Как найти разрешающий элемент в симплекс таблице. Решение линейного программирования на заказ

Приведенные выше преобразования удобно выполнять в специальных таблицах, называемых симплекс-таблицами.

В симплекс-таблице выделяются следующие блоки:

Запишем решение задачи примера из раздела 3.3 в симплекс-таблицах:

Все исходные данные, содержащиеся в математическом условии задачи, переносятся в первую симплексную таблицу. Зануляя свободные переменные, получаем опорный план

В последнюю строку первой симплекс-таблицы заносим критерий в неявной форме

Исключаем из этого критерия базисную переменную x 4 , приводя критерий к виду

Для оптимальности решения все оценки должны быть неотрицательны

Решение не оптимальное, т.к. есть отрицательные оценки.

Оценки могут быть вычислены по формулам. Произведение представляет из себя, текущий вектор матрицы условий, тогда оценку свободной переменной можно вычислить как скалярное произведение вектора коэффициентов при базисных переменных на текущий вектор матрицы условий минус коэффициент целевой функции при этой переменной. Так, для получаем значение

Разрешающим столбцом выбираем тот, где наименьшая по величине оценка (если задача на максимум). А для выбора разрешающей строки нужно среди всех строк найти, выраженная из которой переменная, уменьшаясь, которая быстрее обращается в ноль.

В итоге, мы получаем, что разрешающий столбец - , а разрешающая строка - . Значит из списка базисных выходит переменная и входит переменная.

Решение не оптимальное, т.к. есть отрицательная оценка -2.

Решение оптимальное, т.к. все оценки больше нуля. Очевидно, что увеличить нельзя.


Правила построения симплекс-таблиц

Симплекс-таблица строится для какого-либо опорного решения.

Пусть опорное решение. Симплекс-таблица для этого решения имеет вид


Базисная матрица B = (A 1 , A 2 , … A m)

· при базисных переменных текущая матрица единичная.

  • · любой столбец.
  • · вектор правых частей ограничений.
  • · оценки при свободных переменных не нулевые

· в правой нижней клетке - значение критерия

Этапы симплекс-метода

  • 1. Проверка признака оптимальности ()
  • 2. Если есть, то решение не оптимальное. Тогда выбираем столбец с минимальной оценкой. Его назовем разрешающим.
  • 3. Разрешающая строка выбирается по минимальному отношению свободных членов к положительным коэффициентам разрешающего столбца. Базисная переменная, выражающаяся из этой строки, выходит из списка базисных переменных. Т.е. x k выходит, а x s входит.
  • 4. Текущая симплекс-таблица преобразуется по следующему правилу:
    • · разрешающая строка делится на разрешающий элемент:
  • · разрешающий столбец заменяется единичным.
  • · все остальные элементы симплекс-таблицы могут быть пересчитаны по правилу четырехугольника:

Мысленно строится четырехугольник на диагонали, соединяющей искомый элемент с разрешающим. Тогда новое значение элемента равно прежнему значению минус произведение элементов на противоположной диагонали, деленное на разрешающий элемент.

Или новое значение элемента равно произведению элементов на главной диагонали минус произведение элементов на противоположной диагонали, и все это деленное на разрешающий элемент.

Замечание : Если в разрешающей строке был нулевой элемент, значит этот столбец не меняется; если в разрешающем столбце есть нулевой элемент, то соответствующая строка не меняется.

Для начала работы требуется, чтобы заданная система ограничений выражалась равенствами, причём в этой системе ограничений должны быть выделены базисные неизвестные. Решение задачи симплекс-методом распадается на ряд шагов. На каждом шаге от данного базиса Б переходят к другому, новому базису Б 1 с таим расчётом, чтобы значение функции Z уменьшилось, т.е. . Для перехода к новому базису из старого базиса удаляется одна из переменных и вместо нее вводится другая из числа свободных. После конечного числа шагов находится некоторый базис Б (k) , для которого есть искомый минимум для линейной функцииZ, а соответствующее базисное решение является оптимальным либо выясняется, что задача не имеет решения.

4.1 Алгоритм симплекс-метода.

Рассмотрю систему ограничений и линейную форму вида:

(4.1)

Используя метод Жордана-Гауса, приведём записанную систему к виду, где выделены базисные переменные.

Введём условные обозначения:

–базисные переменные;

–свободные переменные.

(4.4)

По последней системе ограничений построим табл. 4.1.

Таблица 4.1

Симплекс-таблица

Свободные

Базисные

неизвестные

Свободный

Данная таблица называется симплекс-таблицей. Все дальнейшие преобразования связаны с изменением содержания этой таблицы.

Алгоритм симплекс-метода сводится к следующему.

1. В последней строке симплекс-таблицы находится наименьший положительный элемент, не считая свободного члена. Столбец, соответствующий этому элементу, считается разрешающим.

2. Вычисляют отношение свободных членов к положительным элементам разрешающего столбца (симплекс-отношение). Находят наименьшее из этих симплекс-отношений, оно соответствует разрешающей строке.

3. На пересечении разрешающих строки и столбца находится разрешающий элемент.

4. Если имеется несколько одинаковых по величине симплекс-отношений, то выбирают любое из них, то выбирают любое из них. То же самое относится к положительным элементам последней строки симплекс-таблицы.

5. После нахождения разрешающего элемента переходят к следующей таблице. Неизвестные переменные, соответствующие разрешающей стоке и столбцу, меняют местами. При этом базисная переменная становится свободной переменной, и наоборот. Симплекс таблица преобразована следующим образом

Таблица 4.2

Симплекс-таблица

Свободные

Базисные

неизвестные

Свободный

6. Элемент табл. 4.2 соответствующий разрешающему элементу табл. 4.1, равен обратной величине разрешающего элемента.

7. Элементы строки табл. 4.2, соответствующие элементам разрешающей стоки табл. 4.1, получаются путём деления соответствующих элементов табл. 4.1 на разрешающий элемент.

8. Элементы столбца табл. 4.2, соответствующие элементам разрешающего столбца табл. 4.1, получаются путём деления соответствующих элементов табл. 4.1 на разрешающий элемент и берутся с противоположным знаком.

9. Остальные элементы вычисляются по правилу прямоугольника: мысленно вычерчиваем прямоугольник в табл.4.2, одна вершина которого совпадает с разрешающим элементом, а другая – с элементом, образ которого мы ищем; остальные две вершины определяются однозначно. Тогда искомый элемент табл. 4.2 будет равен соответствующему элементу табл. 4.1 минус дробь в знаменателе который стоит разрешающий элемент, а в числителе произведение элементов из двух неиспользованных вершин прямоугольника.

10. Как только получится таблица, в которой в последней стоке все элементы отрицательны, считается, что минимум найден. Минимальное значение функции равно свободному члену в строке целевой функции, а оптимальное решение определяется свободными членами при базисных переменных. Все свободные переменные в этом случае равны нулю.

11. Если в разрешающем столбце все элементы отрицательны, то задача не имеет решений (минимум не достигается).

5. Методы нахождения опорного решения задачи линейного программирования.

5.1. Метод искусственного базиса.

Сформулированный выше алгоритм Симплекс-метода можно применять лишь в том случае, если выделено первое допустимое решение, т.е. исходная задача линейного программирования приведена к виду

При этом , тогда, положив свободные неизвестныеравными нулю, получаем опорное решение.

Рассмотрю метод нахождения опорного решения, основанный на введении искусственных переменных. Для этого запишем задачу линейного программирования в общем виде. Будем рассматривать задачу с числом неизвестных иограничениями:

(5.1)

Перепишем систему (5.1) в другом виде. Для этого введём искусственные переменные так, чтобы был выделен базис. Тогда система примет вид

(5.2)

Системы (5.1) и (5.2) будут эквивалентны в том случае, если все , длябудут равны 0. Кроме того, считаю, что вседля. В противном случае соответствующие ограничения из системы (5.1) умножим на – 1. Для того чтобыбыли равны 0, мы должны преобразовать задачу таким образом, чтобы все искусственные переменныеперешли в свободные неизвестные.

В этом случае система (5.2) после преобразования примет вид:

(5.3)

От системы (5.2) к системе (5.3) всегда можно перейти шагами симплекс-метода. При таком переходе в качестве линейной формы рассматривают функцию

равную сумме искусственных переменных. Переход заканчивают, когда и все искусственные переменныепереведены в свободные неизвестные.

Анализ вариантов решений

1. Если , а всепереведены в свободные переменные, то задача не имеет положительного решения.

2. Если , а частьосталась в базисе, то для перевода их в свободные необходимо применять специальные приёмы.

В симплекс-таблице, соответствующей системе (5.3), после того как , а все- свободные, вычёркивают строку дляи столбцы дляи решают задачу для исходной линейной формы.

5.2. Второй алгоритм отыскания опорного плана.

Пусть задача линейного программирования записана в каноническом виде:

(5.5)

Построим первую таблицу Жордана-Гаусса для задач (5.5) и (5.6). Для единообразия вычислительной процедуры к исходной таблице приписываем строку целевой функции:

После приведения системы ограничений к единичному базису целевая функция, как и базисные переменные, будет выражена через свободные переменные. Аналогичным приёмом я пользовался, когда решали задачи графическим методом с числом переменных более двух.

Алгоритм метода

1. Запишем задачу в форме (5.7), при этом все элементы столбца свободных членов должны быть неотрицательны,. Уравнения системы (5.5), в которых свободные члены отрицательны, предварительно нужно умножить на – 1.

2. Таблицу (5.7) преобразуем шагами Жордана-Гаусса исключений. При этом на каждом шаге разрешающим может быть выбран любой столбец, содержащий хотя бы один положительный элемент. Строка целевой функции на выбор разрешающих столбцов влияние не оказывает.

3. Разрешающая строка определяется по наименьшему из отношений свободных членов к элементам разрешающего столбца.

4. В процессе преобразований вычёркиваем строки, состоящие из одних нулей.

5. Если в процессе преобразований встречается строка, все элементы которой нули, а свободный член отличен от нуля, то задача не имеет решения. Если встретится строка, в которой, кроме свободного члена, других положительных элементов нет, то говорят, что задача не имеет положительных решений.

Пояснение. В п.1.1 алгоритма предполагается, что все элементы столбца свободных членов неотрицательны. Это требование необязательно. В случае когда в столбце свободных членов встречаются отрицательные числа, будем пользоваться теоремой.

Теорема. Если разрешающий элемент выбирать по наименьшему положительному симплекс-отношению, то после шага Жордана-Гаусса свободный член в разрешающей строке становится положительным, а остальные члены сохраняют свой знак.

Выбор разрешающего элемента производят иначе, а именно.

1. Просматривают строку, соответствующую какому-либо отрицательному свободному члену. Выбирают в ней какой-либо отрицательный элемент – соответствующий этому элементу столбец будет разрешающим.

2. Выбор разрешающего элемента производится по минимальному положительному симплекс-отношению. Если задача разрешима, то через конечное число шагов получают первое допустимое решение и можно применять симплекс-метод.

В некоторых случаях найденное таким образом первое допустимое решение является также и оптимальным решением.

Один из методов решения оптимизационных задач (как правило связанных с нахождением минимума или максимума ) линейного программирования называется . Симплекс-метод включает в себя целую группу алгоритмов и способов решения задач линейного программирования. Один из таких способов, предусматривающий запись исходных данных и их пересчет в специальной таблице, носит наименование табличного симплекс-метода .

Рассмотрим алгоритм табличного симплекс-метода на примере решения производственной задачи , которая сводится к нахождению производственного плана обеспечивающего максимальную прибыль.

Исходные данные задачи на симплекс-метод

Предприятие выпускает 4 вида изделий, обрабатывая их на 3-х станках.

Нормы времени (мин./шт.) на обработку изделий на станках, заданы матрицей A:

Фонд времени работы станков (мин.) задан в матрице B:

Прибыль от продажи каждой единицы изделия (руб./шт.) задана матрицей C:

Цель производственной задачи

Составить такой план производства, при котором прибыль предприятия будет максимальной.

Решение задачи табличным симплекс-методом

(1) Обозначим X1, X2, X3, X4 планируемое количество изделий каждого вида. Тогда искомый план: (X1, X2, X3, X4 )

(2) Запишем ограничения плана в виде системы уравнений:

(3) Тогда целевая прибыль:

То есть прибыль от выполнения производственного плана должна быть максимальной.

(4) Для решения получившейся задачи на условный экстремум, заменим систему неравенств системой линейных уравнений путем ввода в нее дополнительных неотрицательных переменных (X5, X6, X7 ).

(5) Примем следующий опорный план :

X1 = 0, X2 = 0, X3 = 0, X4 = 0, X5 = 252, X6 = 144, X7 = 80

(6) Занесем данные в симплекс-таблицу :

В последнюю строку заносим коэффициенты при целевой функции и само ее значение с обратным знаком;

(7) Выбираем в последней строке наибольшее (по модулю ) отрицательное число.

Вычислим b = Н / Элементы_выбранного_столбца

Среди вычисленных значений b выбираем наименьшее .

Пересечение выбранных столбца и строки даст нам разрешающий элемент. Меняем базис на переменную соответствующую разрешающему элементу (X5 на X1 ).

  • Сам разрешающий элемент обращается в 1.
  • Для элементов разрешающей строки – a ij (*) = a ij / РЭ (то есть каждый элемент делим на значение разрешающего элемента и получаем новые данные ).
  • Для элементов разрешающего столбца – они просто обнуляются.
  • Остальные элементы таблицы пересчитываем по правилу прямоугольника.

a ij (*) = a ij – (A * B / РЭ)

Как видите, мы берем текущую пересчитываемую ячейку и ячейку с разрешающим элементом. Они образуют противоположные углы прямоугольника. Далее перемножаем значения из ячеек 2-х других углов этого прямоугольника. Это произведение (A * B ) делим на разрешающий элемент (РЭ ). И вычитаем из текущей пересчитываемой ячейки (a ij ) то, что получилось. Получаем новое значение - a ij (*) .

(9) Вновь проверяем последнюю строку (c ) на наличие отрицательных чисел . Если их нет – оптимальный план найден, переходим к последнему этапу решения задачи. Если есть – план еще не оптимален, и симплекс-таблицу вновь нужно пересчитать.

Так как у нас в последней строке снова имеются отрицательные числа, начинаем новую итерацию вычислений.

(10) Так как в последней строке нет отрицательных элементов, это означает, что нами найден оптимальный план производства! А именно: выпускать мы будем те изделия, которые перешли в колонку «Базис» - X1 и X2. Прибыль от производства каждой единицы продукции нам известна (матрица C ). Осталось перемножить найденные объемы выпуска изделий 1 и 2 с прибылью на 1 шт., получим итоговую (максимальную! ) прибыль при данном плане производства.

ОТВЕТ:

X1 = 32 шт., X2 = 20 шт., X3 = 0 шт., X4 = 0 шт.

P = 48 * 32 + 33 * 20 = 2 196 руб.

Галяутдинов Р.Р.


© Копирование материала допустимо только при указании прямой гиперссылки на

Рассмотрим решение ЗЛП симплекс-методом и изложим ее применительно к задаче максимизации.

1. По условию задачи составляется ее математическая модель.

2. Составленная модель преобразовывается к канонической форме. При этом может выделиться базис с начальным опорным планом.

3. Каноническая модель задачи записывается в форме симплекс-таблицы так, чтобы все свободные члены были неотрицательными. Если начальный опорный план выделен, то переходят к пункту 5.

Симплекс таблица: вписывается система ограничительных уравнений и целевая функция в виде выражений, разрешенных относительно начального базиса. Строку, в которую вписаны коэффициенты целевой функции F, называют F-строкой или строкой целевой функции.

4. Находят начальный опорный план, производя симплексные преобразования с положительными разрешающими элементами, отвечающими минимальным симплексным отношениям, и не принимая во внимание знаки элементов F-строки. Если в ходе преоб­разований встретится 0-строка, все элементы которой, кроме свободного члена, нули, то система ограничительных уравнений задачи несовместна. Если же встретится 0-строка, в которой, кроме свободного члена, других положительных элементов нет, то система ограничительных уравнений не имеет неотрицательных решений.

Приведение системы (2.55), (2.56) к новому базису будем называть симплексным преобразованием. Если симплексное преобра­зование рассматривать как формальную алгебраическую операцию, то можно заметить, что в результате этой операции происходит перераспределение ролей между двумя переменными, входящими в некоторую систему линейных функций: одна переменная из зависимых переходит в независимые, а другая наоборот - из независимых в зависимые. Такая операция известна в алгебре под названием шага жорданова исключения.

5. Найденный начальный опорный план исследуется на оптимальность:

а) если в F-строке нет отрицательных элементов (не считая свободного члена), то план оптимален. Если при этом нет и нулевых, то оптимальный план единственный; если же есть хотя бы один нулевой, то оптимальных планов бесконечное множество;

б) если в F-строке есть хотя бы один отрицательный элемент, которому соответствует столбец неположительных элементов, то <

в) если в F-строке есть хотя бы один отрицательный элемент, а в его столбце есть хотя бы один положительный, то можно перейти к новому опорному плану, более близкому к оптимальному. Для этого указанный столбец надо назначить разрешающим, по минимальному симплексному отношению найти разрешающую строку и выполнить симплексное преобразование. Полученный опорный план вновь исследовать на оптимальность. Описанный процесс повторяется до получения оптимального плана либо до установления неразрешимости задачи.

Столбец коэффициентов при переменной, включаемой в базис, называют разрешающим. Таким образом, выбирая переменную, вводимую в базис (или выбирая разрешающий столбец) по отрицательному элементу F-строки, мы обеспечиваем возрастание функции F.

Немного сложней определяется переменная, подлежащая исключению из базиса. Для этого составляют отношения свободных членов к положительным элементам разрешающего столбца (такие отношения называют симплексными) и находят среди них наименьшее, которое и определяет строку (разрешающую), содержащую исключаемую переменную. Выбор переменной, исключаемой из базиса (или выбор разрешающей строки), по минимальному симплексному отношению гарантирует, как уже установлено, положительность базисных компонент в новом опорном плане.

В пункте 3 алгоритма предполагается, что все элементы столбца свободных членов неотрицательны. Это требование не обязательно, но если оно выполнено, то все последующие симплексные преобразования производятся только с положительными разрешающими элементами, что удобно при расчетах. Если в столбце свободных членов есть отрицательные числа, то разрешающий элемент выбирают следующим образом:

1) просматривают строку, отвечающую какому-либо отрицательному свободному члену, например t-строку, и выбирают в ней какой-либо отрицательный элемент, а соответствующий ему столбец принимают за разрешающий (предполагаем, что ограничения задачи совместны);

2) составляют отношения элементов столбца свободных членов к соответствующим элементам разрешающего столбца, имеющим одинаковые знаки (симплексные отношения);

3) из симплексных отношений выбирают наименьшее. Оно и определит разрешающую строку. Пусть ею будет, например, р -строка;

4) на пересечении разрешающих столбца и строки находят разрешающий элемент. Если разрешающим оказался элемент y-строки, то после симплексного преобразования свободный член этой строки станет положительным. В противном случае на следующем шаге вновь обращаются к t-строке. Если задача разрешима, то через некоторое число шагов в столбце свободных членов не останется отрицательных элементов.

Нахождение исходного опорного плана, канонический вид ЗЛП

Идея последовательного улучшения решения легла в основу универсального метода решения задач линейного программирования - симплексного метода или метода последовательного улучшения плана.

Геометрический смысл симплексного метода состоит в последовательном переходе от одной вершины многогранника ограничений (называемой первоначальной) к соседней, в которой линейная функция принимает лучшее (по крайней мере, не худшее) значение по отношению к цели задачи; до тех пор, пока не будет найдено оптимальное решение - вершина, где достигается оптимальное значение функции цели (если задача имеет конечный оптимум).

Впервые симплексный метод был предложен американским ученым Дж. Данцигом в 1949 г., однако еще в 1939 г. идеи метода были разработаны российским ученым Л.В. Канторовичем.

Симплексный метод, позволяющий решить любую задачу линейного программирования, универсален. В настоящее время он используется для компьютерных расчетов, однако несложные примеры с применением симплексного метода можно решать и вручную.

Для реализации симплексного метода - последовательного улучшения решения - необходимо освоить три основных элемента:

Способ определения какого-либо первоначального допустимого базисного решения задачи;

Правило перехода к лучшему (точнее, не худшему) решению;

Критерий проверки оптимальности найденного решения.

Для использования симплексного метода задача линейного программирования должна быть приведена к каноническому виду, т.е. система ограничений должна быть представлена в виде уравнений.

В литературе достаточно подробно описываются: нахождение начального опорного плана (первоначального допустимого базисного решения), тоже - методом искусственного базиса, нахождение оптимального опорного плана, решение задач с помощью симплексных таблиц.

58. Основная теорема симплекс метода.

???????????????????????????????????????????????????????????????????????

59. Альтернативный оптимум в ЗЛП, вырожденность в ЗЛП.

Вырожденность в задачах линейного программирования

Рассматривая симплекс-метод, мы предполагали, что задача линейного программирования является невырожденной, т.е. каждый опорный план содержит ровно m положительных компонент, где m - число ограничений в задаче. В вырожденном опорном плане число положительных компонент оказывается меньше числа ограничений: некоторые базисные переменные, соответствующие данному опорному плану, принимают нулевые значения. Используя геометрическую интерпретацию для простейшего случая, когда n - m = 2 (число небазисных переменных равно 2), легко отличить вырожденную задачу от невырожденной. В вырожденной задаче в одной вершине многогранника условий пересекается более двух прямых, описываемых уравнениями вида xi = 0. Это значит, что одна или несколько сторон многоугольника условий стягиваются в точку. Аналогично при n - m = 3 в вырожденной задаче в одной вершине пересекается более 3-х плоскостей xi = 0. В предположении о невырожденности задачи

находилось только одно значение, по которому определялся индекс выводимого из базиса вектора условий (выводимой из числа базисных переменной). В

вырожденной задаче может достигаться на нескольких индексах сразу (для нескольких строк). В этом случае в находимом опорном плане несколько базисных переменных будут нулевыми. Если задача линейного программирования оказывается вырожденной, то при плохом выборе вектора условий, выводимого из базиса, может возникнуть бесконечное движение по базисам одного и того же опорного плана. Это - так называемое явление зацикливания. Хотя в практических задачах линейного программирования зацикливание явлеется довольно редким, возможность его не исключена. Один из приемов борьбы с вырожденностью состоит в преобразовании задачи путем "незначительного" изменения вектора правых частей системы ограничений на величины таким образом, чтобы задача стала невырожденной, и, в то же время, чтобы это изменение не повлияло реально на оптимальный план задачи. Чаще реализуемые алгоритмы включают в себя некоторые простые правила, снижающие вероятность возникновения зацикливания или его преодоления. Пусть переменную xj необходимо сделать базисной. Рассмотрим

множество индексов E0, состоящее из тех i, для которых достигается. Множество индексов i, для которых выполняется данное условие обозначим через E0,. Если E0, состоит из одного элемента, то из базиса исключается вектор условий Ai (переменная xi делается небазисной). Если E0 состоит более чем из одного элемента, то составляется множество E1, которое состоит из , на которых достигается . Если E1 состоит из одного индекса k, то из базиса выводится переменная xk. В противном случае составляется множество E2 и т.д. Практически правилом надо пользоваться, если зацикливание уже обнаружено.

Альтернативный оптимум в ЗЛП???????????????????????????

60. Метод искусственного базиса. М-задача. Теорема о связи между решениями исходной задачи и М-задачи.

Метод искусственного базиса.

Метод искусственного базиса используется для нахождения допустимого базисного решения задачи линейного программирования, когда в условии присутствуют ограничения типа равенств. Рассмотрим задачу:

max{F(x)=∑cixi|∑ajixi=bj, j=1,m; xi≥0}.

В ограничения и в функцию цели вводят так называемые «искусственные переменные» Rj следующим образом:

∑ajix+Rj=bj, j=1,m;F(x)=∑cixi-M∑Rj

При введении искусственных переменных в методе искусственного базиса в функцию цели им приписывается достаточно большой коэффициент M, который имеет смысл штрафа за введение искусственных переменных. В случае минимизации искусственные переменные прибавляются к функции цели с коэффициентом M. Введение искусственных переменных допустимо в том случае, если в процессе решения задачи они последовательно обращаются в нуль.

Симплекс-таблица, которая составляется в процессе решения, используя метод искусственного базиса, называется расширенной. Она отличается от обычной тем, что содержит две строки для функции цели: одна – для составляющей F = ∑cixi, а другая – для составляющей M ∑Rj Рассмотрим процедуру решения задачи на конкретном примере.

Пример 1. Найти максимум функции F(x) = -x1 + 2x2 - x3 при ограничениях:

x1≥0, x2≥0, x3≥0 .

Применим метод искусственного базиса. Введем искусственные переменные в ограничения задачи

2x1 + 3x2 + x3 + R1 = 3;

x1 + 3x3 + R2 = 2 ;

Функция цели F(x)-M ∑Rj= -x1 + 2x2 - x3 - M(R1+R2).

Выразим сумму R1 + R2 из системы ограничений: R1 + R2 = 5 - 3x1 - 3x2 - 4x3, тогда F(x) = -x1 + 2x2 - x3 - M(5 - 3x1 - 3x2 - 4x3) .

При составлении первой симплекс-таблицы (табл. 1) будем полагать, что исходные переменные x1, x2 , x3 являются небазисными, а введенные искусственные переменные – базисными. В задачах максимизации знак коэффициентов при небазисных переменных в F- и M-строках изменяется на противоположный. Знак постоянной величины в M-строке не изменяется. Оптимизация проводится сначала по M-строке. Выбор ведущих столбца и строки, все симплексные преобразования при испльзовании метода искусственного базиса осуществляются как в обычном симплекс-методе.

Максимальный по абсолютному значению отрицательный коэффициент (-4) определяет ведущий столбец и переменную x3, которая перейдет в базис. Минимальное симплексное отношение (2/3) соответствует второй строке таблицы, следовательно, переменная R2 должна быть из базиса исключена. Ведущий элемент обведен контуром.

В методе искусственного базиса искусственные переменные, исключенные из базиса, в него больше не возвращаются, поэтому столбцы элементов таких переменных опускаются. Табл. 2. сократилась на 1 столбец. Осуществляя пересчет этой таблицы, переходим к табл. 3., в которой строка M обнулилась, ее можно убрать. После исключения из базиса всех искусственных переменных получаем допустимое базисное решение исходной задачи, которое в рассматриваемом примере является оптимальным:

x1=0; x2=7/9; Fmax=8/9.

Если при устранении M-строки решение не является оптимальным, то процедура оптимизации продолжается и выполняется обычным симплекс-методом. Рассмотрим пример, в котором присутствуют ограничения всех типов:≤,=,≥

Условие задачи

Найти оптимальные величины производства продукции видов А, Б и В. Затраты сырья на единицу продукции: А – 5, Б – 2, В – 4. Объем сырья – 2000 единиц. Затраты оборудования на единицу продукции: А – 4, Б – 5, В – 4. Объем оборудования – 1000 единиц. Прибыль от реализации единицы продукции: А – 10, Б – 8, В – 12. Критерий – максимум прибыли предприятия. Производство продукции А должно быть не менее 100 ед. Производство продукции Б должно быть не менее 50 ед.

Решение задачи симплекс М методом

1) Определение оптимального плана производства

Пусть x1, x2, x3 - количество произведенной продукции вида А, Б, В, соответственно. Тогда математическая модель задачи имеет вид:

F = 10·x1 + 8·x2 + 12·x3 –>max

Вводим дополнительные переменные x4 ≥ 0, x5 ≥ 0, x6 ≥ 0, x7 ≥ 0, чтобы неравенства преобразовать в равенства.

Чтобы выбрать начальный базис, вводим искусственные переменные x8 ≥ 0, x9 ≥ 0 и очень большое число M (M –> ∞). Решаем М методом.

F = 10·x1 + 8·x2 + 12·x3 + 0·x4 + 0·x5 + 0·x6 + 0·x7– M·x8– M·x9 –>max

В качестве базиса возьмем x4 = 2000; x5 = 1000; x8 = 100; x9 = 50.

Данные заносим в симплекс таблицу

Симплекс таблица № 1

Целевая функция:

0 · 2000 + 0 · 1000 + (– M) · 100 + (– M) · 50 = – 150M

Вычисляем оценки по формуле:

Δ1 = 0 · 5 + 0 · 4 + (– M) · 1 + (– M) · 0 – 10 = – M – 10

Δ2 = 0 · 2 + 0 · 5 + (– M) · 0 + (– M) · 1 – 8 = – M – 8

Δ3 = 0 · 4 + 0 · 4 + (– M) · 0 + (– M) · 0 – 12 = – 12

Δ4 = 0 · 1 + 0 · 0 + (– M) · 0 + (– M) · 0 – 0 = 0

Δ5 = 0 · 0 + 0 · 1 + (– M) · 0 + (– M) · 0 – 0 = 0

Δ6 = 0 · 0 + 0 · 0 + (– M) · (–1) + (– M) · 0 – 0 = M

Δ7 = 0 · 0 + 0 · 0 + (– M) · 0 + (– M) · (–1) – 0 = M

Δ2 = 0 · 0 + 12 · 0 + 10 · 0 + 8 · 1 – 8 = 0

Δ3 = 0 · 0 + 12 · 1 + 10 · 0 + 8 · 0 – 12 = 0

Δ4 = 0 · 1 + 12 · 0 + 10 · 0 + 8 · 0 – 0 = 0

Δ5 = 0 · (–1) + 12 · 1/4 + 10 · 0 + 8 · 0 – 0 = 3

Δ6 = 0 · 1 + 12 · 1 + 10 · (–1) + 8 · 0 – 0 = 2

Δ7 = 0 · (–3) + 12 · 5/4 + 10 · 0 + 8 · (–1) – 0 = 7

Поскольку отрицательных оценок нет, то план оптимален.

Решение задачи: x1 = 100; x2 = 50; x3 = 175/2 = 87.5; x4 = 1050; x5 = 0; x6 = 0; x7 = 0; Fmax = 2450

Ответ: x1 = 100; x2 = 50; x3 = 175/2 = 87.5; x4 = 1050; x5 = 0; x6 = 0; x7 = 0; Fmax = 2450То есть необходимо произвести x1 = 100 единиц продукции вида А, x2 = 50 единиц продукции вида Б и x3 = 87,5 единиц продукции вида В. Максимальная прибыль при этом составит Fmax = 2450 единиц.

Теорема о связи между решениями исходной задачи и М-задачи.

???????????????????????

Как известно, метод Жордана-Гаусса, он же метод последовательного исключения неизвестных, является модификацией метода Гаусса решения систем линейных алгебраических уравнений (СЛАУ).

Метод базируется на элементарных преобразованиях (переводящих систему в эквивалентную), к которым относятся:

  • прибавление к обеим частям уравнения системы другого уравнения той же системы, умноженного на число, отличное от нуля;
  • перестановка местами уравнений в системе;
  • удаление из системы уравнений вида 0 = 0.

В отличие от метода Гаусса, на каждом шаге одна переменная исключается из всех уравнений, кроме одного.

Шаг метода состоит в следующем:

  • выбрать в очередном уравнении неизвестное с коэффициентом, отличным от нуля (разрешающим элементом);
  • разделить выбранное уравнение на разрешающий элемент;
  • с помощью выбранного уравнения исключить неизвестное при разрешающем элементе из всех остальных уравнений;
  • на следующем шаге аналогично исключается другое неизвестное из всех уравнений, кроме одного;
  • процесс продолжается, пока не будут использованы все уравнения.

Алгоритмизировать это можно так:

Для СЛАУ в матричном виде A*x=b (матрица A размерности m*n , совсем необязательно квадратная) составляется следующая таблица:

В таблице выбран разрешающий элемент a r,s ≠0 , тогда r - разрешающая строка, s - разрешающий столбец.

Переход к следующей таблице выполняется по правилам:

1. вычисляются элементы разрешающей строки: a" r,j =a r,j /a r,s - то есть, r-строка таблицы делится на разрешающий элемент;

2. все элементы разрешающего столбца, кроме a r,s , равного единице, становятся равны нулю;

3. элементы вне разрешающих строки и столбца вычисляются по формуле, изображённой ниже:


Легко не запутаться, если увидеть, что числитель этой формулы похож на вычисление определителя матрицы 2 на 2.

4. При ручном расчёте значение в последнем контрольном столбце сравнивается с суммой предыдущих элементов строки. Если значения не совпадают, ошибки надо искать в данной строке. При автоматизированном расчёте контрольный столбец можно опустить.

Возможны следующие случаи:

1. В процессе исключений левая часть уравнения системы обращается в 0, а правая b≠0 , тогда система не имеет решения.

2. Получается тождество 0 = 0 - уравнение является линейной комбинацией остальных и строка нулей может быть вычеркнута из системы.

3. После использования всех уравнений для исключения неизвестных, таблица либо содержит искомое решение, либо показывает несовместность системы ограничений.

Запрограммируем метод в Excel одной формулой, изменять которую должно быть не слишком трудоёмко. Например, для решения СЛАУ


заполним коэффициентами системы ячейки листа от A1 до D4 включительно, выберем разрешающий элемент a 1,1 =1 , а первый шаг метода сделаем в ячейке A6 , куда загоним "универсальную" формулу для преобразования Жордана-Гаусса:

ЕСЛИ(СТРОКА($A$1)=СТРОКА(A1);A1/$A$1;
ЕСЛИ(СТОЛБЕЦ($A$1)=СТОЛБЕЦ(A1);0;(A1*$A$1-
ДВССЫЛ(АДРЕС(СТРОКА(A1);СТОЛБЕЦ($A$1)))*
ДВССЫЛ(АДРЕС(СТРОКА($A$1);СТОЛБЕЦ(A1))))/$A$1))


На следующем шаге разрешающим элементом может быть, например, a 2,2 =1 (ячейка B7). Нам останется скопировать формулу из A6 в A11 (по пустой строке оставляем, чтоб визуально разделить шаги метода), войти в режим редактирования формулы (двойной щелчок по ячейке или выбрать её и нажать клавишу F2) и поправить (аккуратно перетащить мышкой за границу) все закреплённые ссылки с ячейки A1 на B7 .

Конечно, можно заменить везде в формуле закреплённую ссылку $A$1 на конструкцию вида ДВССЫЛ(ЯЧЕЙКА) , образующую динамический адрес ссылки. Скажем, ДВССЫЛ(F8) , а в ячейке F8 будет автоматически формироваться адрес ячейки разрешающего элемента по заданным пользователем номеру строки и столбца. Тогда для этих номеров строки и столбца придётся предусмотреть отдельные ячейки, например, так:


Увы, всё это ничего не даст - вместо $A$1 мы просто вынуждены будем закрепить в формуле ДВССЫЛ($F$8) и всё равно потом перетаскивать столько же ссылок при копировании формулы. Кроме того, "вручную" введённые номера строки и столбца придётся ещё и проверять на допустимость (хотя бы как на рисунке), так что, не будем умножать сущностей.

Посмотреть метод в работе можно на двух первых листах приложенного файла Excel (2 разных примера).

На преобразовании Жордана-Гаусса основан и такой универсальный метод решения линейных задач оптимизации, как симплекс-метод . Описания его обычно страшны, длинны и перегружены теоремами. Попробуем сделать простое описание и разработать пригодный для расчёта в Excel алгоритм. На самом деле, симплекс-метод уже встроен в стандартную надстройку Пакет анализа, и программировать его "вручную" не нужно, так что наш код имеет, скорее, учебную ценность.

Сначала минимум теории.

Если вектор-столбцы СЛАУ линейно независимы, соответствующие им переменные являются базисными , а остальные – свободными . Например, в СЛАУ


переменные x 2 и x 4 - базисные, а x 1 и x 3 - свободные. Базисные переменные между собой независимы, а свободные можно сделать, например, нулями и получить { x 2 =2, x 4 =1 } – базисное решение системы.

Выбирая различные разрешающие элементы, можно получить решения СЛАУ с различными базисами. Любое неотрицательное базисное решение СЛАУ называется опорным .

Симплекс-метод обеспечивает переход от одного опорного решения к другому, пока не будет достигнуто оптимальное решение, дающее минимум целевой функции.

Алгоритм симплекс-метода состоит в следующем:

1. Задача ЛП преобразуется к каноническому виду:


Это всегда можно сделать следующим образом: к задаче, записанной в стандартной постановке


добавляются дополнительные балансовые переменные , число которых соответствует числу ограничений-неравенств m (ограничения на неотрицательность значений неизвестных не учитываются). После этого неравенства со знаком " ≤ " превращаются в равенства, например, система ограничений вида

2*x 1 +3*x 2 ≤20
3*x 1 +x 2 ≤15
4*x 1 ≤16
3*x 2 ≤12
x 1 ,x 2 ≥0

примет вид

2*x 1 +3*x 2 +x 3 =20
3*x 1 +x 2 +x 4 =15
4*x 1 +x 5 =16
3*x 2 +x 6 =12
x 1 ,x 2 ,...,x 6 ≥0

То есть, "экономический" смысл балансовых переменных очень прост – это "остатки" неиспользованных ресурсов каждого вида.

Если в исходной задаче искался не минимум, а максимум, целевая функция Z заменятся на Z 1 = -Z . Решения задач совпадают, при этом min Z = - max Z 1 . Например, цель

Z(x 1 ,x 2)=2*x 1 +5*x 2 (max)

переписывается в виде

Z 1 (x 1 ,x 2)=-2*x 1 -5*x 2 (min)

Если в исходной задаче были уравнения-неравенства со знаками " ≥ " вместо " ≤ ", обе части каждого такого неравенства умножаются на -1 , а знак неравенства меняется на противоположный, например,

3*x 1 +x 2 +x 4 ≥15

превращается в

3*x 1 -x 2 -x 4 ≤15

Канонический вид модели получен, для него выписывается симплекс-таблица :


В левом столбце записываются базисные переменные (БП), если они ещё не выделены – пусто.

2. С помощью шагов Жордана–Гаусса ищется первоначальный опорный план, т.е. СЛАУ приводится к базисному виду с неотрицательными свободными членами b i >0 . При этом целевая функция Z должна быть выражена только через свободные неизвестные (нулевые коэффициенты в Z-строке стоят только под переменными x i , которые есть в базисе). При выборе разрешающего элемента a r,s в строку r столбца БП выписываем переменную x s , если там уже была переменная – вычеркиваем её (выводим из базиса).

3. Выписываем под столбцами x i опорный план X * : под свободными переменными - нули, под базисными – соответствующие базисной переменной коэффициенты из столбца b .

Ниже выписываем вектор R по правилу: под базисными переменными – нули, под свободными R i =Z i .

Если все R i ≥0 , найдено оптимальное решение X * и значение цели Z min = -q , иначе нужен новый план, а у вас он есть, товарищ Жюков? (п. 4).

4. Для выбора разрешающего столбца s выбираем максимальную по модулю отрицательную компоненту вектора R , разрешающий столбец s выбран. Затем анализируем коэффициенты s-го столбца матрицы системы ограничений. Если все a i,s ≤0 , решения нет и Z min стремится к минус бесконечности, иначе переходим к п.5.

5. Для выбора разрешающей строки r составляем неотрицательные отношения b i /A i,s ≥0 , i=1,2,...,m , и выбираем среди них наименьшее. Если минимум достигается для нескольких строк, за разрешающую можно принять любую из них, при этом, в новом опорном плане значения некоторых базисных переменных станут равными 0, т.е., получаем вырожденный опорный план.

6. Выполняем преобразование Жордана-Гаусса с разрешающим элементом a r,s и переходим к п.3

Геометрически симплекс-методу соответствует кратчайший обход вершин n-мерного выпуклого многогранника, образующего область допустимых решений задачи:


Здесь мы перешли от опорного плана C , представляющего собой одну из вершин многомерного многоугольника, к оптимальному плану E=X * .

Запрограммировать это всё в Excel нелегко, но можно. В прилагаемом документе приведены 3 примера, реализующие решение задач симплекс-методом. Правда, при выполнени шага менять уже придётся 3 формулы, на листе первого примера на симплекс-метод они выделены жёлтым цветом: расчёт отношений для выбора разрешающей строки в ячейке I2 , заполнение столбца БП в ячейке A12 , шаг преобразования Жордана-Гаусса в ячейке B12 . Как и в примере на преобразование Жордана-Гаусса, изменение формул связано только с необходимостью сослаться на новую строку, содержащую адрес ячейки с разрешающим элементом (для первого шага - ячейка C9).