Наибольший порядок минора матрицы. Найти ранг матрицы: способы и примеры


Ранг матрицы представляет собой важную числовую характеристику. Наиболее характерной задачей, требующей нахождения ранга матрицы, является проверка совместности системы линейных алгебраических уравнений. В этой статье мы дадим понятие ранга матрицы и рассмотрим методы его нахождения. Для лучшего усвоения материала подробно разберем решения нескольких примеров.

Навигация по странице.

Определение ранга матрицы и необходимые дополнительные понятия.

Прежде чем озвучить определение ранга матрицы, следует хорошо разобраться с понятием минора, а нахождение миноров матрицы подразумевает умение вычисления определителя. Так что рекомендуем при необходимости вспомнить теорию статьи методы нахождения определителя матрицы, свойства определителя.

Возьмем матрицу А порядка . Пусть k – некоторое натуральное число, не превосходящее наименьшего из чисел m и n , то есть, .

Определение.

Минором k-ого порядка матрицы А называется определитель квадратной матрицы порядка , составленной из элементов матрицы А , которые находятся в заранее выбранных k строках и k столбцах, причем расположение элементов матрицы А сохраняется.

Другими словами, если в матрице А вычеркнуть (p–k) строк и (n–k) столбцов, а из оставшихся элементов составить матрицу, сохраняя расположение элементов матрицы А , то определитель полученной матрицы есть минор порядка k матрицы А .

Разберемся с определением минора матрицы на примере.

Рассмотрим матрицу .

Запишем несколько миноров первого порядка этой матрицы. К примеру, если мы выберем третью строку и второй столбец матрицы А , то нашему выбору соответствует минор первого порядка . Иными словами, для получения этого минора мы вычеркнули первую и вторую строки, а также первый, третий и четвертый столбцы из матрицы А , а из оставшегося элемента составили определитель. Если же выбрать первую строку и третий столбец матрицы А , то мы получим минор .

Проиллюстрируем процедуру получения рассмотренных миноров первого порядка
и .

Таким образом, минорами первого порядка матрицы являются сами элементы матрицы.

Покажем несколько миноров второго порядка. Выбираем две строки и два столбца. К примеру, возьмем первую и вторую строки и третий и четвертый столбец. При таком выборе имеем минор второго порядка . Этот минор также можно было составить вычеркиванием из матрицы А третьей строки, первого и второго столбцов.

Другим минором второго порядка матрицы А является .

Проиллюстрируем построение этих миноров второго порядка
и .

Аналогично могут быть найдены миноры третьего порядка матрицы А . Так как в матрице А всего три строки, то выбираем их все. Если к этим строкам выбрать три первых столбца, то получим минор третьего порядка

Он также может быть построен вычеркиванием последнего столбца матрицы А .

Другим минором третьего порядка является

получающийся вычеркиванием третьего столбца матрицы А .

Вот рисунок, показывающий построение этих миноров третьего порядка
и .

Для данной матрицы А миноров порядка выше третьего не существует, так как .

Сколько же существует миноров k-ого порядка матрицы А порядка ?

Число миноров порядка k может быть вычислено как , где и - число сочетаний из p по k и из n по k соответственно.

Как же построить все миноры порядка k матрицы А порядка p на n ?

Нам потребуется множество номеров строк матрицы и множество номеров столбцов . Записываем все сочетания из p элементов по k (они будут соответствовать выбираемым строкам матрицы А при построении минора порядка k ). К каждому сочетанию номеров строк последовательно добавляем все сочетания из n элементов по k номеров столбцов. Эти наборы сочетаний номеров строк и номеров столбцов матрицы А помогут составить все миноры порядка k .

Разберем на примере.

Пример.

Найдите все миноры второго порядка матрицы .

Решение.

Так как порядок исходной матрицы равен 3 на 3, то всего миноров второго порядка будет .

Запишем все сочетания из 3 по 2 номеров строк матрицы А : 1, 2 ; 1, 3 и 2, 3 . Все сочетания из 3 по 2 номеров столбцов есть 1, 2 ; 1, 3 и 2, 3 .

Возьмем первую и вторую строки матрицы А . Выбрав к этим строкам первый и второй столбцы, первый и третий столбцы, второй и третий столбцы, получим соответственно миноры

Для первой и третьей строк при аналогичном выборе столбцов имеем

Осталось ко второй и третьей строкам добавить первый и второй, первый и третий, второй и третий столбцы:

Итак, все девять миноров второго порядка матрицы А найдены.

Сейчас можно переходить к определению ранга матрицы.

Определение.

Ранг матрицы – это наивысший порядок минора матрицы, отличного от нуля.

Ранг матрицы А обозначают как Rank(A) . Можно также встретить обозначения Rg(A) или Rang(A) .

Из определений ранга матрицы и минора матрицы можно заключить, что ранг нулевой матрицы равен нулю, а ранг ненулевой матрицы не меньше единицы.

Нахождение ранга матрицы по определению.

Итак, первым методом нахождения ранга матрицы является метод перебора миноров . Этот способ основан на определении ранга матрицы.

Пусть нам требуется найти ранг матрицы А порядка .

Вкратце опишем алгоритм решения этой задачи способом перебора миноров.

Если есть хотя бы один элемент матрицы, отличный от нуля, то ранг матрицы как минимум равен единице (так как есть минор первого порядка, не равный нулю).

Далее перебираем миноры второго порядка. Если все миноры второго порядка равны нулю, то ранг матрицы равен единице. Если существует хотя бы один ненулевой минор второго порядка, то переходим к перебору миноров третьего порядка, а ранг матрицы как минимум равен двум.

Аналогично, если все миноры третьего порядка равны нулю, то ранг матрицы равен двум. Если существует хотя бы один минор третьего порядка, отличный от нуля, то ранг матрицы как минимум равен трем, а мы преступаем к перебору миноров четвертого порядка.

Отметим, что ранг матрицы не может превышать наименьшего из чисел p и n .

Пример.

Найдите ранг матрицы .

Решение.

Так как матрица ненулевая, то ее ранг не меньше единицы.

Минор второго порядка отличен от нуля, следовательно, ранг матрицы А не меньше двух. Переходим к перебору миноров третьего порядка. Всего их штук.




Все миноры третьего порядка равны нулю. Поэтому, ранг матрицы равен двум.

Ответ:

Rank(A) = 2 .

Нахождение ранга матрицы методом окаймляющих миноров.

Существуют другие методы нахождения ранга матрицы, которые позволяют получить результат при меньшей вычислительной работе.

Одним из таких методов является метод окаймляющих миноров .

Разберемся с понятием окаймляющего минора .

Говорят, что минор М ок (k+1)-ого порядка матрицы А окаймляет минор M порядка k матрицы А , если матрица, соответствующая минору М ок , «содержит» матрицу, соответствующую минору M .

Другими словами, матрица, соответствующая окаймляемому минору М , получается из матрицы, соответствующей окаймляющему минору M ок , вычеркиванием элементов одной строки и одного столбца.

Для примера рассмотрим матрицу и возьмем минор второго порядка . Запишем все окаймляющие миноры:

Метод окаймляющих миноров обосновывается следующей теоремой (приведем ее формулировку без доказательства).

Теорема.

Если все миноры, окаймляющие минор k-ого порядка матрицы А порядка p на n , равны нулю, то все миноры порядка (k+1) матрицы А равны нулю.

Таким образом, для нахождения ранга матрицы не обязательно перебирать все миноры, достаточно окаймляющих. Количество миноров, окаймляющих минор k -ого порядка матрицы А порядка , находится по формуле . Отметим, что миноров, окаймляющих минор k-ого порядка матрицы А , не больше, чем миноров (k + 1)-ого порядка матрицы А . Поэтому, в большинстве случаев использование метода окаймляющих миноров выгоднее простого перебора всех миноров.

Перейдем к нахождению ранга матрицы методом окаймляющих миноров. Кратко опишем алгоритм этого метода.

Если матрица А ненулевая, то в качестве минора первого порядка берем любой элемент матрицы А , отличный от нуля. Рассматриваем его окаймляющие миноры. Если все они равны нулю, то ранг матрицы равен единице. Если же есть хотя бы один ненулевой окаймляющий минор (его порядок равен двум), то переходим к рассмотрению его окаймляющих миноров. Если все они равны нулю, то Rank(A) = 2 . Если хотя бы один окаймляющий минор отличен от нуля (его порядок равен трем), то рассматриваем его окаймляющие миноры. И так далее. В итоге Rank(A) = k , если все окаймляющие миноры (k + 1)-ого порядка матрицы А равны нулю, либо Rank(A) = min(p, n) , если существует ненулевой минор, окаймляющий минор порядка (min(p, n) – 1) .

Разберем метод окаймляющих миноров для нахождения ранга матрицы на примере.

Пример.

Найдите ранг матрицы методом окаймляющих миноров.

Решение.

Так как элемент a 1 1 матрицы А отличен от нуля, то возьмем его в качестве минора первого порядка. Начнем поиск окаймляющего минора, отличного от нуля:

Найден окаймляющий минор второго порядка, отличный от нуля . Переберем его окаймляющие миноры (их штук):

Все миноры, окаймляющие минор второго порядка , равны нулю, следовательно, ранг матрицы А равен двум.

Ответ:

Rank(A) = 2 .

Пример.

Найдите ранг матрицы с помощью окаймляющих миноров.

Решение.

В качестве отличного от нуля минора первого порядка возьмем элемент a 1 1 = 1 матрицы А . Окаймляющий его минор второго порядка не равен нулю. Этот минор окаймляется минором третьего порядка
. Так как он не равен нулю и для него не существует ни одного окаймляющего минора, то ранг матрицы А равен трем.

Ответ:

Rank(A) = 3 .

Нахождение ранга с помощью элементарных преобразований матрицы (методом Гаусса).

Рассмотрим еще один способ нахождения ранга матрицы.

Следующие преобразования матрицы называют элементарными:

  • перестановка местами строк (или столбцов) матрицы;
  • умножение всех элементов какой-либо строки (столбца) матрицы на произвольное число k , отличное от нуля;
  • прибавление к элементам какой-либо строки (столбца) соответствующих элементов другой строки (столбца) матрицы, умноженных на произвольное число k .

Матрица В называется эквивалентной матрице А , если В получена из А с помощью конечного числа элементарных преобразований. Эквивалентность матриц обозначается символом « ~ » , то есть, записывается A ~ B .

Нахождение ранга матрицы с помощью элементарных преобразований матрицы основано на утверждении: если матрица В получена из матрицы А с помощью конечного числа элементарных преобразований, то Rank(A) = Rank(B) .

Справедливость этого утверждения следует из свойств определителя матрицы:

  • При перестановке строк (или столбцов) матрицы ее определитель меняет знак. Если он равен нулю, то при перестановке строк (столбцов) он остается равным нулю.
  • При умножении всех элементов какой-либо строки (столбца) матрицы на произвольное число k отличное от нуля, определитель полученной матрицы равен определителю исходной матрицы, умноженному на k . Если определитель исходной матрицы равен нулю, то после умножения всех элементов какой-либо строки или столбца на число k определитель полученной матрицы также будет равен нулю.
  • Прибавление к элементам некоторой строки (столбца) матрицы соответствующих элементов другой строки (столбца) матрицы, умноженных на некоторое число k , не изменяет ее определителя.

Суть метода элементарных преобразований заключается в приведении матрицы, ранг которой нам требуется найти, к трапециевидной (в частном случае к верхней треугольной) с помощью элементарных преобразований.

Для чего это делается? Ранг матриц такого вида очень легко найти. Он равен количеству строк, содержащих хотя бы один ненулевой элемент. А так как ранг матрицы при проведении элементарных преобразований не изменяется, то полученное значение будет рангом исходной матрицы.

Приведем иллюстрации матриц, одна из которых должна получиться после преобразований. Их вид зависит от порядка матрицы.


Эти иллюстрации являются шаблонами, к которым будем преобразовывать матрицу А .

Опишем алгоритм метода .

Пусть нам требуется найти ранг ненулевой матрицы А порядка (p может быть равно n ).

Итак, . Умножим все элементы первой строки матрицы А на . При этом получим эквивалентную матрицу, обозначим ее А (1) :

К элементам второй строки полученной матрицы А (1) прибавим соответствующие элементы первой строки, умноженные на . К элементам третьей строки прибавим соответствующие элементы первой строки, умноженные на . И так далее до p-ой строки. Получим эквивалентную матрицу, обозначим ее А (2) :

Если все элементы полученной матрицы, находящиеся в строках со второй по p-ую , равны нулю, то ранг этой матрицы равен единице, а, следовательно, и ранг исходной матрицы равен единице.

Если же в строках со второй по p-ую есть хотя бы один ненулевой элемент, то продолжаем проводить преобразования. Причем действуем абсолютно аналогично, но лишь с отмеченной на рисунке частью матрицы А (2)

Если , то переставляем строки и (или) столбцы матрицы А (2) так, чтобы «новый» элемент стал ненулевым.

Пусть задана некоторая матрица :

.

Выделим в этой матрице произвольных строк ипроизвольных столбцов
. Тогда определитель-го порядка, составленный из элементов матрицы
, расположенных на пересечении выделенных строк и столбцов, называется минором-го порядка матрицы
.

Определение 1.13. Рангом матрицы
называется наибольший порядок минора этой матрицы, отличного от нуля.

Для вычисления ранга матрицы следует рассматривать все ее миноры наименьшего порядка и, если хоть один из них отличный от нуля, переходить к рассмотрению миноров старшего порядка. Такой подход к определению ранга матрицы называется методом окаймления (или методом окаймляющих миноров).

Задача 1.4. Методом окаймляющих миноров определить ранг матрицы
.

.

Рассмотрим окаймление первого порядка, например,
. Затем перейдем к рассмотрению некоторого окаймления второго порядка.

Например,
.

Наконец, проанализируем окаймление третьего порядка.

.

Таким образом, наивысший порядок минора, отличного от нуля, равен 2, следовательно,
.

При решении задачи 1.4 можно заметить, что ряд окаймляющих миноров второго порядка отличны от нуля. В этой связи имеет место следующее понятие.

Определение 1.14. Базисным минором матрицы называется всякий, отличный от нуля минор, порядок которого равен рангу матрицы.

Теорема 1.2. (Теорема о базисном миноре). Базисные строки (базисные столбцы) линейно независимы.

Заметим, что строки (столбцы) матрицы линейно зависимы тогда и только тогда, когда хотя бы одну из них можно представить как линейную комбинацию остальных.

Теорема 1.3. Число линейно независимых строк матрицы равно числу линейно независимых столбцов матрицы и равно рангу матрицы.

Теорема 1.4. (Необходимое и достаточное условие равенства нулю определителя). Для того, чтобы определитель-го порядкабыл равен нулю, необходимо и достаточно, чтобы его строки (столбцы) были линейно зависимы.

Вычисление ранга матрицы, основанное на использовании его определения, является слишком громоздкой операцией. Особенно это становится существенным для матриц высоких порядков. В этой связи на практике ранг матрицы вычисляют на основании применения теорем 10.2 - 10.4, а также использования понятий эквивалентности матриц и элементарных преобразований.

Определение 1.15. Две матрицы
иназываются эквивалентными, если их ранги равны, т.е.
.

Если матрицы
иэквивалентны, то отмечают
.

Теорема 1.5. Ранг матрицы не меняется от элементарных преобразований.

Будем называть элементарными преобразованиями матрицы
любые из следующих действий над матрицей:

Замену строк столбцами, а столбцов соответствующими строками;

Перестановку строк матрицы;

Вычеркивание строки, все элементы которой равны нулю;

Умножение какой-либо строки на число, отличное от нуля;

Прибавление к элементам одной строки соответствующих элементов другой строки умноженных на одно и то же число
.

Следствие теоремы 1.5. Если матрица
получена из матрицыпри помощи конечного числа элементарных преобразований, то матрицы
иэквивалентны.

При вычислении ранга матрицы ее следует привести при помощи конечного числа элементарных преобразований к трапециевидной форме.

Определение 1.16. Трапециевидной будем называть такую форму представления матрицы, когда в окаймляющем миноре наибольшего порядка отличного от нуля все элементы, стоящие ниже диагональных, обращаются в нуль. Например:

.

Здесь
, элементы матрицы
обращаются в нуль. Тогда форма представления такой матрицы будет трапециевидной.

Как правило, матрицы к трапециевидной форме приводят при помощи алгоритма Гаусса. Идея алгоритма Гаусса состоит в том, что, умножая элементы первой строки матрицы на соответствующие множители, добиваются, чтобы все элементы первого столбца, расположенные ниже элемента
, превращались бы в нуль. Затем, умножая элементы второго столбца на соответствующие множители, добиваются, чтобы все элементы второго столбца, расположенные ниже элемента
, превращались бы в нуль. Далее поступают аналогично.

Задача 1.5. Определить ранг матрицы путем сведения ее к трапециевидной форме.

.

Для удобства применения алгоритма Гаусса можно поменять местами первую и третью строки.






.

Очевидно, что здесь
. Однако, для приведения результата к более изящному виду можно далее продолжить преобразования над столбцами.








.

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными , если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например,

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Пример 2 Найти ранг матрицы

А=

и привести ее к каноническому виду.

Решение. Из второй строки вычтем первую и переставим эти строки:

.

Теперь из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5:

;

из третьей строки вычтем первую; получим матрицу

В = ,

которая эквивалентна матрице А, так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы В равен 2, а следовательно, и r(A)=2. Матрицу В легко привести к канонической. Вычитая первый столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменяются. Затем, вычитая второй столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу:

.

Теоре́ма Кро́некера - Капе́лли - критерий совместности системы линейных алгебраических уравнений:

Для того чтобы линейная система являлась совместной, необходимо и достаточно, что бы ранг расширенной матрицы этой системы был равен рангу ее основной матрицы.

Доказательство (условия совместности системы)

Необходимость

Пусть система совместна. Тогда существуют числа такие, что . Следовательно, столбец является линейной комбинацией столбцов матрицы . Из того, что ранг матрицы не изменится, если из системы его строк (столбцов) вычеркнуть или приписать строку (столбец), которая является линейной комбинацией других строк (столбцов) следует, что .

Достаточность

Пусть . Возьмем в матрице какой-нибудь базисный минор. Так как , то он же и будет базисным минором и матрицы . Тогда, согласно теореме о базисном миноре , последний столбец матрицы будет линейной комбинацией базисных столбцов, то есть столбцов матрицы . Следовательно, столбец свободных членов системы является линейной комбинацией столбцов матрицы .

Следствия

    Количество главных переменных системы равно рангу системы.

    Совместная система будет определена (её решение единственно), если ранг системы равен числу всех её переменных.

Однородная система уравнений

Предложение 15 . 2 Однородная система уравнений

всегда является совместной.

Доказательство . Для этой системы набор чисел , , , является решением.

В этом разделе мы будем использовать матричную запись системы: .

Предложение 15 . 3 Сумма решений однородной системы линейных уравнений является решением этой системы. Решение, умноженное на число, тоже является решением.

Доказательство . Пусть и служат решениями системы . Тогда и . Пусть . Тогда

Так как , то -- решение.

Пусть -- произвольное число, . Тогда

Так как , то -- решение.

Следствие 15 . 1 Если однородная система линейных уравнений имеет ненулевое решение, то она имеет бесконечно много различных решений.

Действительно, умножая ненулевое решение на различные числа, будем получать различные решения.

Определение 15 . 5 Будем говорить, что решения системы образуют фундаментальную систему решений , если столбцы образуют линейно независимую систему и любое решение системы является линейной комбинацией этих столбцов.

>>Ранг матрицы

Ранг матрицы

Определение ранга матрицы

Рассмотрим прямоугольную матрицу. Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k-го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А. Очевидно, что матрица А обладает минорами любого порядка от 1 до наименьшего из чисел m и n. Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r , то это означает, что в матрице А имеется отличный от нуля минор порядка r , но всякий минор порядка, большего чем r , равен нулю. Ранг матрицы А обозначается через r(A). Очевидно, что выполняется соотношение

Вычисление ранга матрицы с помощью миноров

Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований. При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор D k-го порядка матрицы А, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D, т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен k .

Пример 1. Найти методом окаймления миноров ранг матрицы

.

Решение. Начинаем с миноров 1-го порядка, т.е. с элементов матрицы А. Выберем, например, минор (элемент) М 1 = 1, расположенный в первой строке и первом столбце. Окаймляя при помощи второй строки и третьего столбца, получаем минор M 2 = , отличный от нуля. Переходим теперь к минорам 3-го порядка, окаймляющим М 2 . Их всего два (можно добавить второй столбец или четвертый). Вычисляем их: = 0. Таким образом, все окаймляющие миноры третьего порядка оказались равными нулю. Ранг матрицы А равен двум.

Вычисление ранга матрицы с помощью элементарных преобразований

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными , если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например,

.

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Пример 2 Найти ранг матрицы

А=

и привести ее к каноническому виду.

Решение. Из второй строки вычтем первую и переставим эти строки:

.

Теперь из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5:

;

из третьей строки вычтем первую; получим матрицу

В = ,

которая эквивалентна матрице А, так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы В равен 2, а следовательно, и r(A)=2. Матрицу В легко привести к канонической. Вычитая первый столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменяются. Затем, вычитая второй столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу:

.