Типовые сетевые архитектуры. Новые сетевые архитектуры: открытые или закрытые решения

Понятие “сетевая архитектура” включает общую структуру сети, т. е. все компоненты, благодаря которым сеть функционирует, в том числе аппаратные средства и системное программное обеспечение. Здесь будут обобщены уже полученные сведения о типах сетей, принципах их работы, средах и топологиях. Сетевая архитектура это комбинация стандартов, топологий и протоколов, необходимых для создания работоспособной сети.

Ethernet

Ethernetсамая популярная в настоящее время архитектура. Она использует узкополосную передачу со скоростью 10 Мбит/с, топологию “шина”, а для регулирования трафика в основном сегменте кабеляCSMA/CD.

Среда (кабель) Ethernet является пассивной, т. е. получает питание от компьютера. Следовательно, она прекратит работу из-за физического повреждения или неправильного подключения терминатора.

Рис. Сеть Ethernet топологии “шина” с терминаторами на обоих концах кабеля

Сеть Ethernet имеет следующие характеристики:

    традиционная топология линейная шина;

    другие топологии звезда-шина;

    тип передачи узкополосная;

    метод доступа CSMA/CD;

    скорость передачи данных 10 и 100 Мбит/c;

    кабельная система толстый и тонкий коаксиальный.

Формат кадра

Ethernet разбивает данные на пакеты (кадры), формат которых отличается от формата пакетов, используемого в других сетях. Кадры представляют собой блоки информации, передаваемые как единое целое. Кадр Ethernet может иметь длину от 64 до 1518 байтов, но сама структура кадра Ethernet использует, по крайней мере, 18 байтов, поэтому размер блока данных Ethernetот 46 до 1500 байтов. Каждый кадр содержит управляющую информацию и имеет общую с другими кадрами организацию.

Например, передаваемый по сети кадр EthernetIIиспользуется для протоколаTCP/IP. Кадр состоит из частей, которые перечислены в таблице.

Ethernet работает с большинством популярных операционных систем, в их числе:

Microsoft Windows 95;

Microsoft Windows NT Workstation;

Microsoft Windows NT Server;

Token Ring

От других сетей Token Ring отличает не только кабельная система, но и использование доступа с передачей маркера.

Рис. Физическизвезда, логическикольцо

Сеть Token Ring имеет следующие характеристики:

Архитектура

Топология типичной сети Token Ring“кольцо”. Однако в версииIBMэто топология “звезда-кольцо”: компьютеры в сети соединяются с центральным концентратором, маркер передается по логическому кольцу. Физическое кольцо реализуется в концентраторе. Пользователичасть кольца, но они соединяются с ним через концентратор.

Формат кадра

Основной формат кадра Token Ring показан на рисунке ниже и описан в следующей таблице. Данные составляют большую часть кадра.

Рис. Кадр данных Token Ring

Поле кадра

Описание

Стартовый разделитель

Сигнализирует о начале кадра

Управление доступом

Указывает на приоритет кадра и на то, что передаетсякадр маркера или кадр данных

Управление кадром

Содержит информацию Управления доступом к средедля всех компьютеров или информацию “конечной станции”только для одного компьютера

Адрес приемника

Адрес компьютера-получателя

Адрес источника

Адрес компьютера-отправителя

Передаваемая информация

Контрольная последовательность кадра

Конечный разделитель

Сигнализирует о конце кадра

Статус кадра

Сообщает, был ли распознан и скопирован кадр (доступен ли адрес приемника)

Функционирование

Когда в сети Token Ring начинает работать первый компьютер, сеть генерирует маркер. Маркер проходит по кольцу от компьютера к компьютеру, пока один их них не сообщит о готовности передать данные и не возьмет управление маркером на себя. Маркерэто предопределенная последовательность битов (поток данных), которая позволяет отправить данные по кабелю. Когда маркер захвачен каким-либо компьютером, другие компьютеры передавать данные не могут.

Захватив маркер, компьютер отправляет кадр данных в сеть (как показано на рис. ниже). Кадр проходит по кольцу, пока не достигнет узла с адресом, соответствующим адресу приемника в кадре. Компьютер-приемник копирует кадр в буфер приема и делает пометку в поле статуса кадра о получении информации.

Кадр продолжает передаваться по кольцу, пока не достигнет отправившего его компьютера, который и удостоверяет, что передача прошла успешно. После этого компьютер изымает кадр из кольца и возвращает туда маркер.

Рис. Маркер обходит логическое кольцо по часовой стрелке

В сети одномоментно может передаваться только один маркер, причем только в одном направлении.

Передача маркерадетерминистический процесс, это значит, что самостоятельно начать работу в сети (как, например, в средеCSMA/CD) компьютер не может. Он будет передавать данные лишь после получения маркера. Каждый компьютер действует как однонаправленный репитер, регенерирует маркер и посылает его дальше.

Мониторинг системы

Компьютер, который первым начал работу, наделяется системой Token Ring особыми функциями: он должен осуществлять текущий контроль за работой всей сети. Он проверяет корректность отправки и получения кадров, отслеживая кадры, проходящие по кольцу более одного раза. Кроме того, он гарантирует, что в кольце одномоментно находится лишь один единственный маркер.

Распознавание компьютера

После появления в сети нового компьютера система Token Ring инициализирует его таким образом, чтобы он стал частью кольца. Этот процесс включает:

проверку уникальности адреса;

уведомление всех сети о появлении нового узла.

Аппаратные компоненты

Концентратор

В сети TokenRingконцентратор, в котором организуется фактическое кольцо, имеет несколько названий, например:

    MAU ;

    MSAU (MultiStation Access Unit);

    SMAU.

Кабели соединяют клиенты и серверы с MSAU, который работает по принципу других пассивных концентраторов. При подсоединении компьютера он включается в кольцо (см. рис. ниже).

Рис. Формирование кольца в концентраторе (указано направление движения маркера)

Емкость

IBMMSAUимеет 10 портов соединения. К нему можно подключить до восьми компьютеров. Однако сетьTokenRingне ограничивается одним кольцом (концентратором). Каждое кольцо может насчитывать до 33 концентраторов.

Сеть на базе MSAU может поддерживать до 72 компьютеров - при использовании неэкранированной витой пары и до 260 компьютеров - при использовании экранированной витой пары.

Другие производители предлагают концентраторы большей емкости (в зависимости от модели).

Когда кольцо заполнено, т.е. к каждому порту MSAU подключен компьютер, сеть можно расширить за счет добавления еще одного кольца (MSAU).

Единственное правило, которого следует придерживаться: каждый MSAU необходимо подключить так, чтобы он стал частью кольца.

Гнезда “вход” и “выход” на MSAU позволяют с помощью кабеля соединить в единое кольцо до 12 MSAU, расположенных стопкой.

Рис. Добавляемые концентраторы не нарушают логического кольца

Наиболее распространённые архитектуры:

· Ethernet (англ. ether – эфир) – широковещательная сеть. Это значит, что все станции сети могут принимать все сообщения. Топология – линейная или звездообразная. Скорость передачи данных 10 или 100 Мбит/сек.

· Arcnet (Attached Resource Computer Network – компьютерная сеть соединённых ресурсов) – широковещательная сеть. Физическая топология – дерево. Скорость передачи данных 2,5 Мбит/сек.

· Token Ring (эстафетная кольцевая сеть, сеть с передачей маркера) – кольцевая сеть, в которой принцип передачи данных основан на том, что каждый узел кольца ожидает прибытия некоторой короткой уникальной последовательности битов – маркера – из смежного предыдущего узла. Поступление маркера указывает на то, что можно передавать сообщение из данного узла дальше по ходу потока. Скорость передачи данных 4 или 16 Мбит/сек.

· FDDI (Fiber Distributed Data Interface ) – сетевая архитектура высокоскоростной передачи данных по оптоволоконным линиям. Скорость передачи – 100 Мбит/сек. Топология – двойное кольцо или смешанная (с включением звездообразных или древовидных подсетей). Максимальное количество станций в сети – 1000. Очень высокая стоимость оборудования.

· АТМ (Asynchronous Transfer Mode ) – перспективная, дорогая архитектура, обеспечивает передачу цифровых данных, видеоинформации и голоса по одним и тем же линиям. Скорость передачи до 2,5 Гбит/сек. Линии связи оптические.

Основной задачей, решаемой при создании компьютерных сетей, является обеспечение совместимости оборудования по электрическим и механическим характеристикам и обеспечение совместимости информационного обеспечения (программ и данных) по системе кодирования и формату данных. Решение этой задачи относится к области стандартизации и основано на так называемой модели OSI (модель взаимодействия открытых систем – Model of Open System Interconnections). Модель OSI была создана на основе технических предложений Международного института стандартов ISO (International Standards Organization).

Согласно модели OSI архитектуру компьютерных сетей следует рассматривать на разных уровнях (общее число уровней – до семи). Самый верхний уровень – прикладной. На этом уровне пользователь взаимодействует с вычислительной системой. Самый нижний уровень – физический. Он обеспечивает обмен сигналами между устройствами. Обмен данными в системах связи происходит путем их перемещения с верхнего уровня на нижний, затем транспортировки и, наконец, обратным воспроизведением на компьютере клиента в результате перемещения с нижнего уровня на верхний.

Рис. 8. Уровни управления и протоколы модели OSI

Для обеспечения необходимой совместимости на каждом из семи возможных уровней архитектуры компьютерной сети действуют специальные стандарты, называемые протоколами. Они определяют характер аппаратного взаимодействия компонентов сети (аппаратные протоколы) и характер взаимодействия программ и данных (программные протоколы). Физически функции поддержки протоколов исполняют аппаратные устройства (интерфейсы) и программные средства (программы поддержки протоколов). Программы, выполняющие поддержку протоколов, также называют протоколами.

Каждый уровень архитектуры подразделяется на две части:

· спецификацию услуг;

· спецификацию протокола.

Спецификация услуг определяет, что делает уровень, а спецификация протокола – как он это делает, причем каждый конкретный уровень может иметь более одного протокола.

Рассмотрим функции, выполняемые каждым уровнем программного обеспечения:

1. Физический уровень осуществляет соединения с физическим каналом, так, отсоединения от канала, управление каналом. Определяется скорость передачи данных и топология сети.

2. Канальный уровень добавляет в передаваемые массивы информации вспомогательные символы и контролирует правильность передаваемых данных. Здесь передаваемая информация разбивается на несколько пакетов или кадров. Каждый пакет содержит адреса источника и места назначения, а также средства обнаружения ошибок.

3. Сетевой уровень определяет маршрут передачи информации между сетями, обеспечивает обработку ошибок, а так же управление потоками данных. Основная задача сетевого уровня – маршрутизация данных (передача данных между сетями).

4. Транспортный уровень связывает нижние уровни (физический, канальный, сетевой) с верхними уровнями, которые реализуются программными средствами. Этот уровень разделяет средства формирования данных в сети от средств их передачи. Здесь осуществляется разделение информации по определенной длине и уточняется адрес назначения.

5. Сеансовый уровень осуществляет управление сеансами связи между двумя взаимодействующими пользователями, определяет начало и окончание сеанса связи, время, длительность и режим сеанса связи, точки синхронизации для промежуточного контроля и восстановления при передаче данных; восстанавливает соединение после ошибок во время сеанса связи без потери данных.

6. Представительский – управляет представлением данных в необходимой для программы пользователя форме, производит компрессию и декомпрессию данных. Задачей данного уровня является преобразование данных при передаче информации в формат, который используется в информационной системе. При приеме данных данный уровень представления данных выполняет обратное преобразование.

7. Прикладной уровень взаимодействует с прикладными сетевые программами, обслуживающими файлы, а также выполняет вычислительные, информационно-поисковые работы, логические преобразования информации, передачу почтовых сообщений и т.п. Главная задача этого уровня – обеспечить удобный интерфейс для пользователя.

На разных уровнях обмен происходит различными единицами информации: биты, кадры, пакеты, сеансовые сообщения, пользовательские сообщения.

Архитектура сети. Наиболее распространенные архитектуры.

Вычислительная сеть (ВС) - это сложный комплекс взаимосвязанных и согласованно функционирующих аппаратных и программных компонентов. Аппаратными компонентами локальной сети являются компьютеры и различное коммуникационное оборудование (кабельные системы, концентраторы и т. д.). Программными компонентами ВС являются операционные системы (ОС) и сетевые приложения.

Сеть может быть построена по одной из трех схем:

· сеть на основе одноранговых узлов - одноранговая сеть;

· сеть на основе клиентов и серверов - сеть с выделенными серверами;

· сеть, включающая узлы всех типов - гибридная сеть.

Архитектура сети определяет основные элементы сети, характеризует ее общую логическую организацию, техническое обеспечение, программное обеспечение, описывает методы кодирования. Архитектура также определяет принципы функционирования и интерфейс пользователя.

Архитектура терминал-главный компьютер - это концепция информационной сети, в которой вся обработка данных осуществляется одним или группой главных компьютеров. Рассматриваемая архитектура предполагает два типа оборудования:

Главный компьютер, где осуществляется управление сетью, хранение и обработка данных;

Терминалы, предназначенные для передачи главному компьютеру команд на организацию сеансов и выполнения заданий, ввода данных для выполнения заданий и получения результатов.

Одноранговая архитектура (peer-to-peer architecture) - это концепция информационной сети, в которой ее ресурсы рассредоточены по всем системам. Данная архитектура характеризуется тем, что в ней все системы равноправны. К одноранговым сетям относятся малые сети, где любая рабочая станция может выполнять одновременно функции файлового сервера и рабочей станции.

Архитектура клиент-сервер (client-server architecture) - это концепция информационной сети, в которой основная часть ее ресурсов сосредоточена в серверах, обслуживающих своих клиентов. Рассматриваемая архитектура определяет два типа компонентов:

· Серверы - это объекты, предоставляющие сервис другим объектам сети по их запросам. Сервис - это процесс обслуживания клиентов.

· Клиенты - это рабочие станции, которые используют ресурсы сервера и предоставляют удобные интерфейсы пользователя. Интерфейсы пользователя это процедуры взаимодействия пользователя с системой или сетью. информатика компьютер процессор сеть

Классификация компьютерных сетей по степени географического распространения. Как соединяются между собой устройства сети.

По степени географического распространения сети делятся на локальные, городские, корпоративные, глобальные и др. Локальная сеть (LAN - Local Area NetWork) - сеть, связывающая ряд компьютеров в зоне, ограниченной пределами одной комнаты, здания или предприятия. Глобальная сеть (WAN - World Area NetWork) - сеть, соединяющая компьютеры, удаленные географически на большие расстояния друг от друга. Отличается от локальной более протяженными коммуникациями (спутниковыми, кабельными и др.). Глобальная сеть объединяет локальные сети. Городская сеть (MAN - Metropolitan Area NetWork) - сеть, которая обслуживает информационные потребности большого города.

Для соединения устройств сети используется специальное оборудование:

Ш Сетевые кабели

o коаксиальные, состоящие из двух изолированных между собой концентрических проводников, из которых внешний имеет вид трубки;

o оптоволоконные;

o кабели на витых парах, образованные двумя переплетенными друг с другом проводами, и др.

Ш Коннекторы (соединители) для подключения кабелей к компьютеру, разъемы для соединения отрезков кабеля.

Ш Сетевые интерфейсные адаптеры для приема и передачи данных. В соответствии с определенным протоколом управляют доступом к среде передачи данных. Размещаются в системных блоках компьютеров, подключенных к сети. К разъемам адаптеров подключается сетевой кабель.

Ш Трансиверы повышают уровень качества передачи данных по кабелю, отвечают за прием сигналов из сети и обнаружение конфликтов.

Ш Хабы (концентраторы) и коммутирующие хабы (коммутаторы) расширяют топологические, функциональные и скоростные возможности компьютерных сетей. Хаб с набором разнотипных портов позволяет объединять сегменты сетей с различными кабельными системами. К порту хаба можно подключать как отдельный узел сети, так и другой хаб или сегмент кабеля.

Ш Повторители (репитеры) усиливают сигналы, передаваемые по кабелю при его большой длине.

Архитектура сети определяет основные элементы сети, характеризует ее общую логическую организацию, техническое обеспечение, программное обеспечение, описывает методы кодирования.

Архитектура также определяет принципы функционирования и интерфейс пользователя.

В данном курсе будет рассмотрено три вида архитектур:

архитектура терминал - главный компьютер;

одноранговая архитектура;

архитектура клиент - сервер.

Архитектура терминал - главный компьютер (terminal - host computer architecture) - это концепция информационной сети, в которой вся обработка данных осуществляется одним или группой главных компьютеров.

Рис. 1.3

Рассматриваемая архитектура предполагает два типа оборудования:

Главный компьютер, где осуществляется управление сетью, хранение и обработка данных.

Терминалы, предназначенные для передачи главному компьютеру команд на организацию сеансов и выполнения заданий, ввода данных для выполнения заданий и получения результатов.

Главный компьютер через мультиплексоры передачи данных (МПД) взаимодействуют с терминалами, как представлено на рис. 1.3.

Классический пример архитектуры сети с главными компьютерами - системная сетевая архитектура (System Network Architecture - SNA).

Одноранговая архитектура (peer-to-peer architecture) - это концепция информационной сети, в которой ее ресурсы рассредоточены по всем системам. Данная архитектура характеризуется тем, что в ней все системы равноправны.

К одноранговым сетям относятся малые сети, где любая рабочая станция может выполнять одновременно функции файлового сервера и рабочей станции. В одноранговых ЛВС дисковое пространство и файлы на любом компьютере могут быть общими. Чтобы ресурс стал общим, его необходимо отдать в общее пользование, используя службы удаленного доступа сетевых одноранговых операционных систем. В зависимости от того, как будет установлена защита данных, другие пользователи смогут пользоваться файлами сразу же после их создания. Одноранговые ЛВС достаточно хороши только для небольших рабочих групп.


Рис. 1.4

Одноранговые ЛВС являются наиболее легким и дешевым типом сетей для установки. Они на компьютере требуют, кроме сетевой карты и сетевого носителя, только операционной системы Windows 95 или Windows for Workgroups. При соединении компьютеров, пользователи могут предоставлять ресурсы и информацию в совместное пользование.

Одноранговые сети имеют следующие преимущества:

они легки в установке и настройке;

отдельные ПК не зависят от выделенного сервера;

пользователи в состоянии контролировать свои ресурсы;

малая стоимость и легкая эксплуатация;

минимум оборудования и программного обеспечения;

нет необходимости в администраторе;

хорошо подходят для сетей с количеством пользователей, не превышающим десяти.

Проблемой одноранговой архитектуры является ситуация, когда компьютеры отключаются от сети. В этих случаях из сети исчезают виды сервиса, которые они предоставляли. Сетевую безопасность одновременно можно применить только к одному ресурсу, и пользователь должен помнить столько паролей, сколько сетевых ресурсов. При получении доступа к разделяемому ресурсу ощущается падение производительности компьютера. Существенным недостатком одноранговых сетей является отсутствует централизованного администрирования.

Использование одноранговой архитектуры не исключает применения в той же сети также архитектуры «терминал - главный компьютер» или архитектуры «клиент - сервер».

Архитектура клиент - сервер (client-server architecture) - это концепция информационной сети, в которой основная часть ее ресурсов сосредоточена в серверах, обслуживающих своих клиентов (рис. 1.5). Рассматриваемая архитектура определяет два типа компонентов: серверы и клиенты.

Сервер - это объект, предоставляющий сервис другим объектам сети по их запросам. Сервис - это процесс обслуживания клиентов.

Рис. 1.5

Сервер работает по заданиям клиентов и управляет выполнением их заданий. После выполнения каждого задания сервер посылает полученные результаты клиенту, пославшему это задание.

Сервисная функция в архитектуре клиент - сервер описывается комплексом прикладных программ, в соответствии с которым выполняются разнообразные прикладные процессы.

Процесс, который вызывает сервисную функцию с помощью определенных операций, называется клиентом. Им может быть программа или пользователь. На рис. 1.6 приведен перечень сервисов в архитектуре клиент - сервер.

Клиенты - это рабочие станции, которые используют ресурсы сервера и предоставляют удобные интерфейсы пользователя. Интерфейсы пользователя это процедуры взаимодействия пользователя с системой или сетью.

Клиент является инициатором и использует электронную почту или другие сервисы сервера. В этом процессе клиент запрашивает вид обслуживания, устанавливает сеанс, получает нужные ему результаты и сообщает об окончании работы.


Рис. 1.6

В сетях с выделенным файловым сервером на выделенном автономном ПК устанавливается серверная сетевая операционная система. Этот ПК становится сервером. Программное обеспечение (ПО), установленное на рабочей станции, позволяет ей обмениваться данными с сервером. Наиболее распространенные сетевые операционная системы:

NetWare фирмы Novel;

Windows NT фирмы Microsoft;

UNIX фирмы AT&T;

Помимо сетевой операционной системы необходимы сетевые прикладные программы, реализующие преимущества, предоставляемые сетью.

Сети на базе серверов имеют лучшие характеристики и повышенную надежность. Сервер владеет главными ресурсами сети, к которым обращаются остальные рабочие станции.

В современной клиент - серверной архитектуре выделяется четыре группы объектов: клиенты, серверы, данные и сетевые службы. Клиенты располагаются в системах на рабочих местах пользователей. Данные в основном хранятся в серверах. Сетевые службы являются совместно используемыми серверами и данными. Кроме того службы управляют процедурами обработки данных.

Сети клиент - серверной архитектуры имеют следующие преимущества:

позволяют организовывать сети с большим количеством рабочих станций;

обеспечивают централизованное управление учетными записями пользователей, безопасностью и доступом, что упрощает сетевое администрирование;

эффективный доступ к сетевым ресурсам;

пользователю нужен один пароль для входа в сеть и для получения доступа ко всем ресурсам, на которые распространяются права пользователя.

Наряду с преимуществами сети клиент - серверной архитектуры имеют и ряд недостатков:

неисправность сервера может сделать сеть неработоспособной, как минимум потерю сетевых ресурсов;

требуют квалифицированного персонала для администрирования;

имеют более высокую стоимость сетей и сетевого оборудования.

Под сетевой архитектурой понимают набор стандартов, топологий и протоколов низкого уровня, необходимых для создания работоспособной сети.

За многие годы развития сетевых технологий было разработано много различных архитектур. Рассмотрим их.

Token Ring .

Технология разработана компанией IBM в 1970-х годах, а затем была стандартизована IEEE в «Проекте 802» как спецификация 802.5. Она имеет следующие характеристики:

· физическая топология – «звезда»;

· логическая топология – «кольцо»

· скорость передачи данных – 4 или 16 Мбит/с;

· среда передачи – витая пара (используется 2 пары);

UTP – 150 м (для 4 Мбит/с)

STP – 300 м (для 4 Мбит/с)

или 100 (для 16 Мбит/с);

· максимальная длина сегмента с репитерами:

UTP – 365 м

STP – 730 м

* максимальное количество компьютеров на сегмент – 72 или 260 (в зависимости от типа кабеля)

Для объединения компьютеров в сетях Token Ring используются концентраторы MSAU, неэкранированная или экранированная витая пара (возможно и применение оптоволокна).

К преимуществам архитектуры Token Ring можно отнести высокую дальность передачи при использовании повторителей (до 730 м). Можно использовать в автоматизированных системах в реальном времени.

Недостатки архитектуры – довольно высокая стоимость, низкая совместимость оборудования.

Сетевая среда ARCNet была разработана корпорацией Datapoint в 1977 году. Стандартом она не стала, но соответствует спецификации IEEE 802.4. Это простая, гибкая и недорогая архитектура для небольших сетей (до 256 компьютеров) характеризуется следующими параметрами:

· физическая топология – «шина» или «звезда»;

· логическая топология – «шина»

· метод доступа – передача маркера;

· скорость передачи данных – 2,5 или 20 Мбит/с;

· среда передачи – витая пара или коаксиальный кабель;

· максимальный размер кадра – 516 байт;

· среда передачи – витая пара или коаксиальный кабель

· максимальная длина сегмента:

Для витой пары – 244 м (для любой топологии)

Для коаксиального кабеля – 305 м или 610 м (для топологии «шина» или «звезда», соответственно).

Для соединения компьютеров используются концентраторы. Основной тип кабеля – коаксиальный типа RG-62. Поддерживается также витая пара и оптоволокно. Для коаксиального кабеля используется BNC-коннекторы, для витой пары – коннекторы RJ-45. Основное достоинство не большая стоимость оборудования и сравнительно большая дальность.

AppleTalk .

Фирменная сетевая среда, предложенная компанией Apple в 19883 году и встроенная в компьютеры Macintosh. Она включает в себя целый набор протоколов, соответствующих модели OSI. На уровне сетевой архитектуры используется протокол LokalTalkФ, имеющий следующие характеристики:



· топология – «шина» или «дерево»;

· метод доступа – CSMA/CA;

· скорость передачи данных – 230,4 Кбит/с;

· среда передачи данных – экранированная витая пара;

· максимальная длина сети – 300 м;

· максимальное число компьютеров – 32.

Очень низкая пропускная способность привела к тому, что многие производители стали предлагать адаптеры расширения, позволяющие AppleTalk работать с сетевыми средами большой пропускной способности – EtherTalk, TokenTalk, FDDITalk. В локальных сетях, построенных на базе IBM-совместимых компьютеров сетевая среда AppleTalk практически не встречается.

100VG-AnyLAN .

Архитектура 100VG-AnyLAN была разработана в 90-х годах компаниями AT&T и Hewlett-Packard для объединения сетей Ethernet b Token Ring. В 1995 году эта архитектура получила статус стандарта IEEE 802.12. Она имеет следующие параметры:

· топология – «звезда»;

· метод доступа – по приоритету запроса;

· скорость передачи данных – 100 Мбит/с;

· среда передачи – витая пара категории 3,4 или 5 (используются все 4 пары);

· максимальная длина сегмента (для оборудования HP) – 225 м.

Из-за сложности и высокой стоимости оборудования в настоящее время практически не применяется.

Архитектура для домашних сетей.

Home PNA .

В 1966 году целый ряд компаний объединились для создания стандарта, позволяющего строить домашние сети на основе обычной телефонной проводки. Результатом этой работы стало появление в 1998 году архитектуры Home PNA 1.0, а затем Home PNA 2.0, Home PNA3.0 . Их краткие характеристики:

Таблица № 1. Сравнение стандартов Home PNA.

Во всех указанных стандартах используется самый популярный метод доступа к среде – CSMA/CD; в качестве среды – телефонный кабель; в качестве разъемов – телефонные коннекторы RJ-11. Устройства Home PNA могут работать и с витой парой и с коаксиальным кабелем, причем, дальность передачи существенной возрастает.

Следует не забывать, что телефонные линии в России не отвечают стандартым развитых стран как по качеству, так и по охвату. Цены на адаптеры довольно высоки. Тем не менее, данную архитектуру можно рассматривать в качестве альтернативы для беспроводных сетей в офисных зданиях и жилых домах.

Домашние сети на базе электропроводки.

Эта технология появилась недавно и получила название Home PLC. Оборудование в продаже имеется, но популярности пока не имеет.

Параметры сетей HomePlug:

· топология – «шина»;

· скорость передачи данных – до 85 Мбит/c$

· метод доступа – CSMA/CD;

· среда передачи – электрическая проводка;

Недостатки сетей Home PLC –незащищенность от перехвата, требующая обязательного применения шифрования и большая чувствительность к электрическим помехам. К тому же такая технология пока еще дорога.

Технологии, используемые в современных локальных сетях.

Ethernet .

Архитектура Ethernet объединяет целый набор стандартов, имеющих как общие черты, так и отличные. Первоначально она была создана фирмой Xerox в середине 70-х годов и представляла собой систему передачи со скоростью 2,93 Мбит/с. После доработки с участием компаний DEC и Intel архитектура Ethernet послужила основой принятого в 1985 году стандарта IEEE 802.3, определившая для нее следующие параметры:

· топология – «шина»;

· метод доступа – CSMA/CD;

· скорость передачи – 10 Мбит/с;

· среда передачи – коаксиальный кабель;

· применение терминаторов – обязательно;

· максимальная длина сегмента сети – до 500 м;

· максимальная длина сети – до 2,5 км;

· максимальное количество компьютеров в сегменте – 100;

· максимальное количество компьютеров с сети – 1024.

В исходной версии предусматривалось применение коаксиального кабеля двух типов «толстого» и «тонкого» (стандарты 10Base-5 и 10Base-2 соответственно).

В начале 90-х годов появилась спецификация для построения сетей Ethernet c использованием витой пары (10Base-T) и оптоволокна (10Base-FL). В 1995 году был опубликован стандарт IEEE 802.3u, обеспечивающий передачу на скоростях до 100 Мбит/с. В 1998 году появился стандарт IEEE 802.3z и 802.3ab, а в 2002 году IEEE802.3 ae. Сравнение стандартов приведены в таблице № 12.2.

Таблица № 12.2. Характеристики различных стандартов Ethernet.

Реализация Скорость Мбит/c Топология Среда передачи Максимальная длина кабеля, м
Ethernet
10Base-5 «шина» Толстый коаксиальный кабель
10Base-2 «шина» Тонкий коаксиальный кабель 185; реально до 300
10Base-T «звезда» Витая пара
10Base-FL «звезда» оптоволокно 500 (станция-концентратор); 200 (между концертраторами)
Fast Ethernet
100Base-TX «звезда» Витая пара категории 5 (используется 2 пары)
100Base-T4 «звезда» Витая пара категории 3,4, 5 (используется четыре пары)
100Base-FX «звезда» Многомодовое или одномодовое оптоволокно 2000 (многомодовый) 15000 (одномодовый) реально – до 40 км
Gigabit Ethernet
1000Dase-T «звезда» Витая пара категории 5 или выше
1000Dase-CX «звезда» Специальный кабель типа STR
1000Dase-SX «звезда» оптоволокно 250-550 (многомодовый), в зависимости от типа
1000Dase-LX «звезда» оптоволокно 550 (многомодовый); 5000 (одномодовый); реально – до 80 км
10 Gigabit Ethernet
10GDase-x «звезда» оптоволокно 300-40000 (в зависимости от типа кабеля и длины волны лазера)

Недостаток сетей Ethernet связан с использованием в них метода доступа к среде CSMA/CD (множественный доступ с контролем несущей и обнаружением столкновений). При увеличении количества компьютеров растет число столкновений, что снижает пропускную способность сети и увеличивает время доставки кадров. Поэтому рекомендуемой нагрузкой сети Ethernet считается уровень в 30-40% от общей полосы пропускания. Этот недостаток легко устраняется путем замены концентраторов мостами и коммутаторами, умеющими изолировать передачу данных между двумя компьютерами в сети от других.

Преимуществ у сети Ethernet очень много. Сама технология проста в реализации. Стоимость оборудования не высока. Можно использовать практически любые виды кабеля. Поэтому в настоящее время данная архитектура сетей можно сказать, что она является господствующей.

Беспроводные сети

Wi-Fi – популярная в мире и быстро развивающаяся в России технология, обеспечивающая беспроводное подключение мобильных пользователей к локальной сети и Интернету (рис.12.5).


В стандарте 802.11 предусматривается использование только полудуплексные приемопередатчики, которые не могут одновременно передавать и принимать информацию. Поэтому в качестве метода доступа к среде во всех стандартах используется метод CSMA/CA (с предотвращением коллизий), позволяющий избегать столкновений.

Основным недостатком сетей Wi-Fi является малая дальность передачи данных, не превышающая для большинства устройств 150 м (максимум 300 м) на открытом пространстве и всего несколько метров в помещении.

Данную проблему решает архитектура WiMAX, разрабатываемая в рамках рабочей группы IEEE 802.16. Реализация этой технологии, также использующей радиосигналы в качестве среды передачи, позволит предоставить пользователям скоростной беспроводной доступ на расстояниях до нескольких десятков км (рис. 10.6.).


Рис. 12.6. Беспроводное подключение мобильных пользователей к локальной сети и Интернету (до десятков км).

Новая технология Bluetooth использует радиосигнал 2,4 Ггц. Она имеет низкое энергопотребление, что позволяет использовать ее в переносных устройствах – ноутбуках, мобильных телефонах (рис.12.7.)



Рис. 12.7. Беспроводное подключение мобильных пользователей к локальной сети и Интернету (до десяти метров).

Bluetooth практически не требует настройки. У нее низкие показатели по дальности (до 10 метров) при 400-700 Кбит/с.

Специализация распределенных вычислений:

Сети и протоколы;

Сетевые мультимедиасистемы;

Распределенные вычисления;