Вынесение за скобки общего множителя: правило, примеры. Калькулятор онлайн.Упрощение многочлена.Умножение многочленов

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

В рамках изучений тождественных преобразований очень важна тема вынесения общего множителя за скобки. В данной статье мы поясним, в чем именно заключается такое преобразование, выведем основное правило и разберем характерные примеры задач.

Yandex.RTB R-A-339285-1

Понятие вынесения множителя за скобки

Чтобы успешно применять данное преобразование, нужно знать, для каких выражений оно используется и какой результат надо получить в итоге. Поясним эти моменты.

Вынести общий множитель за скобки можно в выражениях, представляющих собой суммы, в которых каждое слагаемое является произведением, причем в каждом произведении есть один множитель, общий (одинаковый) для всех. Он так и называется – общим множителем. Именно его мы будем выносить за скобки. Так, если у нас есть произведения 5 · 3 и 5 · 4 , то мы можем вынести за скобки общий множитель 5 .

В чем состоит данное преобразование? В ходе него мы представляем исходное выражение как произведение общего множителя и выражения в скобках, содержащего сумму всех исходных слагаемых, кроме общего множителя.

Возьмем пример, приведенный выше. Вынесем общий множитель 5 в 5 · 3 и 5 · 4 и получим 5 (3 + 4) . Итоговое выражение – это произведение общего множителя 5 на выражение в скобках, которое является суммой исходных слагаемых без 5 .

Данное преобразование базируется на распределительном свойстве умножения, которое мы уже изучали до этого. В буквенном виде его можно записать как a · (b + c) = a · b + a · c . Поменяв правую часть с левой, мы увидим схему вынесения общего множителя за скобки.

Правило вынесения общего множителя за скобки

Используя все сказанное выше, выведем основное правило такого преобразования:

Определение 1

Чтобы вынести за скобки общий множитель, надо записать исходное выражение в виде произведения общего множителя и скобок, которые включают в себя исходную сумму без общего множителя.

Пример 1

Возьмем простой пример вынесения. У нас есть числовое выражение 3 · 7 + 3 · 2 − 3 · 5 , которое является суммой трех слагаемых 3 · 7 , 3 · 2 и общего множителя 3 . Взяв за основу выведенное нами правило, запишем произведение как 3 · (7 + 2 − 5) . Это и есть итог нашего преобразования. Запись всего решения выглядит так: 3 · 7 + 3 · 2 − 3 · 5 = 3 · (7 + 2 − 5) .

Мы можем выносить множитель за скобки не только в числовых, но и в буквенных выражениях. Например, в 3 · x − 7 · x + 2 можно вынести переменную x и получить 3 · x − 7 · x + 2 = x · (3 − 7) + 2 , в выражении (x 2 + y) · x · y − (x 2 + y) · x 3 – общий множитель (x 2 + y) и получить в итоге (x 2 + y) · (x · y − x 3) .

Определить сразу, какой множитель является общим, возможно не всегда. Иногда выражение нужно предварительно преобразовать, заменив числа и выражения тождественно равными им произведениями.

Пример 2

Так, к примеру, в выражении 6 · x + 4 · y можно вынести общий множитель 2 , не записанный в явном виде. Чтобы его найти, нам нужно преобразовать исходное выражение, представив шесть как 2 · 3 , а четыре как 2 · 2 . То есть 6 · x + 4 · y = 2 · 3 · x + 2 · 2 · y = 2 · (3 · x + 2 · y) . Или в выражении x 3 + x 2 + 3 · x можно вынести за скобки общий множитель x , который обнаруживается после замены x 3 на x · x 2 . Такое преобразование возможно благодаря основным свойствам степени. В итоге мы получим выражение x · (x 2 + x + 3) .

Еще один случай, на котором следует остановиться отдельно, – это вынесение за скобки минуса. Тогда мы выносим не сам знак, а минус единицу. Например, преобразуем таким образом выражение − 5 − 12 · x + 4 · x · y . Перепишем выражение как (− 1) · 5 + (− 1) · 12 · x − (− 1) · 4 · x · y , чтобы общий множитель был виден более отчетливо. Вынесем его за скобки и получим − (5 + 12 · x − 4 · x · y) . На этом примере видно, что в скобках получилась та же сумма, но с противоположными знаками.

В выводах отметим, что преобразование путем вынесения общего множителя за скобки очень часто применяется на практике, например, для вычисления значения рациональных выражений. Также этот способ полезен, когда нужно представить выражение в виде произведения, например, разложить многочлен на отдельные множители.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

В этой статье мы остановимся на вынесении за скобки общего множителя . Для начала разберемся, в чем состоит указанное преобразование выражения. Дальше приведем правило вынесения общего множителя за скобки и подробно рассмотрим примеры его применения.

Навигация по странице.

Например, слагаемые в выражении 6·x+4·y имеют общий множитель 2 , который не записан явно. Его можно увидеть лишь после того, как представить число 6 в виде произведения 2·3 , а 4 в виде произведения 2·2 . Итак, 6·x+4·y=2·3·x+2·2·y=2·(3·x+2·y) . Еще пример: в выражении x 3 +x 2 +3·x слагаемые имеют общий множитель x , который становится явно виден после замены x 3 на x·x 2 (при этом мы использовали ) и x 2 на x·x . После вынесения его за скобки получим x·(x 2 +x+3) .

Отдельно скажем про вынесение минуса за скобки. Фактически вынесение минуса за скобки означает вынесение за скобки минус единицы. Для примера вынесем за скобки минус в выражении −5−12·x+4·x·y . Исходное выражение можно переписать в виде (−1)·5+(−1)·12·x−(−1)·4·x·y , откуда отчетливо виден общий множитель −1 , который мы и выносим за скобки. В результате придем к выражению (−1)·(5+12·x−4·x·y) , в котором коэффициент −1 заменяется просто минусом перед скобками, в итоге имеем −(5+12·x−4·x·y) . Отсюда хорошо видно, что при вынесении минуса за скобки в скобках остается исходная сумма, в которой изменены знаки всех ее слагаемых на противоположные.

В заключение этой статьи заметим, что вынесение за скобки общего множителя применяется очень широко. Например, с его помощью можно более рационально вычислять значения числовых выражений . Также вынесение за скобки общего множителя позволяет представлять выражения в виде произведения, в частности, на вынесении за скобки основан один из методов разложения многочлена на множители .

Список литературы.

  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.

Урок математики в 7 а классе

1.

ФИО (полностью)

Трофименко Надежда Павловна

2.

Место работы

МОУ «Милославская школа»

3.

Должность

Учитель математики

4.

Предмет

5.

Класс

6.

Тема и номер урока в теме

Вынесение общего множителя за скобки (1 урок в теме)

7.

Базовый учебник

Ю.М. Колягин, М.В.Ткачева, Н.Е.Федорова,М.И. Шабунин. « Алгебра 7 класс» учебник для общеобразовательных организаций.М.Просвещение.2016.

8. Цели урока

Для учителя:

образовательные

организовать учебную деятельность:

По освоению алгоритма вынесения общего множителя за скобки и понимания логики его построения;

По выработке умения применять алгоритм вынесения общего множителя за скобки

развивающие

создать условия для развития регулятивных умений:

Самостоятельно определять цели учебной деятельности;

Планировать пути достижения целей;

Соотносить свои действия с планируемыми результатами;

Контролировать и оценивать учебную деятельность по результатам;

Организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками.

- воспитательные

    Создать условия для формирования ответственного отношения к учению;

Создать условия для развития самостоятельности учащихся в организации и осуществлении своей учебной деятельности.

Создать условия для патриотического воспитания

Создать условия для экологического воспитания

Для учащихся:

Освоить алгоритм вынесения общего множителя за скобки и понимания логики его построения;

Выработать умения применять алгоритм вынесения общего множителя за скобки

9.Используемые УУД: регулятивные (Целеполагание, планирование деятельности, контроль и оценка)

10.Тип урока: изучение нового материала

11.Формы работы учащихся: фронтальная, парная, индивидуальная

12. Необходимое техническое оборудование: компьютер, проектор, эмблема урока, учебники по математике, электронная презентация, выполненная в программе Power Point, раздаточный материал

Структура и ход урока

Этапы урока

Деятельность учителя

Деятельность учащихся

Образовательный

Организационный

Здравствуйте, ребята! Я очень рада видеть

вас! Девиз нашего урока:

Я слышу и забываю.
Я вижу и запоминаю.
Я делаю и понимаю .
Конфуций.

Придадим нашему уроку необычную окраску(эмблема зеленого дерева и красного сердца), эмблема на доске. В конце урока мы раскроем секрет этой эмблемы

Проверяют рабочее место, приветствуют учителя, включаются в рабочий ритм урока

Актуализация знаний и мотивация

Сегодня на уроке вы изучите новый материал. Но прежде поработаем устно.

1.Выполнить умножение одночленов:

2а 2 *3ав; 2ав*(-а 4) ; 6х 2 *(-2х); -3с*5х; -3х*(-ху 2);-4а 2 в*(-0,2ав 2)

При правильном ответе открывают первую букву

2) Какие одночлены следует поставить вместо *, чтобы получилось верное равенство:

х 3 * = х 6 ; - а 6 = а 4 *; *у 7 = у 8 ; -2а 3 * = 8а 5 ; 5ху 4 * = 25х 2 у 6 . При правильном ответе открывают вторую букву

3) Представить одночлен 12х 3 у 4 в виде произведения двух множителей, один из которых равен 3 ; 3 ; -4х ; 6ху ; -2х 3 у ; 2 у 2 .

При правильном ответе открывают третью букву

4) Представить различными способами одночлен 2 у в виде произведения двух множителей.

Открываем 4 букву

5) Ученик умножил одночлен на многочлен, после чего одночлен оказался стертым. Восстановите его

…*(х – у) = 3ах – 3ау

…*(-х + у 2 – 1) = ху 2 – у 4 +у

…*(а +в – 1) = 2ах +2вх – 2х

…*(а – в) = а 2 в – а 3

…*(2у 2 – 3) = 10у 4 – 15у 2 .Открываем 5 букву

6.Вычислить

768*95 – 668*95 =

76,8*9,5 + 23,2*9,5 =

Открываем 6 букву.

Из букв получилась фамилия немецкого математика.

Устно выполняют задание

Комментируют решение, используя правила

Открывают буквы на доске

Ученик(получил заранее задание)

Историческая справка : Михель Штифель (1487-1567), немецкий математик и странствующий проповедник; автор книги “Полная арифметика», он ввёл термин «показатель степени», а также рассматривал свойства многочленов и внес существенный вклад в развитие алгебры.(фото)

3.Целеполагание и мотивация

Обеспечение мотивации учения детьми, принятие ими целей урока.

На доске: Найти значение выражения а 2 – 3ав при а = 106,45; в = 2,15 .

Как это сделать?

а) Можно подставить числовые значения а и в и найти значение выражения, но это сложно.

в) А можно поступить иначе? Как?

На доске записываем тему урока: «Вынесение общего множителя за скобки.» Ребята, пишем аккуратно! Помним, что для производства тонны бумаги требуется спилить примерно 17 взрослых деревьев.

Попробуем поставить цели урока по схеме:

С какими понятиями познакомится?

Какие навыки и умения освоим?

Предлагают свои варианты решения

4. Усвоение новых знаний и способов усвоения

(первичное знакомство с материалом)

Обеспечение восприятия, осмысления и первичного запоминания детьми изученной темы

    Открываем учебник стр 120-121, читаем и отвечаем на вопросы стр 121.

    Выделяют пункты алгоритма

Алгоритм вынесения общего множителя за скобки

    Найти общий множитель коэффициентов многочленов

    Вынести его за скобку

3. Учитель: Я приведу пример вынесения множителя за скобки в русском языке. В выражении “Взять книгу, взять ручку, взять тетрадь” функцию общего множителя выполняет глагол “взять”, а книга, тетрадь и ручка – это дополнения.
Это же выражение можно сказать по другому “взять книгу, тетрадь и ручку”.

4 Я написала правило умножения одночлена на многочлен в виде схемы.
На доске появляется запись:

Попрубуйте нарисовать схематично правило вынесения общего множителя

      Читают материал

      Отвечают на вопросы

      Находят лист с алгоритмом

      А, теперь попробуйте вы:

      • Съесть: суп, кашу, салат

На доске рисуют обратную схему

5. Релаксация

Включает мультфильм « задание на лето»

Из зимней погоды попадаем в теплое лето.

Но фрагмент поучительный, попробуйте уловить главную мысль

Смотрят фрагмент мультфильма и делают вывод о красоте родного края

Фрагмент мультфильма

« Задание на лето»

6.Первичное закрепление

Установление правильности и осознанности изучения темы.

Выявление пробелов первичного осмысления изученного материала, коррекция выявленных пробелов, обеспечение закрепления в памяти детей знаний и способов действий, которые им необходимы для самостоятельной работы по новому материалу.

    Фронтально у доске:

№ 318, 319, 320,321,324,325,328

По очереди, по желанию

Решают у доски с комментариями

6. Организация первичного контроля

Выявление качества и уровня усвоения знаний и способов действий, а также выявление недостатков в знаниях и способах действий, установление причин выявленных недостатков

Самостоятельно решают по тексту на листочках и проверяют по ответам на доске:

    САМОСТОЯТЕЛЬНАЯ РАБОТА (дифференцированно)

1 вариант

    Закончите разложение многочлена на множители:

5ах – 30ау = 5а(…………..)

х 4 – 5х 3 – х 2 = х 2 (…………..)

    Разложите на множители многочлен - 5ав + 15а 2 в, вынося за скобки множитель: а) 5а; б) -5а.

    Разложите на множители:

5х + 5у = 7ав + 14ас=

20а – 4в= 5mn – 5=

ах – ау= 3x 2 – 6x=

2а – 10ау= 15a 2 + 5a 3 =

2 вариант

    Закончите запись:

18ав +16в= 2в(…………)

4а 2 с – 8ас= 4ас(………..)

    Разложите на множители многочлен -15а 2 в + 5ав 4 двумя способами:

а) вынося за скобки множитель 5ав;

б) вынося за скобки множитель -5ав.

5х+6ху= 2ав – 3а 3 в=

12ав – 9в= х 3 -4х 2 +6х=

6а 4 – 4а 2 = 4а 4 -8а 3 +12а 2 =

24х 2 у -12ху= 9в 2 -6в 4 +3в=

4. Найдите значение выражения, разложив его на множители:

ху 2 +у 3 при х=97, у=3.

3 вариант

    Вынесите за скобки общий множитель и выполните проверку, умножив одночлен на многочлен:

а) 12ху+ 18х= б) 36ав 2 – 12а 2 в=

2. Закончите запись:

18а 3 в 2 +36ав = 18ав(…………)

18а 3 в 2 +36ав = -18ав(…………)

3. Вынесите за скобки общий множитель:

12а 2 +16а= -11х 2 у 2 +22ху=

2а 4 -6а 2 = -12а 3 в 3 +6ав=

30а 4 в- 6ав 4 = х 8 -8х 4 +х 2 =

4. Замените М многочленом или одночленом так, чтобы получившееся равенство было тождеством:

12а 2 в-8ав 2 +6ав=М*(6а-4в+3)

15х 2 у-10х3у2+25х 4 у 3 =5х 2 у*М

5. Найдите значение выражения:

а) 2,76а-ав при а=1,25 и в=0,76;

б) 2ху+2у 2 при х=0,27 и в=0,73.

Выполняют свою работу, после выполнения получают ключи и проверяют, ставят + или минус, оценивают свою работу по критериям на доске:(ответы на доске)

10-12 баллов- «5»

8-9 баллов - «4»

6-7 баллов -«3»

Меньше 6 - нужно поработать еще.

Листы с дифференцированным заданием

7. Подведение итогов урока.

Дать качественную оценку работы класса и отдельных обучаемых

Отметить активно работающих учащихся и подвести итоги самостоятельной работы:

Поднимите руки, у кого 5,4,3.

Анализируют свою работу

8. Информация о домашнем задании

Обеспечение понимания детьми цели, содержания и способов выполнения домашнего задания.

Параграф № 19
№ 322,326, 329

Делаем по образцам заданий в классной работе

Записывают задания в дневник

9. Рефлексия

Учитель: Это был урок – поиск. Мы с вами искали точки соприкосновения друг с другом, учились общаться, а также раскрыли один из методов объяснения и закрепления темы.

Вернемся к целям урока и проанализируем как мы их достигли

А, о чем мы еще поговорили, кроме вынесения общего множителя за скобки? Возвращаемся к эмблеме урока.

Зачитывают цели и анализируют их выполнение

О связи математики и русского языка,

О красоте родного края, об экологии

Определение 1

Сначала давайте вспомним правила умножения одночлена на одночлен:

Для умножения одночлен на одночлен необходимо сначала перемножить коэффициенты одночленов, затем воспользовавшись правилом умножения степеней с одинаковым основанием умножить переменные входящие в состав одночленов.

Пример 1

Найти произведение одночленов ${2x}^3y^2z$ и ${\frac{3}{4}x}^2y^4$

Решение:

Сначала вычислим проиведение коэффициентов

$2\cdot\frac{3}{4} =\frac{2\cdot 3}{4}$ в этом задании мы использовали правило умножения числа на дробь - чтобы умножить целое число на дробь надо умножить число на числитель дроби, а знаменатель ставить без изменений

Теперь воспользуемся основным свойством дроби - числитель и знаменатель дроби можно разделить на одно и то же число, отличное от $0$. Разделим числитель и знаменте6ль этой дроби на $2$, т. е сократим на $2$ данную дробь $2\cdot\frac{3}{4}$ =$\frac{2\cdot 3}{4}=\ \frac{3}{2}$

Получившийся результат оказался неправильной дробью, т. е такой, у которой числитель больше знаменателя.

Преобразуем эту дробь по средствам выделения целой части. Вспомним, что для выделения целой части необходимо неполное частное, получившиеся при делении числителя на знаменатель записать, как целую часть, остаток от деления в числитель дробной части, делитель в знаменатель.

Мы нашли коэффициент будущего произведения.

Теперь последовательно будем перемножать переменные $x^3\cdot x^2=x^5$,

$y^2\cdot y^4 =y^6$. Тут мы воспользовались правилом умножения степеней с одинаковым основанием: $a^m\cdot a^n=a^{m+n}$

Тогда итогом умножения одночленов будет:

${2x}^3y^2z \cdot {\frac{3}{4}x}^2y^4=1\frac{1}{2}x^5y^6$.

Тогда исходя из данного правила можно выполнить следующее задание:

Пример 2

Представить заданный многочлен в виде произведения многочлена и одночлена ${4x}^3y+8x^2$

Преставим каждый из одночленов,входящих в состав многолена как прозведение двух одночленов для того, чтобы выделить общий одночлен, который будет являться множителем и в первом и во втором одночлене.

Сначала начнем с первого одночлена ${4x}^3у$. Разложим его коэффициент на простые множители: $4=2\cdot 2$. Аналогично поступим с коэффициентом второго одночлена $8=2\cdot 2 \cdot 2$. Зметим, что два множителя $2\cdot 2$ входят в состав и первого и второго коэффициентов, значит $2\cdot 2=4$--это чило войдет в общий одночлен как коэффициент

Теперь обратим внимание, что в первом одночлене $x^3$ ,а во втором та же переменная в степени $2:x^2$. Значит, переменную $x^3$ удобно представить так:

Переменная $y$ входит в состав только одного слагаемого многочлена, значит, не может входить в общий одночлен.

Представим первый и второй одночлен, входящий в многочлен как произведение:

${4x}^3y=4x^2\cdot xy$

$8x^2=4x^2\cdot 2$

Заметим, что общий одночлен, который будет являться множителем и в первом и во втором одночлене это $4x^2$.

${4x}^3y+8x^2=4x^2\cdot xy + 4x^2\cdot 2$

Теперь применим распределительный закон умножения, тогда полученное выражение можно представить в виде произведения двух множителей. Одним из множителей будет являться общий множитель: $4x^2$ а другой -- сумма оставшихся множителей: $xy + 2$. Значит:

${4x}^3y+8х^2 = 4x^2\cdot xy + 4x^2\cdot 2 = 4x^2(xy+2)$

Этот метод называется разложением на множители с помощью вынесения общего множителя.

Общим множителем в данном случае выступал одночлен $4x^2$ .

Алгоритм

Замечание 1

    Найти наибольший общий делитель коэффициентов всех одночленов, входящих в многочлен - он будет коэффициентом общего множителя-одночлена, который мы вынесем за скобки

    Одночлен, состящий из коэффициента, найденного в п.2, переменных, найденных в п.3 будет общим множителем. который можно вынести за скобки как общий множитель.

Пример 3

Вынести общий множитель $3a^3-{15a}^2b+4{5ab}^2$

Решение:

    Найдем НОД коэффициентов для этого разложим коэффициенты на простые множители

    $45=3\cdot 3\cdot 5$

    И найдем произведение тех, которые входят в разложение каждого:

    Выявить переменные, которые входят в состав каждого одночлена, и выбрать переменную с наименьшим показателем степени

    $a^3=a^2\cdot a$

    Переменная $b$ входит только во второй и третий одночлен, значит, в общий множитель не войдет.

    Составим одночлен, состоящий из коэффициента, найденного в п.2, переменных, найденных в п.3, получим: $3a$- это и будет общий множитель. тогда:

    $3a^3-{15a}^2b+4{5ab}^2=3a(a^2-5ab+15b^2)$