Вынесение за скобки общего множителя: правило, примеры. " вынесение общего множителя за скобки"

На этом уроке мы познакомимся с правилами вынесения за скобки общего множителя, научимся находить его в различных примерах и выражениях. Поговорим о том, как простая операция, вынесение общего множителя за скобки, позволяет упростить вычисления. Полученные знания и навыки закрепим, рассмотрев примеры разных сложностей.

Что такое общий множитель, зачем его искать и с какой целью выносить за скобки? Ответим на эти вопросы, разобрав простейший пример.

Решим уравнение . Левая часть уравнения является многочленом, состоящим из подобных членов. Буквенная часть является общей для данных членов, значит, она и будет общим множителем. Вынесем за скобки:

В данном случае вынесение за скобки общего множителя помогло нам преобразовать многочлен в одночлен. Таким образом, мы смогли упростить многочлен и его преобразование помогло нам решить уравнение.

В рассмотренном примере общий множитель был очевиден, но будет ли так просто найти его в произвольном многочлене?

Найдём значение выражения: .

В данном примере вынесение общего множителя за скобки значительно упростило вычисление.

Решим еще один пример. Докажем делимость на выражения .

Полученное выражение делится на , что и требовалось доказать. И снова вынесение общего множителя позволило нам решить задачу.

Решим еще один пример. Докажем, что выражение делится на при любом натуральном : .

Выражение является произведением двух соседних чисел натурального ряда. Одно из двух чисел обязательно будет четным, значит, выражение будет делиться на .

Мы разобрали разные примеры, но применяли один и тот же метод решения: выносили общий множитель за скобки. Мы видим, что эта простая операция значительно упрощает вычисления. Было легко найти общий множитель для этих частных случаев, а что делать в общем случае, для произвольного многочлена?

Вспомним, что многочлен - сумма одночленов.

Рассмотрим многочлен . Данный многочлен является суммой двух одночленов. Одночлен - произведение числа, коэффициента, и буквенной части. Таким образом, в нашем многочлене каждый одночлен представлен произведением числа и степеней, произведение множителей. Множители могут быть одинаковыми для всех одночленов. Именно эти множители нужно определить и вынести за скобку. Сначала находим общий множитель для коэффициентов, причем целочисленных.

Было легко найти общий множитель, но давайте определим НОД коэффициентов: .

Рассмотрим ещё один пример: .

Найдем , что позволит нам определить общий множитель для данного выражения: .

Мы вывели правило для целых коэффициентов. Нужно найти их НОД и вынести за скобку. Закрепим это правило, решив ещё один пример.

Мы рассмотрели правило вынесения общего множителя для целочисленных коэффициентов, перейдем к буквенной части. Сначала ищем те буквы, которые входят во все одночлены, а потом определяем наибольшую степень буквы, которая входит во все одночлены: .

В этом примере была всего одна общая буквенная переменная, но их может быть несколько, как в следующем примере:

Усложним пример, увеличив количество одночленов:

После вынесения общего множителя мы преобразовали алгебраическую сумму в произведение.

Мы рассмотрели правила вынесения для целых коэффициентов и буквенных переменных отдельно, но чаще всего для решения примера нужно применять их вместе. Рассмотрим пример:

Иногда бывает сложно определить, какое выражение остается в скобках, рассмотрим легкий прием, который позволит вам быстро решить эту проблему.

Общим множителем также может быть искомое значение :

Общим множителем может быть не только число или одночлен, но и любое выражение, как, например, в следующем уравнении.

>>Математика: Вынесение общего множителя за скобки

Прежде чем начинать изучение этого параграфа, вернитесь к § 15. Там мы уже рассмотрели пример, в котором требовалось представить многочлен в виде произведения многочлена и одночлена. Мы установили, что эта задача не всегда корректна. Если все же такое произведение удалось составить, то обычно говорят, вынесение что многочлен разложен на множители с помощью общего вынесения общего множителя за скобки. Рассмотрим несколько примеров.

Пример 1. Разложить на множители многочлен:

А) 2х + 6у, в) 4а 3 + 6а 2 ; д) 5а 4 - 10а 3 + 15а 8 .
б) а 3 + а 2 ; г) 12аЬ 4 - 18а 2 b 3 с;

Р е ш е н и е.
а) 2х + 6у = 2 (x + Зу). За скобки вынесли общий делитель коэффициентов членов многочлена.

б) а 3 + а 2 = а 2 (а + 1). Если одна и та же переменная входит во все члены многочлена, то ее можно вынести за скобки в степени, равной наименьшей из имеющихся (т. е. выбирают наименьший из имеющихся показателей).

в) Здесь используем тот же прием, что и при решении примеров а) и б): для коэффициентов находим общий делитель (в данном случае число 2), для переменных - наименьшую степень из имеющихся (в данном случае а 2). Получаем:

4а 3 + 6а 2 = 2а 2 2а + 2а 2 3 = 2а 2 (2а + 3).

г) Обычно для целочисленных коэффициентов стараются найти не просто общий делитель, а наибольший общий делитель. Для коэффициентов 12 и 18 им будет число 6. Замечаем, что переменная а входит в оба члена многочлена, при этом наименьший показапоказатель равен 1. Переменная b также входит в оба члена многочлена, причем наименьший показатель равен 3. Наконец, переменная с входит только во второй член многочлена и не входит в первый член, значит, эту переменную нельзя вынести за скобки ни в какой степени. В итоге имеем:

12аb 4 - 18а 2 Ь 3 с = 6аЬ 3 2b - 6аЬ 3 Зас = 6аb 3 (2b - Зас).

д) 5а 4 -10а 3 +15а 8 = 5а 3 (а-2 + За 2).

Фактически в этом примере мы выработали следующий алгоритм.

Замечание . В ряде случаев полезно выносить за скобку в качестве общего множителя и дробный коэффициент.

Например:

Пример 2. Разложить на множители:

Х 4 у 3 -2х 3 у 2 + 5х 2 .

Решение. Воспользуемся сформулированным алгоритмом.

1) Наибольший общий делитель коэффициентов -1, -2 и 5 равен 1.
2) Переменная х входит во все члены многочлена с показателями соответственно 4, 3, 2; следовательно, можно вынести за скобки х 2 .
3) Переменная у входит не во все члены многочлена; значит, ее нельзя вынести за скобки.

В ы в о д: за скобки можно вынести х 2 . Правда, в данном случае целесообразнее вынести за скобки -x 2 .

Получим:
-х 4 у 3 -2х 3 у 2 + 5х 2 = - х 2 (х 2 у 3 + 2ху 2 - 5).

Пример 3 . Можно ли разделить многочлен 5а 4 - 10а 3 + 15а 5 на одночлен 5а 3 ? Если да, то выполнить деление .

Решение. В примере 1д) мы получили, что

5а 4 - 10а 3 + 15а 8 - 5а 3 (а - 2 + За 2).

Значит, заданный многочлен можно разделить на 5а 3 , при этом в частном получится а - 2 + За 2 .

Подобные примеры мы рассматривали в § 18; просмотрите их, пожалуйста, еще раз, но уже с точки зрения вынесения общего множителя за скобки.

Разложение многочлена на множители с помощью вынесения общего множителя за скобки тесно связано с двумя операциями, которые мы изучали в § 15 и 18, - с умножением многочлена на одночлен и с делением многочлена на одночлен .

А теперь несколько расширим наши представления о вынесении общего множителя за скобки. Дело в том, что иногда алгебраическое выражение задается в таком виде, что в качестве общего множителя может выступать не одночлен, а сумма нескольких одночленов.

Пример 4. Разложить на множители:

2x(x-2) + 5(x-2) 2 .

Решение. Введем новую переменную у = х - 2. Тогда получим:

2x (x - 2) + 5 (x - 2) 2 = 2ху + 5у 2 .

Замечаем, что переменную у можно вынести за скобки:

2ху + 5у 2 - у (2х + 5у). А теперь вернемся к старым обозначениям:

у(2х + 5у) = (х- 2)(2x + 5(х - 2)) = (x - 2)(2x + 5x-10) = (x-2)(7x:-10).

В подобных случаях после приобретения некоторого опыта можно не вводить новую переменную, а использовать следующую

2х(х - 2) + 5(х - 2) 2 = (х - 2)(2x + 5(x - 2))= (х - 2)(2х + 5х~ 10) = (х - 2)(7x - 10).

Календарно-тематичне планування з математики, відео з математики онлайн , Математика в школі скачати

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Урок алгебры в 7 классе.

Тема « Вынесение общего множителя за скобки».

Учебник Макарычев Ю.Н., Миндюк Н.Г. и др.

Цели урока:

Образовательная

    выявить уровень овладения учащимися комплекса знаний и умений по применению навыков умножения и деления степеней;

    формировать умение применять разложение многочлена на множители с помощью вынесения общего множителя за скобки;

    применять вынесение общего множителя за скобки при решении уравнений.

Развивающая

    способствовать развитию наблюдательности, умения анализировать, сравнивать, делать выводы;

    развивать навыки самоконтроля при выполнении заданий.

Воспитательная -

    воспитание ответственности, активности, самостоятельности, объективной самооценки.

Тип урока: комбинированный.

Основные результаты обучения:

    уметь выносить общий множитель за скобки;

    уметь применять данный способ при решении упражнений.

Ход урока.

1 модуль (30 мин).

1. Организационный момент.

    приветствие;

    подготовка обучающихся к работе.

2. Проверка домашнего задания.

    Проверка наличия (дежурные), обсуждение возникших вопросов.

3 . Актуализация опорных знаний.

    Н айдите НОД (15,6), (30,60), (24,8), (4,3), (20,55) , (16, 12).

    Что такое НОД?

Как выполняется деление степеней с одинаковыми основаниями?

Как выполняется умножение степеней с одинаковыми основаниями?

Для данных степеней (c 3) 7 ,b 45 ,c 5 , a 21 , a 11 b 7 ,d 5 Назовите степень с наименьшим показателем, одинаковыми основаниями, одинаковыми показателями

Повторим распределительный закон умножения. Запишите его в буквенной форме

а (в + с)= ав + ас

* - знак умножения

Выполнить устные задания на применение распределительного свойства. (Подготовить на доске).

1) 2*(а + в) 4) (х – 6)*5

2) 3*(х – у) 5) -4*(у + 5)

3) а*(4 + х) 6) -2*(в – а)

На закрытой доске записаны задания, ребята решают и записывают на доске результат. Задания на умножения одночлена на многочлен.

Для начала я предлагаю вам пример на умножение одночлена на многочлен:

2 х (х 2 +4 х у – 3)= 2х 3 + 8х 2 у – 6х Не стираем!

Написать правило умножения одночлена на многочлен в виде схемы.

На доске появляется запись:

Я могу написать это свойство в виде:

В таком виде мы уже использовали запись для простого способа вычисления выражений.

а) 23 * 15 + 15 * 77 = (23 + 77) * 15 = 100 * 15 = 1500

Остальные устно, проверить ответы:

е) 55*682 – 45*682 = 6820

ж) 7300*3 + 730*70 = 73000

з) 500*38 – 50*80 = 15000

Какой закон помог вам найти простой способ вычислений? (Распределительный)

Действительно – распределительный закон помогает упрощать выражения.

4 . Постановка цели и темы урока. Устный счет. Отгадайте тему урока.

Работа в парах.

Карточки для пар.

Оказывается, что разложение на множители выражения – это операция, обратная почленному умножению одночлена на многочлен.

Рассмотрим тот же самый пример, который решал учащийся, но в обратном порядке. Разложить на множители – значит вынести за скобки общий множитель.

2 х 3 + 8 х 2 у – 6 х = 2 х (х 2 + 4 ху – 3).

Сегодня на уроке мы рассмотрим понятия разложение многочлена на множители и вынесение общего множителя за скобки, научимся применять эти понятия при выполнении упражнений.

Алгоритм вынесения общего множителя за скобки

    Наибольший общий делитель коэффициентов.

    Одинаковые буквенные переменные.

    Проставить наименьшую степень к вынесенным переменным.

    Затем в скобках записывается оставшиеся одночлены многочлена.

Наибольший общий делитель находили в младших класса, общую переменную в наименьшей степени можно сразу увидеть. А чтобы быстро находить оставшийся в скобках многочлен надо потренироваться по номеру №657.

5. Первичное усвоение с проговариванием вслух.

№657 (1 столбик)

2 модуль (30 мин).

1. Итог первой 30-минутки.

А) Какое преобразование называется разложением многочлена на множители?

Б) На каком свойстве основано вынесение общего множителя за скобки?

В) Как выносится общий множитель за скобки?

2. Первичное закрепление.

На доске записаны выражения. Найти в этих равенствах ошибки, если они имеются и исправить.

1) 2 х 3 – 3 х 2 – х =х (2 х 2 – 3 х).

2) 2 х + 6 = 2 (х + 3).

3) 8 х + 12 у = 4 (2 х - 3у).

4) а 6 – а 2 = а 2 (а 2 – 1).

5) 4 -2а = – 2 (2 – а).

3. Первичная проверка понимания.

Работа с самопроверкой. 2 чел на обратной стороне

Вынесите общий множитель за скобки:

Устно сделать проверку умножением.

4. Подготовка учащихся к обобщенной деятельности.

Выносим многочленный множитель за скобки (объяснение учителя).

Разложите на множители многочлен .

В данном выражении мы видим, присутствует один и тот же множитель , который можно вынести за скобки. Итак, получим:

Выражения и являются противоположными, поэтому в некоторых случаях можно пользоваться данным равенством . Два раза меняем знак! Разложите на множители многочлен

Здесь присутствуют противоположные выражения и , воспользовавшись предыдущим тождеством мы получим следующую запись: .

А теперь мы видим, что общий множитель можно вынести за скобки.

Определение 1

Сначала давайте вспомним правила умножения одночлена на одночлен:

Для умножения одночлен на одночлен необходимо сначала перемножить коэффициенты одночленов, затем воспользовавшись правилом умножения степеней с одинаковым основанием умножить переменные входящие в состав одночленов.

Пример 1

Найти произведение одночленов ${2x}^3y^2z$ и ${\frac{3}{4}x}^2y^4$

Решение:

Сначала вычислим проиведение коэффициентов

$2\cdot\frac{3}{4} =\frac{2\cdot 3}{4}$ в этом задании мы использовали правило умножения числа на дробь - чтобы умножить целое число на дробь надо умножить число на числитель дроби, а знаменатель ставить без изменений

Теперь воспользуемся основным свойством дроби - числитель и знаменатель дроби можно разделить на одно и то же число, отличное от $0$. Разделим числитель и знаменте6ль этой дроби на $2$, т. е сократим на $2$ данную дробь $2\cdot\frac{3}{4}$ =$\frac{2\cdot 3}{4}=\ \frac{3}{2}$

Получившийся результат оказался неправильной дробью, т. е такой, у которой числитель больше знаменателя.

Преобразуем эту дробь по средствам выделения целой части. Вспомним, что для выделения целой части необходимо неполное частное, получившиеся при делении числителя на знаменатель записать, как целую часть, остаток от деления в числитель дробной части, делитель в знаменатель.

Мы нашли коэффициент будущего произведения.

Теперь последовательно будем перемножать переменные $x^3\cdot x^2=x^5$,

$y^2\cdot y^4 =y^6$. Тут мы воспользовались правилом умножения степеней с одинаковым основанием: $a^m\cdot a^n=a^{m+n}$

Тогда итогом умножения одночленов будет:

${2x}^3y^2z \cdot {\frac{3}{4}x}^2y^4=1\frac{1}{2}x^5y^6$.

Тогда исходя из данного правила можно выполнить следующее задание:

Пример 2

Представить заданный многочлен в виде произведения многочлена и одночлена ${4x}^3y+8x^2$

Преставим каждый из одночленов,входящих в состав многолена как прозведение двух одночленов для того, чтобы выделить общий одночлен, который будет являться множителем и в первом и во втором одночлене.

Сначала начнем с первого одночлена ${4x}^3у$. Разложим его коэффициент на простые множители: $4=2\cdot 2$. Аналогично поступим с коэффициентом второго одночлена $8=2\cdot 2 \cdot 2$. Зметим, что два множителя $2\cdot 2$ входят в состав и первого и второго коэффициентов, значит $2\cdot 2=4$--это чило войдет в общий одночлен как коэффициент

Теперь обратим внимание, что в первом одночлене $x^3$ ,а во втором та же переменная в степени $2:x^2$. Значит, переменную $x^3$ удобно представить так:

Переменная $y$ входит в состав только одного слагаемого многочлена, значит, не может входить в общий одночлен.

Представим первый и второй одночлен, входящий в многочлен как произведение:

${4x}^3y=4x^2\cdot xy$

$8x^2=4x^2\cdot 2$

Заметим, что общий одночлен, который будет являться множителем и в первом и во втором одночлене это $4x^2$.

${4x}^3y+8x^2=4x^2\cdot xy + 4x^2\cdot 2$

Теперь применим распределительный закон умножения, тогда полученное выражение можно представить в виде произведения двух множителей. Одним из множителей будет являться общий множитель: $4x^2$ а другой -- сумма оставшихся множителей: $xy + 2$. Значит:

${4x}^3y+8х^2 = 4x^2\cdot xy + 4x^2\cdot 2 = 4x^2(xy+2)$

Этот метод называется разложением на множители с помощью вынесения общего множителя.

Общим множителем в данном случае выступал одночлен $4x^2$ .

Алгоритм

Замечание 1

    Найти наибольший общий делитель коэффициентов всех одночленов, входящих в многочлен - он будет коэффициентом общего множителя-одночлена, который мы вынесем за скобки

    Одночлен, состящий из коэффициента, найденного в п.2, переменных, найденных в п.3 будет общим множителем. который можно вынести за скобки как общий множитель.

Пример 3

Вынести общий множитель $3a^3-{15a}^2b+4{5ab}^2$

Решение:

    Найдем НОД коэффициентов для этого разложим коэффициенты на простые множители

    $45=3\cdot 3\cdot 5$

    И найдем произведение тех, которые входят в разложение каждого:

    Выявить переменные, которые входят в состав каждого одночлена, и выбрать переменную с наименьшим показателем степени

    $a^3=a^2\cdot a$

    Переменная $b$ входит только во второй и третий одночлен, значит, в общий множитель не войдет.

    Составим одночлен, состоящий из коэффициента, найденного в п.2, переменных, найденных в п.3, получим: $3a$- это и будет общий множитель. тогда:

    $3a^3-{15a}^2b+4{5ab}^2=3a(a^2-5ab+15b^2)$

В рамках изучений тождественных преобразований очень важна тема вынесения общего множителя за скобки. В данной статье мы поясним, в чем именно заключается такое преобразование, выведем основное правило и разберем характерные примеры задач.

Yandex.RTB R-A-339285-1

Понятие вынесения множителя за скобки

Чтобы успешно применять данное преобразование, нужно знать, для каких выражений оно используется и какой результат надо получить в итоге. Поясним эти моменты.

Вынести общий множитель за скобки можно в выражениях, представляющих собой суммы, в которых каждое слагаемое является произведением, причем в каждом произведении есть один множитель, общий (одинаковый) для всех. Он так и называется – общим множителем. Именно его мы будем выносить за скобки. Так, если у нас есть произведения 5 · 3 и 5 · 4 , то мы можем вынести за скобки общий множитель 5 .

В чем состоит данное преобразование? В ходе него мы представляем исходное выражение как произведение общего множителя и выражения в скобках, содержащего сумму всех исходных слагаемых, кроме общего множителя.

Возьмем пример, приведенный выше. Вынесем общий множитель 5 в 5 · 3 и 5 · 4 и получим 5 (3 + 4) . Итоговое выражение – это произведение общего множителя 5 на выражение в скобках, которое является суммой исходных слагаемых без 5 .

Данное преобразование базируется на распределительном свойстве умножения, которое мы уже изучали до этого. В буквенном виде его можно записать как a · (b + c) = a · b + a · c . Поменяв правую часть с левой, мы увидим схему вынесения общего множителя за скобки.

Правило вынесения общего множителя за скобки

Используя все сказанное выше, выведем основное правило такого преобразования:

Определение 1

Чтобы вынести за скобки общий множитель, надо записать исходное выражение в виде произведения общего множителя и скобок, которые включают в себя исходную сумму без общего множителя.

Пример 1

Возьмем простой пример вынесения. У нас есть числовое выражение 3 · 7 + 3 · 2 − 3 · 5 , которое является суммой трех слагаемых 3 · 7 , 3 · 2 и общего множителя 3 . Взяв за основу выведенное нами правило, запишем произведение как 3 · (7 + 2 − 5) . Это и есть итог нашего преобразования. Запись всего решения выглядит так: 3 · 7 + 3 · 2 − 3 · 5 = 3 · (7 + 2 − 5) .

Мы можем выносить множитель за скобки не только в числовых, но и в буквенных выражениях. Например, в 3 · x − 7 · x + 2 можно вынести переменную x и получить 3 · x − 7 · x + 2 = x · (3 − 7) + 2 , в выражении (x 2 + y) · x · y − (x 2 + y) · x 3 – общий множитель (x 2 + y) и получить в итоге (x 2 + y) · (x · y − x 3) .

Определить сразу, какой множитель является общим, возможно не всегда. Иногда выражение нужно предварительно преобразовать, заменив числа и выражения тождественно равными им произведениями.

Пример 2

Так, к примеру, в выражении 6 · x + 4 · y можно вынести общий множитель 2 , не записанный в явном виде. Чтобы его найти, нам нужно преобразовать исходное выражение, представив шесть как 2 · 3 , а четыре как 2 · 2 . То есть 6 · x + 4 · y = 2 · 3 · x + 2 · 2 · y = 2 · (3 · x + 2 · y) . Или в выражении x 3 + x 2 + 3 · x можно вынести за скобки общий множитель x , который обнаруживается после замены x 3 на x · x 2 . Такое преобразование возможно благодаря основным свойствам степени. В итоге мы получим выражение x · (x 2 + x + 3) .

Еще один случай, на котором следует остановиться отдельно, – это вынесение за скобки минуса. Тогда мы выносим не сам знак, а минус единицу. Например, преобразуем таким образом выражение − 5 − 12 · x + 4 · x · y . Перепишем выражение как (− 1) · 5 + (− 1) · 12 · x − (− 1) · 4 · x · y , чтобы общий множитель был виден более отчетливо. Вынесем его за скобки и получим − (5 + 12 · x − 4 · x · y) . На этом примере видно, что в скобках получилась та же сумма, но с противоположными знаками.

В выводах отметим, что преобразование путем вынесения общего множителя за скобки очень часто применяется на практике, например, для вычисления значения рациональных выражений. Также этот способ полезен, когда нужно представить выражение в виде произведения, например, разложить многочлен на отдельные множители.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter