, а другой – обратным. Когда переход ЭБ открыт, то электроны с эмиттера легко перемещаются в базу (происходит рекомбинация). Но, как говорилось ранее, слой базы тонкий и проводимость ее мала, по этому часть электронов успевает переместиться к переходу база-коллектор. Электрическое поле помогает преодолеть (усиливает) барьер перехода слоев, так как электроны здесь неосновные носители. При увеличении тока базы, переход эмиттер-база откроется больше и с эмиттера в коллектор сможет проскочить больше электронов. Ток коллектора пропорционален току базы и при малом изменении последнего (управляющий), коллекторный ток значительно меняется. Именно так происходит усиления сигнала в биполярном транзисторе.



Рисунок 6 – Активный режим работы транзистора

Смотря на рисунок можно объяснить принцип действия транзистора чуть проще. Представьте себе, что КЭ – это водопроводная труба, а Б – кран, с помощью которого Вы можете управлять потоком воды. То есть, чем больше ток вы подадите на базу, тем больше получите на выходе.

Значение коллекторного тока почти равно току эмиттера, исключая потери при рекомбинации в базе, которая и образовывает ток базы, таким образом справедлива формула:

І Э =І Б +І К.

Основные параметры транзистора:

Коэффициент усиления по току – отношение действующего значения коллекторного тока к току базы.

Входное сопротивление – следуя закону Ома оно будет равно отношению напряжения эмиттер-база U ЭБ к управляющему току I Б .

Коэффициент усиления напряжения – параметр находится отношением выходного напряжения U ЭК к входному U БЭ .

Частотная характеристика описывает способность работы транзистора до определенной, граничной частоты входного сигнала. После превышения предельной частоты физические процессы в транзисторе не будут успевать происходить и его усилительные способности сведутся на нет.

Схемы включения биполярных транзисторов

Для подключения транзистора нам доступны только его три вывода (электрода). По этому для его нормальной работы требуются два источника питания. Один электрод транзистора будет подключаться к двум источникам одновременно. Следовательно, существуют 3 схемы подключения биполярного транзистора: ОЭ – с общим эмиттером, ОБ – общей базой, ОК – общим коллектором. Каждая обладает как преимуществами, так и недостатками, в зависимости от области применения и требуемых характеристик делают выбор подключения.

Схема включения с общим эмиттером (ОЭ) характеризуется наибольшим усилением тока и напряжения, соответственно и мощности. При данном подключении происходит смещение выходного переменного напряжения на 180 электрических градусов относительно входного. Основной недостаток – это низкая частотная характеристика, то есть малое значение граничной частоты, что не дает возможность использовать при высокочастотном входном сигнале.

(ОБ) обеспечивает отличную частотную характеристику. Но не дает такого большого усиления сигнала по напряжению как с ОЭ. А усиление по току не происходит совсем, поэтому данную схему часто называют токовый повторитель, потому что она имеет свойство стабилизации тока.

Схема с общим коллектором (ОК) имеет практически такое же усиление по току как и с ОЭ, а вот усиление по напряжению почти равно 1 (чуть меньше). Смещение напряжения не характерно для данной схемы подключения. Ее еще называю эмиттерный повторитель, так как напряжение на выходе (U ЭБ ) соответствуют входному напряжению.

Применение транзисторов:

Усилительные схемы;

Генераторы сигналов;

Электронные ключи.