Методом неопределенных множителей лагранжа найти условный экстремум. Метод множителей Лагранжа для функций двух переменных

Метод Множителей Лагранжа является классическим методом решения задач математического программирования (в частности выпуклого). К сожалению, при практическом применении метода могут встретиться значительные вычислительные трудности, сужающие область его использования. Мы рассматриваем здесь метод Лагранжа главным образом потому, что он является аппаратом, активно используемым для обоснования различных современных численных методов, широко применяемых на практике. Что же касается функции Лагранжа и множителей Лагранжа, то они играют самостоятельную и исключительно важную роль в теории и приложениях не только математического программирования.

Рассмотрим классическую задачу оптимизации

max (min) z=f(x) (7.20)

Эта задача выделяется из задачи (7.18), (7.19) тем, что среди ограничений (7.21) нет неравенств, нет условий неотрицательности переменных, их дискретности, и функции f(x) и непрерывны и имеют частные производные по крайней мере второго порядка.

Классический подход к решению задачи (7.20), (7.21) дает систему уравнений (необходимые условия), которым должна удовлетворять точка х*,доставляющая функции f(x)локальный экстремум на множестве точек, удовлетворяющих ограничениям (7.21) (для задачи выпуклого программирования найденная точка х*в соответствии с теоремой 7.6 будет одновременно и точкой глобального экстремума).

Предположим, что в точке х* функция (7.20) имеет локальный условный экстремум и ранг матрицы равен . Тогда необходимые условия запишутся в виде:

(7.22)

есть функция Лагранжа; - множители Лагранжа.

Существуют также и достаточные условия, при выполнении которых решение системы уравнений (7.22) определяет точку экстремума функции f(x). Этот вопрос решается на основании исследования знака второго дифференциала функции Лагранжа. Однако достаточные условия представляют главным образом теоретический интерес.

Можно указать следующий порядок решения задачи (7.20), (7.21) методом множителей Лагранжа:

1) составить функцию Лагранжа (7.23);

2) найти частные производные функции Лагранжа по всем переменным и приравнять их нулю. Тем самым будет получена система (7.22), состоящая из уравнений. Решить полученную систему (если это окажется возможным!) и найти таким образом все стационарные точки функции Лагранжа;

3) из стационарных точек, взятых без координат , выбрать точки, в которых функция f(x) имеет условные локальные экстремумы при наличии ограничений (7.21). Этот выбор осуществляется, например, с применением достаточных условий локального экстремума. Часто исследование упрощается, если использовать конкретные условия задачи.



Пример 7.3 . Найти оптимальное распределение ограниченного ресурса в a ед. между n потребителями, если прибыль, получаемая при выделении j-му потребителю x j единиц ресурса, вычисляется по формуле .

Решение. Математическая модель задачи имеет следующий вид:


Составляем функцию Лагранжа:

.

Находим частные производные функции Лагранжа и приравниваем их нулю:

Решая эту систему уравнений, получаем:

Таким образом, если j-му потребителю будет выделено ед. ресурса, то суммарная прибыль достигнет максимальной величины и составит ден. ед.

Мы рассмотрелиметод Лагранжа применительно к классической задаче оптимизации. Можно обобщить этот метод на случай, когда переменные неотрицательны и некоторые ограничения заданы в форме неравенств. Однако это обобщение имеет преимущественно теоретическое значение и не приводит к конкретным вычислительным алгоритмам.

В заключение дадим множителям Лагранжа экономическую интерпретацию. Для этого обратимся к простейшей классической задаче оптимизации

max (min) z =f (x 1 , х 2); (7.24)

𝜑(x 1 , х 2)=b. (7.25)

Предположим, что условный экстремум достигается в точке . Соответствующее экстремальное значение функции f (x )

Допустим, что в ограничениях (7.25) величина b может меняться, тогда координаты точки экстремума, а следовательно, и экстремальное значение f* функции f (x ) станут величинами, зависящими от b , т. е. ,, а поэтому производная функции (7.24)

Метод множителей Лагранжа (в англ. литературе «LaGrange"s method of undetermined multipliers») ˗ это численный метод решения оптимизационных задач, который позволяет определить «условный» экстремум целевой функции (минимальное или максимальное значение)

при наличии заданных ограничений на ее переменные в виде равенств (т.е. определена область допустимых значений)

˗ это значения аргумента функции (управляемые параметры) на вещественной области при котором значение функции стремится к экстремуму. Применение названия «условный» экстремум связано с тем, что на переменные наложено дополнительное условие, которое ограничивает область допустимых значений при поиске экстремума функции.

Метод множителей Лагранжа позволяет задачу поиска условного экстремума целевой функции на множестве допустимых значений преобразовать к задаче безусловной оптимизации функции.

В случае если функции и непрерывны вместе со своими частными производными, то существуют такие переменные λ не равные одновременно нулю, при которых выполняется следующее условие:

Таким образом, в соответствии с методом множителей Лагранжа для поиска экстремума целевой функции на множестве допустимых значений составляю функцию Лагранжа L(х, λ), которую в дальнейшем оптимизируют:

где λ ˗ вектор дополнительных переменных, называемых неопределенными множителями Лагранжа.

Таким образом, задача нахождения условного экстремума функции f(x) свелась к задаче поиска безусловного экстремума функции L(x, λ).

и

Необходимое условие экстремума функции Лагранжа задается системой уравнений (система состоит из «n + m» уравнений):

Решение данной системы уравнений позволяет определить аргументы функции (Х), при которых значение функции L(x, λ), а также значение целевой функции f(x) соответствуют экстремуму.

Величина множителей Лагранжа (λ) имеет практический интерес в случае, если ограничения представлены в форме со свободным членом уравнения (константой). В этом случае можно рассматривать дальнейшее (увеличение/уменьшение) значения целевой функции за счет изменения значения константы в системе уравнения . Таким образом, множитель Лагранжа характеризует скорость изменения максимума целевой функции при изменении ограничивающей константы.

Существует несколько способов определения характера экстремума полученной функции:

Первый способ: Пусть – координаты точки экстремума, а - соответствующее значение целевой функции. Берется точка , близкая к точке , и вычисляется значение целевой функции :

Если , то в точке имеет место максимум.

Если , то в точке имеет место минимум.

Второй способ: Достаточным условием, из которого можно выяснить характер экстремума, является знак второго дифференциала функции Лагранжа. Второй дифференциал функции Лагранжа определяется следующим образом:

Если в заданной точке минимум , если же , то целевая функция f(x) имеет в данной точке условный максимум.

Третий способ: Также характер экстремума функции можно выяснить рассмотрев гессиан функции Лагранжа. Матрица Гессе представляет собой симметричную квадратную матрицу вторых частных производных функции в точке , в которой элементы матрицы симметричны относительно главной диагонали.

Для определения типа экстремума (максимум или минимум функции) можно воспользоваться правилом Сильвестра:

1. Для того, чтобы второй дифференциал функции Лагранжа был знакоположителен необходимо, чтобы угловые миноры функции были положительными . При таких условиях функция в этой точке имеет минимум.

2. Для того, чтобы второй дифференциал функции Лагранжа был знакоотрицателен , необходимо, чтобы угловые миноры функции чередовались, причем первый элемент матрицы должен быть отрицательнsv . При таких условиях функция в этой точке имеет максимум.

Под угловым минором понимаем минор, расположенный в первых k строках и k столбцах исходной матрицы.

Основное практическое значение метода Лагранжа заключается в том, что он позволяет перейти от условной оптимизации к безусловной и, соответственно, расширить арсенал доступных методов решения задачи. Однако задача решения системы уравнений, к которой сводится данный метод, в общем случае не проще исходной задачи поиска экстремума. Такие методы называются непрямыми. Их применение объясняется необходимостью получить решение экстремальной задачи в аналитической форме (допустим, для тех или иных теоретических выкладок). При решении конкретных практических задач обычно используются прямые методы, основанные на итеративных процессах вычисления и сравнения значений оптимизируемых функций.

Методика расчета

1 шаг : Определяем функцию Лагранжа из заданной целевой функции и системы ограничений:

Вперёд

Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.

Рассмотрим задачу условной оптимизации, содержащую только ограничения в виде равенств

min

при наличии ограничений

,
.

Эта задача в принципе может быть решена как задача безусловной оптимизации, полученная путем исключения из целевой функции m независимых переменных с помощью заданных равенств. Наличие ограничений в виде равенств фактически позволяет уменьшить размерность исходной задачи. Новая задача может быть решена с помощью подходящего метода безусловной оптимизации.

Пример . Требуется минимизировать функцию

при ограничении

Исключив переменную с помощью уравнения, получим оптимизационную задачу с двумя переменными без ограничений:

минимизировать ,

которую можно решить одним из методов безусловной оптимизации.

Однако метод исключения переменных применим лишь в тех случаях, когда уравнения, представляющие ограничения, можно разрешить относительно некоторого набора переменных. При наличии большого числа ограничений в виде равенств процесс исключения переменных становится весьма трудоемкой процедурой. Кроме того, возможны ситуации, когда уравнение не удается разрешить относительно переменной. В этом случае целесообразно использовать метод множителей Лагранжа.

С помощью метода множителей Лагранжа по существу устанавливаются необходимые условия, позволяющие идентифицировать точки оптимума в задачах оптимизации с ограничениями в виде равенств.

Рассмотрим задачу

min

при наличии ограничений

,
.

Из курса математического анализа хорошо известно, что точка условного минимума функции совпадает с седловой точкой функции Лагранжа:

,

при этом седловая точка должна обеспечивать минимум по переменным и максимум по параметрам. Эти параметры называются множителями Лагранжа. Приравнивая частные производные функциипои пок нулю, получим необходимые условия стационарной точки:

,
,

,
.

Решение системы
уравнений определяет стационарную точку функции Лагранжа. Достаточные условия существования минимума исходной задачи содержат, кроме выше упомянутых, положительную определенность матрицы Гессе целевой функции.

4.2. Условия куна - таккера

Рассмотрим задачу нелинейного программирования с ограничениями в виде неравенств

min

при ограничениях

,
.

Сведем ограничения в виде неравенств к ограничениям-равенствам добавлением к каждому из них ослабляющих переменных ,
:



.

Сформируем функцию Лагранжа:

Тогда необходимые условия минимума принимают вид

,
;

,
;

,
.

Можно умножить последнее уравнение на и заменить ослабляющие переменные, выразив их из второго уравнения. Второе уравнение можно преобразовать, отбросив ослабляющие переменные и переходя к ограничениям-неравенствам. Следует добавить еще одно условие
, которое должно выполняться в точке условного минимума.

Окончательно получаем необходимые условия существования минимума задачи нелинейного программирования с ограничениями неравенствами, которые называются условиями Куна- Таккера:

,
; (1)

,
; (2)

,
; (3)

,
. (4)

Ограничение в виде неравенства
называется активным в точке, если оно превращается в равенство
, и называется неактивным, если
. Если существует возможность обнаружить до непосредственного решения задачи ограничения, которые неактивны в точке оптимума, то эти ограничения можно исключить из модели и тем самым уменьшить ее размеры.

Уравнение (3) означает, что либо
, либо
. Если
, то
и ограничение является активным и представляет собой ограничение равенство. С другой стороны, если ограничение является строгим неравенством
, то множитель Лагранжа будет иметь вид
т.е. ограничение
является неактивным и им можно пренебречь. Конечно, предварительно не известно какими ограничениями можно пренебречь.

Описание метода

где .

Обоснование

Нижеприведенное обоснование метода множителей Лагранжа не является его строгим доказательством. Оно содержит эвристические рассуждения, помогающие понять геометрический смысл метода.

Двумерный случай

Линии уровня и кривая .

Пусть требуется найти экстремум некоторой функции двух переменных при условии, задаваемом уравнением . Мы будем считать, что все функции непрерывно дифференцируемы, и данное уравнение задает гладкую кривую S на плоскости . Тогда задача сводится к нахождению экстремума функции f на кривой S . Будем также считать, что S не проходит через точки, в которых градиент f обращается в 0 .

Нарисуем на плоскости линии уровня функции f (то есть кривые ). Из геометрических соображений видно, что экстремумом функции f на кривой S могут быть только точки, в которых касательные к S и соответствующей линии уровня совпадают. Действительно, если кривая S пересекает линию уровня f в точке трансверсально (то есть под некоторым ненулевым углом), то двигаясь по кривой S из точки мы можем попасть как на линии уровня, соответствующие большему значению f , так и меньшему. Следовательно, такая точка не может быть точкой экстремума.

Тем самым, необходимым условием экстремума в нашем случае будет совпадение касательных. Чтобы записать его в аналитической форме, заметим, что оно эквивалентно параллельности градиентов функций f и ψ в данной точке, поскольку вектор градиента перпендикулярен касательной к линии уровня. Это условие выражается в следующей форме:

где λ - некоторое число, отличное от нуля, и являющееся множителем Лагранжа.

Рассмотрим теперь функцию Лагранжа , зависящую от и λ :

Необходимым условием ее экстремума является равенство нулю градиента . В соответствии с правилами дифференцирования, оно записывается в виде

Мы получили систему, первые два уравнения которой эквивалентны необходимому условию локального экстремума (1), а третье - уравнению . Из нее можно найти . При этом , поскольку в противном случае градиент функции f обращается в нуль в точке , что противоречит нашим предположениям. Следует заметить, что найденные таким образом точки могут и не являться искомыми точками условного экстремума - рассмотренное условие носит необходимый, но не достаточный характер. Нахождение условного экстремума с помощью вспомогательной функции L и составляет основу метода множителей Лагранжа, примененного здесь для простейшего случая двух переменных. Оказывается, вышеприведенные рассуждения обобщаются на случай произвольного числа переменных и уравнений, задающих условия.

На основе метода множителей Лагранжа можно доказать и некоторые достаточные условия для условного экстремума, требующие анализа вторых производных функции Лагранжа.

Применение

  • Метод множителей Лагранжа применяется при решении задач нелинейного программирования, возникающих во многих областях (например, в экономике).
  • Основной метод решения задачи об оптимизации качества кодирования аудио и видео данных при заданном среднем битрейте (оптимизация искажений - англ. Rate-Distortion optimization ).

См. также

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Множители Лагранжа" в других словарях:

    Множители Лагранжа - дополнительные множители, преобразующие целевую функцию экстремальной задачи выпуклого программирования (в частности, линейного программирования) при ее решении одним из классических методов методом разрешающих множителей… … Экономико-математический словарь

    множители Лагранжа - Дополнительные множители, преобразующие целевую функцию экстремальной задачи выпуклого программирования (в частности, линейного программирования) при ее решении одним из классических методов методом разрешающих множителей (методом Лагранжа).… … Справочник технического переводчика

    Механики. 1) Лагранжа уравнения 1 го рода дифференциальные ур ния движения механич. системы, к рые даны в проекциях на прямоугольные координатные оси и содержат т. н. множители Лагранжа. Получены Ж. Лагранжем в 1788. Для голономной системы,… … Физическая энциклопедия

    Механики обыкновенные дифференциальные уравнения 2 го порядка, описывающие движения механич. систем под действием приложенных к ним сил. Л. у. установлены Ж. Лаг ранжем в двух формах: Л. у. 1 го рода, или уравнения в декартовых координатах с… … Математическая энциклопедия

    1) в гидромеханике ур ния движения жидкости (газа) в переменных Лагранжа, к рыми являются координаты ч ц среды. Получены франц. учёным Ж. Лагранжем (J. Lagrange; ок. 1780). Из Л. у. определяется закон движения ч ц среды в виде зависимостей… … Физическая энциклопедия

    Метод множителей Лагранжа, метод нахождения условного экстремума функции f(x), где, относительно m ограничений, i меняется от единицы до m. Содержание 1 Описание метода … Википедия

    Функция, используемая при решении задач на условный экстремум функций многих переменных и функционалов. С помощью Л. ф. записываются необходимые условия оптимальности в задачах на условный экстремум. При этом не требуется выражать одни переменные … Математическая энциклопедия

    Метод решения задач на Условный экстремум; Л. м. м. заключается в сведении этих задач к задачам на безусловный экстремум вспомогательной функции т. н. функции Лагранжа. Для задачи об экстремуме функции f (х1, x2,..., xn) при… …

    Переменные, с помощью к рых строится Лагранжа функция при исследовании задач на условный экстремум. Использование Л. м. и функции Лагранжа позволяет единообразным способом получать необходимые условия оптимальности в задачах на условный экстремум … Математическая энциклопедия

    1) в гидромеханике уравнения движения жид кой среды, записанные в переменных Лагранжа, которыми являются координаты частиц среды. Из Л. у. определяется закон движения частиц среды в виде зависимостей координат от времени, а по ним… … Большая советская энциклопедия

Краткая теория

Метод множителей Лагранжа является классическим методом решения задач математического программирования (в частности выпуклого). К сожалению, при практическом применении метода могут встретиться значительные вычислительные трудности, сужающие область его использования. Мы рассматриваем здесь метод Лагранжа главным образом потому, что он является аппаратом, активно используемым для обоснования различных современных численных методов, широко применяемых на практике. Что же касается функции Лагранжа и множителей Лагранжа, то они играют самостоятельную и исключительно важную роль в теории и приложениях не только математического программирования.

Рассмотрим классическую задачу оптимизации:

Среди ограничений этой задачи нет неравенств, нет условий неотрицательности переменных, их дискретности, и функции и непрерывны и имеют частные производные по крайней мере второго порядка.

Классический подход к решению задачи дает систему уравнений (необходимые условия), которым должна удовлетворять точка , доставляющая функции локальный экстремум на множестве точек, удовлетворяющих ограничениям (для задачи выпуклого программирования найденная точка будет одновременно и точкой глобального экстремума).

Предположим, что в точке функция (1) имеет локальный условный экстремум и ранг матрицы равен . Тогда необходимые условия запишутся в виде:

есть функция Лагранжа; – множители Лагранжа.

Существуют также и достаточные условия, при выполнении которых решение системы уравнений (3) определяет точку экстремума функции . Этот вопрос решается на основании исследования знака второго дифференциала функции Лагранжа. Однако достаточные условия представляют главным образом теоретический интерес.

Можно указать следующий порядок решения задачи (1), (2) методом множителей Лагранжа:

1) составить функцию Лагранжа (4);

2) найти частные производные функции Лагранжа по всем переменным и приравнять их

нулю. Тем самым будет получена система (3, состоящая из уравнений. Решить полученную систему (если это окажется возможным!) и найти таким образом все стационарные точки функции Лагранжа;

3) из стационарных точек, взятых без координат выбрать точки, в которых функция имеет условные локальные экстремумы при наличии ограничений (2). Этот выбор осуществляется, например, с применением достаточных условий локального экстремума. Часто исследование упрощается, если использовать конкретные условия задачи.

Пример решения задачи

Условие задачи

Фирма производит товар двух видов в количествах и . Функция полезных издержек определена соотношением . Цены этих товаров на рынке равны и соответственно.

Определить, при каких объемах выпуска достигается максимальная прибыль и чему она равна, если полные издержки не превосходят

Испытываете сложности с пониманием хода решения? На сайте действует услуга Решение задач по методам оптимальных решений на заказ

Решение задачи

Экономико-математическая модель задачи

Функция прибыли:

Ограничения на издержки:

Получаем следующую экономико-математическую модель:

Кроме того, по смыслу задачи

Метод множителей Лагранжа

Составим функцию Лагранжа:

Находим частные производные 1-го порядка:

Составим и решим систему уравнений:

Так как , то

Максимальная прибыль:

Ответ

Таким образом необходимо выпускать ед. товара 1-го вида и ед. товара 2-го вида. При этом прибыль будет максимальной и составит 270.
Приведен образец решения задачи квадратичного выпуклого программирования графическим методом.

Решение линейной задачи графическим методом
Рассмотрен графический метод решения задачи линейного программирования (ЗЛП) с двумя переменными. На примере задачи приведено подробное описание построения чертежа и нахождения решения.

Модель управления запасами Уилсона
На примере решения задачи рассмотрена основная модель управления запасами (модель Уилсона). Вычислены такие показатели модели как оптимальный размер партии заказа, годовые затраты на хранение, интервал между поставками и точка размещения заказа.

Матрица коэффициентов прямых затрат и матрица "Затраты-выпуск"
На примере решения задачи рассмотрена межотраслевая модель Леонтьева. Показано вычисление матрицы коэффициентов прямых материальных затрат, матрицы «затраты-выпуск», матрицы коэффициентов косвенных затрат, векторов конечного потребления и валового выпуска.