Ограничение в каноническом виде имеет вид. Различные формы записи задачи линейного программирования

канонической форме , если требуется максимизировать целевую функцию, все ограничения системы – уравнения и на все переменные наложено условие неотрицательности.

Задача линейного программирования задана в симметричной форме , если требуется максимизировать целевую функцию, все ограничения системы – неравенства «» (или минимизировать целевую функцию, все ограничения системы – неравенства «») и на все переменные наложено условие неотрицательности.

Набор чисел называется допустимым решением (планом) , если он удовлетворяет системе ограничений ЗЛП.

Множество всех допустимых решений называется областью допустимых решений (ОДР).

Допустимое решение , для которого достигается максимальное (минимальное) значение функции, называется оптимальным планом ЗЛП .

Термины «план» и «оптимальный план» возникли из экономических приложений.

Все три формы записи ЗЛП являются эквивалентными в том смысле, что имеются алгоритмы перехода от одной формы к другой. Таким образом, если имеется способ решения задачи в одной из форм, то всегда можно определить оптимальный план задачи, заданной в любой другой форме . Задача в симметричной форме решается графическим методом, а в канонической форме – симплекс–методом.

Рассмотрим алгоритмы перехода от одной формы к другой.


  • Симметричная  каноническая. Переход осуществляется путем добавления в левую часть каждого неравенства дополнительной неотрицательной переменной. Если неравенство было «≤», то балансовая переменная добавляется в левую часть неравенства со знаком «+». Если неравенство было «», то балансовая переменная добавляется в левую часть неравенства со знаком «–». Вводимые новые переменные называются балансовыми . Задачу минимизации функции Z заменяют на задачу максимизации функции (–Z) и используют, что min Z = –max (–Z).

  • Каноническая  симметричная. Для осуществления такого перехода находится общее решение системы уравнений – ограничений, целевая функция выражается через свободные переменные. Далее, воспользовавшись неотрицательностью базисных переменных, можно исключить их из задачи. Симметричная форма задачи будет содержать неравенства, связывающие только свободные переменные, и целевую функцию, зависящую только от свободных переменных. Значения базисных переменных находятся из общего решения исходной системы уравнений.

  • Общая  каноническая. Каждая переменная, на которую не было наложено условие неотрицательности, представляется в виде разности двух новых неотрицательных переменных. Неравенства преобразуются в уравнения путем введения в левую часть каждого неравенства балансовой переменной таким же образом, как это было описано при переходе от симметричной к канонической форме. Задачу минимизации функции Z заменяют на задачу максимизации функции (–Z) таким же образом, как это было описано при переходе от симметричной к канонической форме..
    1. Графический метод решения задачи линейного программирования

Графический метод применяется для решения ЗЛП, заданной в симметричной форме . Этот метод наиболее эффективно применяется для решения задач с двумя переменными, т.к. требует графических построений. В случае трех переменных необходимы построения в R 3 , в случае четырех переменных необходимы построения в R 4 и т.д.

Множество точек называется выпуклым , если для любых двух точек множества оно содержит отрезок, их соединяющий.

Пример 1

Следующие множества точек на плоскости являются выпуклыми:

Следующие множества точек на плоскости не являются выпуклыми:

Теорема 1 Пересечение любого количества выпуклых множеств является выпуклым множеством.

Теорема 2 Пусть имеются две произвольные точки и в пространстве R n . Тогда для любой точки отрезка [PQ ] должно выполняться: .где .

Гиперплоскостью в пространстве R n называется множество точек, удовлетворяющее уравнению . Заметим, что в двумерном случае гиперплоскостью является прямая.

Полупространством называется множество точек, удовлетворяющее одному из неравенств или . Гиперплоскость делит точки пространства на два полупространства. В двумерном случае гиперплоскостью является полуплоскость.

Теорема 3 Полупространство является выпуклым множеством.

Следствие Пересечение любого количества полупространств является выпуклым множеством.

Многогранником называется пересечение одного или более полупространств. Многогранник в двумерном случае называется многоугольником.

Пример 2

Следующие множества являются многоугольниками.

Ограниченное множество

Неограниченное множество


Единственная точка

Пустое множество


Точка выпуклого множества называется угловой , если она не лежит внутри никакого отрезка, соединяющего две другие точки из множества.

Пример 3

Угловыми точками треугольника являются его вершины (их три). Угловыми точками круга являются точки окружности, которая его ограничивает (их бесконечное число).

Угловая точка многогранника называется его вершиной .

Рассмотрим ЗЛП, заданную в симметричной форме.

Теорема 4 Оптимальный план ЗЛП соответствует вершине многогранника решений, определяемого ее системой ограничений.

В общем случае задача линейного программирования записывается так, что ограничениями являются как уравнения, так и неравенства, а переменные могут быть как неотрицательными, так и произвольно изменяющимися. В том случае, когда все ограничения являются уравнениями и все переменные удовлетворяют условию неотрицательности, задачу линейного программирования называют канонической. Она может быть представлена в координатной, векторной или матричной записи.

1. Каноническая задача линейного программирования в координатной записи имеет вид

.

В более компактной форме данную задачу можно записать, используя знак суммирования,

(1.7)

2. Каноническая задача линейного программирования в векторной записи имеет вид

(1.8)

где ,

.

3. Каноническая задача линейного программирования в матричной записи имеет вид

(1.9)

, .

Здесь А – матрица коэффициентов системы уравнений, Х – матрица-столбец переменных задачи, – матрица-столбец правых частей системы ограничений.

Нередко используются задачи линейного программирования, называемые симметричными , которые в матричной записи имеют вид

(1.10)

(1.11)

1.4. Приведение общей задачи линейного программирования
к канонической форме

В большинстве методов решения задач линейного программирования предполагается, что система ограничений состоит из уравнений и естественных условий неотрицательности переменных. Однако при составлении математических моделей экономических задач ограничения в основном формируются в системы неравенств, поэтому необходимо уметь переходить от системы неравенств к системе уравнений. С этой целью докажем следующую теорему.

Теорема 1.1. О замене неравенства уравнением. Каждому решению неравенства

соответствует единственное решение уравнения

и неравенства

, (1.14)

и, наоборот, каждому решению уравнения (1.13) и неравенства (1.14) соответствует единственное решение неравенства (1.12).

Доказательство. Пусть – решение неравенства (1.12), тогда . Обозначим разность правой и левой частей этого неравенства через , т. е.

Очевидно . Подставим в уравнение (1.13) вместо переменных значения , получим

Таким образом, удовлетворяет уравнению (1.13) и неравенству (1.14). Значит доказана первая часть теоремы.

Пусть теперь удовлетворяет уравнению (1.13) и неравенству (1.14), т. е. имеем

И

Отбрасывая в левой части последнего равенства неотрицательную величину , получаем

т. е. удовлетворяет неравенству (1.12). Теорема доказана.

Если неравенство , то дополнительную неотрицательную переменную необходимо ввести в его левую часть со знаком минус, т. е. .

Неотрицательные переменные, вводимая в ограничения неравенства для превращения их в уравнения, называются дополнительными переменными . Дополнительные переменные вводятся в целевую функцию с нулевыми коэффициентами и поэтому не влияют на ее значение.

В том случае, когда задача имеет произвольно изменяющиеся переменные, то любую такую переменную заменяют разностью двух неотрицательных переменных, т. е. , где и .

Иногда возникает необходимость перейти в задаче от нахождения минимума к нахождению максимума или наоборот. Для этого достаточно изменить знаки всех коэффициентов целевой функции на противоположные, а в остальном задачу оставить без изменения. Оптимальные решения полученных таким образом задач на максимум и минимум совпадают, а значения целевых функций на оптимальных решениях отличаются только знаком.

Пример 1.1. Привести к каноническому виду задачу линейного программирования.

Д

Решение . Перейдем к задаче на отыскание максимума целевой функции. Для этого изменим знаки коэффициентов целевой функции. Для превращения в уравнения второго и третьего неравенств системы ограничений введем неотрицательные дополнительные переменные (на математической модели эта операция отмечена буквой Д). Переменная вводится в левую часть второго неравенства со знаком "+", так как неравенство имеет вид . Переменная вводится в левую часть третьего неравенства со знаком "-", так как неравенство имеет вид . В целевую функцию переменные вводятся с коэффициентом, равным нулю. Переменную , на которую не наложено условие неотрицательности заменяем разностью , . Записываем задачу в каноническом виде

В некоторых случаях возникает необходимость приведения канонической задачи к симметричной задаче. Рассмотрим пример.

Пример 1.2. Привести к симметричному виду задачу линейного программирования

Cтраница 1


Каноническая форма задачи характеризуется следующими тремя признаками: 1) однородная система ограничений в виде системы уравнений; 2) однородные условия неотрицательности, распространяющиеся на все переменные, участвующие в задаче, и 3) максимизация, линейной функции. В данной задаче нарушены все эти три признака.  

Каноническая форма задачи характеризуется следующими тремя признаками: 1) однородная система ограничений в виде системы уравнений; 2) однородные условия неотрицательности, распространяющиеся на все переменные, участвующие в задаче, и 3) максимизация линейной функции. В данной задаче нарушены все эти три признака.  

Каноническая форма задачи линейного программирования удобна тем, что легко находится начальная вершина допустимой области.  

Рассмотрим каноническую форму задачи линейного программирования и метод исключения Жордана - Гаусса.  

Часто оказывается удобной каноническая форма задачи линейного программирования.  

При преобразовании системы ограничений к канонической форме задачи линейного программирования неравенства (12) и (13) должны быть заменены равенствами. Для этого вводят дополнительные неотрицательные переменные.  

Доказать, что попарно коммутирующие вещественные матрицы одновременно приводятся к канонической форме задачи 1128 преобразованием подобия посредством ортогональной матрицы.  

По существу (4) - (5) можно рассматривать как каноническую форму задачи нелинейного программирования, поскольку методы, изложенные в гл. Обычно в задачах нелинейного программирования не выдвигается требование целочисленности переменных.  

Виды ограничений и методы их преобразования.  

Каноническая форма задачи характеризуется однородностью системы ограничений в виде системы уравнений; максимизацией целевой функции; условием неотрицательности всех переменных, участвующих в задаче.  

Никаких дополнительных особенностей каноническая форма задач в рассматриваемую вычислительную схему не добавляет.  

Рассмотрим сначала вторую каноническую форму задачи на минимум.  

Алгоритм симплекс-мете да гложно разбить на два этапа. На первом этапе исключением переменных находят базисное решение. Если оно найдено, то мы имеем каноническую форму задачи для перехода ко второму этапу. На втором этапе проверяют, есть ли ограниченный оптимум. Если он существует то определяются допус - тимые базисные решанпя ив которых выбирается оптимальное.  

Если решается задача в канонической форме, то используется лишь часть введенных во втором параграфе операций. Так, для канонической задачи на минимум реализуется только случай пункта 3.4.1, и нужны лишь операции циклической перестановки столбцов, прогонки столбца через зону вертикального окаймления, исправления структурных нарушений и часть операции усечения. Симметрично, при решении канонической задачи на максимум реализуется только случай пункта 3.4.2, и нужны операции циклической перестановки строк, прогонки строки через зону горизонтального окаймления, исправления структурных нарушений и другая часть операции усечения. В остальном никакой дополнительной специфики каноническая форма задачи не добавляет.  

В первом параграфе введения было показано, как общую задачу линейного программирования можно свести к одной из канонических форм. Для канонически (же задач описание метода последовательного улучшения формально упрощается, так как отпадает необходимость рассматривать два варианта нарушения условий оптимальности и два варианта выхода в следующую вершину. Однако при этом увеличиваются размеры базисной матрицы А [ /, J ], которые в основном и определяют трудоемкость одного шата. Тем не менее, во многих случаях применение метода к каноническим формам задачи оказывается предпочтительным, и в этом параграфе мы остановимся на вариантах метода, получающихся для частных задач линейного программирования.  

Страницы:      1

Задача линейного программирования вида ax = b где a - матрица коэффициентов, b - вектор ограничений.
Пример :

В каждой задаче ЛП ищутся значения переменных при условии, чтобы:

  • эти значения удовлетворяли некоторой системе линейных уравнений или неравенств;
  • при этих значениях целевая функция обращалась бы в минимум или максимум.

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word .

Одним из универсальных методов ЛП является симплексный метод, который, однако, можно применять, если задача ЛП имеет каноническую форму.

Определение . Задача ЛП имеет каноническую форму, если все ограничения системы состоят только из уравнений (кроме неравенств, выражающих неотрицательность переменных) и целевую функцию необходимо минимизировать.
Примером такой задачи ЛП в канонической форме является задача 1 – сбалансированная транспортная задача с системой ограничений (1) и целевой функцией (2).
Однако в большинстве экономических задач чаще всего в систему ограничений первоначально входят не только уравнения, а и неравенства.

Утверждение. Любая общая задача ЛП может быть приведена к канонической форме.
Приведение общей задачи ЛП к канонической форме достигается путем введения новых (их называют дополнительными) переменных.
Система ограничений (3) этой задачи состоит из четырех неравенств. Введя дополнительные переменные y 1 ≥ 0, y 2 ≥ 0, y 3 ≥ 0, y 4 ≥ 0, можно перейти к системе ограничений:

Эти дополнительные переменные y i имеют абсолютно ясный экономический смысл, а именно означают величину неиспользованного времени работы (простоя машины i -го вида).
Например, если бы машины первого вида работали все 18 ч, то x + y = 18, следовательно, y 1 = 0. Но мы допускаем возможность неполного использования времени работы первой машины x + y <18. В этом случае y 1 приобретает положительное значение и может рассматриваться как неиспользованный лимит времени. Например, зная решение этой задачи из пункта 3.3.2, x = 12, y = 6, мы можем из системы ограничений (3.9) сделать вывод, что y 1 = y 2 = y 3 = 0, а y 4 = 12 – 6 = 6. Т. е. машины первого, второго, третьего вида используют свое рабочее время полностью. А вот четвертая машина загружена лишь наполовину, 6 часов, и при заданном оптимальном плане простаивает. Возможно, после таких выводов руководителю предприятия захочется загрузить ее другой работой, сдать в аренду на это время и т.д.
Итак, введением дополнительных переменных мы можем любое ограничение типа неравенства привести к уравнению.

Рассмотрим задачу о смеси. Система ограничений имеет вид:
Неравенства были обращены в сторону «больше», поэтому вводя дополнительные переменные y 1 , y 2 , y 3 ≥ 0, их необходимо вычесть из левой части, чтобы уравнять ее с правой. Получим систему ограничений в канонической форме:
Переменные y i также будут иметь экономический смысл. Если вы вспомните практическое содержание задачи, то переменная y 1 будет означать количество излишнего вещества А в смеси, y 2 –количество излишков вещества В в смеси, y 3 – излишки С в смеси.
Задача нахождения максимального значения целевой функции может быть сведена к нахождению минимума для функции –F ввиду очевидности утверждения max F = –min (– F). Посмотрите на рисунок: если в какой-то точке x = x 0 функция y = F (x ) достигает своего максимума, то функция y = –F (x ), симметричная ей относительно оси OX , в этой же точке x 0 достигнет минимума, причем F max = – (–F min) при x = x 0 .

Вывод. Для представления задачи ЛП в канонической форме необходимо:

  • неравенства, входящие в систему ограничений задачи, преобразовать в уравнения с помощью введения дополнительных переменных;
  • если целевая функция F →max (максимизируется), она заменяется на функцию –F → min (которая минимизируется).

Задачи МП

Общей ЗЛП называют <,=,>=}bi (i=1,n) (2) при условии xj>

Симметрической < либо = и не отрицательных переменных и задача минимизации функции (1) при линейных ограничениях в неравенствах со знаком > Канонической смешенной .

min f(x) = -max(-f(x))

<=b (5)соответствует вполне определенное решение х1…хn, xn+1 уравненияa1x1+…+anxn+xn+1=b (6) при условии что хn+1>


Геометрическая интерпретация целевой функции и ограничения ЗЛП. Геометрическая формулировка ЗЛП.

Пусть дана задача f=c1x1+c2x2-max (1)

a11x1+a12x2<=b1 }

am1x1+am2x2<=bm}

x1>=0, x2>=0 (3)

План задачи (х1,х2) – точка на плоскости. Каждое неравенство с-мы 2 предст. собой полуплоскость. Полуплоскость –выпуклое множество. Выпуклым наз-ся множество в которым точки отрезка соединяющие (х1 и х2) принадлежащие этому множеству то же принадлежат множеству. С-ма 2 представляет собой пересечение полуплоскостей. При пересечении могут получиться:

1)выпуклая многоугольная замкнутая область.

2) выпуклая открытая многоугольная область

3) единственная точка

4) пустое множество

5) луч и отрезок

Геометрическая интерпретация целевой функции: ф-ция 1 представляет собой семейство параллельных прямых, которые наз-ют линиями уровня(линиями постоянного значения целевой функции). Частные производные функции по х1 и х2 показывают скорость возрастания целевой функции вдоль координат осей. Вектор-градиент показывает направление найскорейшего возрастания целевой функции.Для задачи 1-3 вектор-градиент = (с1;с2) Выходит из точки (0,0) и направлен в точку с координатами (с1;с2). Вектор-градиент перпендикулярен линиям уровня. Пересечение полуплоскастей принято наз-ть областью допустимых рещений(ОДР) .


Основная теорема ЛП. Принципиальная схема решения ЗЛП, вытекающая из этой теоремы.

Если ЗЛП имеет решение, то целевая функция достигает экстремального значения хотя бы в одной из крайних точек многогранника плана. Если целевая функция достигает экстремального значения более чем в одной крайней точке то она достигает одно и то, являющейся их выпуклой линейной комбинацией.же значения в любой точке. При решении ЗЛП в ручную удобно использовать табличную запись.

БП СП -Xm+1 -Xm+2 -Xn
х1 b1o b11 b12 b1n-m
х2 b2o b21 b22 b2n-m
хm bm bm1 bm2 bmn-m
f boo bo1 bo2 bon-m

Алгоритм симплекс-метода.

1. привести модель задачи к канонической форме;

2. найти начальный опорный план;

3. записать задачу в симпл. таблицу;

5. перейти к новому опорному плану, к новой симп. таблице. Для того чтобы перейти к новому опорному плану достаточно заменить одну базисную переменную свободной. Переменную, включаемую в базис и соответствующей ей разрешающий столбец определяют по наибольшему по модулю отрицательному элементу f-строки. Переменную, исключающую из базиса и соответствующую ей разрешающую строку определяют по наименьшему симплексному отношению, т.е. отношению элементов единичного столбца к соответствующему элементу разрешающего столбца. Симплексное отношение – величина неотрицательная. На пересечении разрешающей строки и разрешающего столбца расположен разрешающий элемент, относительно которого выполняется симплексное преобразование по след. правилу: 1. элементы разрешающей строки делятся на разрешающий элемент; 2. элементы разрешающего столбца делятся на разрешающий элемент и меняют знак на противоположный; 3. остальные элементы таблицы перещитываются по правилу прямоугольника.:



bij bis bkj=(bkj*bis-bij*bks)/bi

Ая теорема двойственности.

если одна из двойственных задач имеет оптим план, то и другая решима, т.е. имеет опт.план. При этом экстремальные значен.целевых функций совпадают (j=от 1 до n) Σcjxj*= (i=от 1 до m)Σbiyi* если в исходн. задаче целевая функция неограничена на множестве планов, то в двойственной задаче система ограничений несовместна.


Теорема о ранге матрицы ТЗ.

Ранг матрицы А трансп.задачи на единицу меньше числа уравнений: r(A)=m+n-1.


39. Алгоритм построения начального опорного плана ЗЛП.

Для нахождения начального опорного плана можно предложить следующий алгоритм:

1. записать задачу в форме жордановой таблицы так, чтобы все элементы столбца свободных членов были неотрицательными, т.е. выполнялось неравенство аio>=0 (i=1,m). Те уравнения с-мы, в которых свободные члены отрицательны, предварительно умножаются на -1.

-x1 ….. -xn
0= a1o a11 …. a1n
….. ….. ………………………..
0= amo am1 ….. amn
f= -c1 …. -cn

Таблицу преобразовывать шагами жордановых исключений, замещая нули в левом столбце соответствующими х. При этом на каждом шаге разрешающим может быть выбран любой столбец, содержащий хотя бы один положительный элемент. Разрешающая строка определяется по наименьшему из отношений свободных членов к соответствующем положительным элементам разрешающего столбца. Если в процессе исключений встретится 0-строка, все элементы которой- нули, а свободный член отличен от нуля, то с-ма ограничительных уравнений решений не имеет. Если же встретится 0-строка, в которой, кроме свободного члена, других положительных элементов нет, то с-ма ограничительных уравнений не имеет неотрицательных решений Если с-ма ограничительных уравнений совместна , то через некоторое число шагов все нули в левом столбце будут замещены х и тем самым получен некоторый базис, а следовательно, и отвечающий ему опорный план.

40. Алгоритм построения оптимального опорного плана ЗЛП.

Начальный опорный план Хо исследуется на оптимальность.

Если в f-строке нет отрицательных элементов (не считая свободного члена), -план оптимален. Если в f- строке нет также и нулевых элементов, то оптимальный план единственный; если же среди элементов есть хотя бы один нулевой, то оптимальных планов бесконечное множество. Если в f-строке есть хотя бы один отрицательный элемент, а в соответствующем ему столбце нет положительных, то целевая функция не ограничена в допустимой области. Задача не разрешима. Если в f- строке есть хотя бы один отрицательный элемент, а в каждом столбце с таким элементом есть хотя бы один положительный, то можно перейти к новому опорному плану, более близкому к оптимальному. Для этого столбец с отриц-ом элементом в f-строке берут за разрешающий ; опред-ют по минимальному симплексному отношению разрешающую строку и делают шаг жорданова исключения. Полученный опорный план вновь исследуется на оптимальность. Это повторяется до тех пор, пока не будет найден оптимальный опорный план либо установлена неразрешимость задачи.


Алгоритм метода Гомори.

1.Симплекс-методом находят оптимальный план задачи. Если все компоненты оптимального плана целые, то он –оптимальный. В противном случае переходят к пункту 2

2.Среди нецелых компонент следует выбрать ту, у которой дробная часть является наибольшей и по соответствующей этой строке симплексной таблицы сформулировать правильное отсечение по формуле

(n-m,s=1)∑ {αkm+1}Xm+1≥{βk}

3.Сформулированное неравенство преобразовать в эквивалентное нулевое равенство и включить в симплексную таблицу с нецелочисленным оптимальным планом

4.Полученную расширенную задачу решают симплекс-методом. Если полученный план не является целочисленным нова переходят к пункту 2.

Если в процессе решения появится строка с нецелым свободным членом и целыми остальными коэффициентами, то соответствующее уравнение не имеет решения в целых числах. В таком случае и исходная задача неразрешима в целых числах.Метод Гомори имеет ограниченое применение. С его помощью целесообразно решать небольшие задачи, т.к. число интераций может быть очень большим.


Различные формы записи ЗЛП (общая, каноническая, симметрическая)

Задачи МП : определение оптимального плана, опред-е оптимального объема выпуска продукции, опред-е оптим-го сочитания посевов с/хоз-ых культур, формир-е оптим-го пакета активов, максимиз-щий прибыль банка и т.д.

Общей ЗЛП называют задачу максимизации (минимизации) линейной функции f=Σcj*xj-max(min) (1) при линейных ограничениях ∑aij *xj{=<,=,>=}bi (i=1,n) (2) при условии xj>=0(j=1,n1), xj-произвольное (j=n1+1,n)(3) где cj,aij, bi-постоянные числа.

Симметрической формой записи ЗЛП наз-ся задача максимизации функции (1) при линейных ограничениях в неравенствах со знаком < либо = и не отрицательных переменных и задача минимизации функции (1) при линейных ограничениях в неравенствах со знаком > либо = и неотрицательных переменных. Канонической формой записи ЗЛП наз-ся задача максимальной функции (1) при линейных ограничениях равенствах и неотрицательных переменных. Любая другая форма называется смешенной .

min f(x) = -max(-f(x))

Преобразование нерав-ва в уравнение и наоборот осущ-ся на основе Леммы: всякому решению х1…хn нерав-ва a1x1+…+anxn<=b (5)соответствует вполне определенное решение х1…хn, xn+1 уравненияa1x1+…+anxn+xn+1=b (6) при условии что хn+1>=0(7) и наоборот. Всякому решению x1…xn,xn+1 уравнения 6 и неравенства 7 соответствует решение x1…xn неравенства 5.

Чтобы от зад сим формы перейти к зад канонич вида, необходимо ввести балансовые (выравнивающие) переменные. Это основано на теореме о неравенстве: любое нерав-во можно представить в виде ур-я или простейшего нерав-ва.