Объединение офисов предприятия на основе технологий VPN. Vpn подключение: что это такое, и для чего нужен vpn канал

Мультисервисные и беспроводные сети

Объединение офисов предприятия на основе технологий VPN

Корпоративные сети передачи данных предназначены для обеспечения эффективного функционирования информационной инфраструктуры предприятия. КСПД позволяют объединить разрозненные и удаленные территории и офисы компании в единую корпоративную сеть , создать единое информационное пространства и защищенные соединения удаленных офисов на основе технологий VPN (см. рис.1). Защищённая корпоративная виртуальная частная сеть, обеспечивает шифрование данных, передаваемых между офисами компании.ИЦ "Телеком-Сервис" предлагает комплексные решения по построению корпоративных VPN сетей на основе оборудования Cisco Systems, Juniper Networks и Huawei Technologies.

Рис.1 Схема организации корпоративной VPN сети


Организация корпоративной VPN сети на основе оборудования Cisco Systems

В настоящее время компания Cisco Systems предлагает высокотехнологичные VPN-решения полностью соответствующие требованиям российского технического регулирования в сфере информационной безопасности.

Компаниями Cisco Systems и С-Терра СиЭсПи разработана новая версия VPN-модуля NME-RVPN (MCM), поддерживающий российские крипто алгоритмы и тесно интегрируемый в интеллектуальную информационную сеть.Интеграция модуля NME-RVPN в исполнении МСМ в маршрутизаторы Cisco ISR серий 2800/3800 и 2900/3900 позволяет потребителям получить единое решение, обеспечивающее защиту передаваемой информации в соответствии с требованиями российских стандартов, развитую маршрутизацию, поддержку механизмов качества обслуживания приоритетного трафика (QoS), а также сервисы IP-телефонии и передачи видео. Подобные качества, дополненные управляемостью и надежностью платформ на базе операционной системыВ качестве альтернативного решения предлагается построение защищенной VPN сети на основе межсетевых экранов Cisco ASA 5500. Линейка межсетевых экранов ASA 5500 позволяет разворачивать VPN сети на основе протокола IPSec с использованием симметричного алгоритма шифрования DES (Data Encryption Standard ). Для шифрования использует ключ с длиной 56 бит, что соответствует требованиям российского технического регулирования в сфере информационной безопасности. Решение является бюджетным по сравнению с вариантом на основе модуля NME-RVPN. Недостатком такого решения является низкая стойкость алгоритма шифрования DES по сравнению с существующими алгоритмами шифрования.


Организация корпоративной VPN сети на основе оборудования Juniper Networks

Реализацию защищенной VPN сети предлагается выполнять на основе серии сервисных шлюзов Juniper SRX. Серия сервисных шлюзов SRX позволяет разворачивать VPN сети на основе протокола IPSec без ограничений по используемым алгоритмам шифрования. В сервисных шлюзах SRX консолидирован функционал маршрутизации, коммутации и сетевой безопасности. Серия шлюзов SRX имеет высокую производительность в части функционала межсетевого экрана, функции IPS и большую плотность GE портов с поддержкой функции PoE. Т.о. данное решение можно отнести к классу бюджетных решений, позволяющих разворачивать VPN сети без ограничений по применяемым алгоритмам шифрования.


Организация корпоративной VPN сети на основе оборудования Huawei Symantec

Реализацию защищенной VPN сети предлагается выполнять на основе шлюзов безопасности USG. Шлюзы безопасности USG позволяет разворачивать VPN сети на основе протокола IPSec без ограничений по используемым алгоритмам шифрования. Универсальные шлюзы безопасности USG представляют собой новое поколение многофункциональных шлюзов безопасности, предназначенных для предприятий среднего бизнеса, филиалов крупных предприятий. Благодаря модульной структуре, USG объединяет различные функции, такие как безопасность, маршрутизация, коммутация и функции беспроводной связи.Также предлагается решение по организации VPN сетей полностью соответствующих требованиям российского технического регулирования в сфере информационной безопасности. Для защиты данных используется программно-аппаратный комплекс (далее - ПАК) «ViPNet Coordinator HW-VPNM», являющийся совместной разработкой компаний ИнфоТеКС и Huawei Symantec. ПАК «ViPNet Coordinator HW-VPNM» является универсальным средством защиты информации в локальных и глобальных сетях связи (включая Интернет) и выполняет функции межсетевого экрана и криптошлюза. Особенностями ПАК являются его исполнение в виде модуля расширения к маршрутизаторам Huawei Symantec USG, а также высокая производительность в задаче шифрования реального IP-трафика – до 180 Мбит/с трафика без ограничения на число одновременно поддерживаемых сессий. Следует отметить, что при этом осуществляется полное шифрование всего IP-трафика по алгоритму ГОСТ 28147-89 с одновременной инкапсуляцией (сокрытием структуры информации) исходных IP-пакетов в UDP-пакеты. Это обеспечивает беспрецедентную стойкость к попыткам анализа и несанкционированного доступа к защищаемой информации. ПАК «ViPNet Coordinator HW» имеет сертификат соответствия ФСБ РФ №СФ/124-1459 от 9 мая 2010 года, удостоверяющего его соответствие требованиям ФСБ России к СКЗИ класса КС3 и возможность использования для криптографической защиты информации (шифрование и имитозащиты IP-трафика) информации, не содержащей сведений, составляющих государственную тайну.


Организация корпоративной VPN сети на основе системы ViPNet компании ИнфоТеКС

Концепция построения виртуальных частных сетей в полном соответствии с современными законодательными требованиями российских регуляторов. Предлагаемое решение соответствует следующим требованиям:
  • Использование только отечественных алгоритмов симметричного шифрования, хэширования, а также асимметричного шифрования и электронно-цифровой подписи (ГОСТ 28147-89, ГОСТ 34.11-94, ГОСТ 34.10-2001)
  • Наличие сертификатов ФСТЭК и ФСБ как на криптографические продукты, так и на изделия в целом (для программно-аппаратных комплексов)
  • Сертифицированные решения по межсетевому экранированию
  • Организация особых условий доступа к открытым сетям (невозможность одновременного доступа к ресурсам открытых сетей и защищённой сети)
  • Защита передаваемых данных посредством шифрования на всех сегментах сети (всех участках прохождения данных начиная от рабочей станции).

Типовое решение состоит из следующих функциональных компонентов (см. рис.2):

Рис.2

  • Рабочее место администратора – комплект программного обеспечения для первоначальной настройки и управления виртуальной частной сетью.
  • Программное обеспечение ViPNet Client (клиентское ПО) – программный продукт, устанавливаемый на каждой рабочей станции (или сервере с операционной системой MS Windows), для которой необходимо обеспечить криптографическую защиту передаваемых данных – реализует функции шифрования трафика и персонального межсетевого экрана.
  • Криптошлюз – программно-аппаратный комплекс (специализированное устройство), выполняющий функции маршрутизации, терминирования туннелей виртуальной частной сети и корпоративного межсетевого экрана
  • Сервер открытого Интернета – программно-аппаратный комплекс, выполняющий функцию защищённого прокси-сервера для доступа к ресурсам Интернет.

Обратите внимание, что здесь не стоит задача объяснить все досконально технически правильно, задача – объяснить «на пальцах» так, чтобы поняли даже начинающие пользователи. Надеюсь, что это получилось. Если есть вопросы – задавайте их в комментариях.

Суть работы VPN-сервера в следующем . Например, вы хотите зайти на сайт yandex.ru. Точнее, подключиться к серверу с IP 77.88.21.11 (жители восточных регионов России могут быть отправлены на сервер с другим IP, но не в этом суть). При работе без VPN ваш компьютер посылает пакет (можно сказать, запрос) напрямую на сервер с адресом 77.88.21.11 и получает от него ответ. При работе через VPN ваш компьютер посылает пакет на VPN-сервер, VPN-сервер точно этот же пакет отсылает на 77.88.21.11, 77.88.21.11 отсылает ответ VPN-серверу (потому что изначально запрос прислал именно VPN-сервер), а VPN-сервер отправляет этот пакет вашему компьютеру.

Что имеем? Запросы на адрес 77.88.21.11 отсылает не ваш компьютер, а VPN, соответственно, сервер 77.88.21.11 фиксирует именно IP-адрес VPN-сервера, а не вашего компьютера.

Одна из возможных причин применения VPNнеобходимость скрыть свой IP адрес .

Другое применение – необходимость изменить маршрут трафика . Возьмем пример из жизни. Автор этой статьи живет в городе Орле (Центральная Россия) и хочет подключиться к серверу yunpan.360.cn, расположенному в Пекине. Автор пользуется (точнее, пользовался на тот момент) услугами интернет-провайдера «Билайн». Как показала команда tracert yunpan.360.cn, введенная в командной строке Windows, исходящий интернет-трафик к этому китайскому серверу идет через США. Как трафик идет обратно, трассировка не показывает, но, судя по пингу, он идет примерно тем же маршрутом. Ниже скриншот из программы VisualRoute 2010.

Такая маршрутизация связана с тем, что «Билайн» не заплатил магистральным интернет-провайдерам за более прямой канал в Китай.

При таком маршруте происходят большие потери пакетов, скорость низкая, пинг огромный.

Что делать? Использовать VPN. Такой VPN-сервер, до которого у нас прямой маршрут, и от которого до yunpan.360.cn прямой маршрут. Я (автор статьи) очень долго искал приемлемое решение и в итоге его нашел. Был арендован виртуальный сервер (что это такое, речь пойдет позже) в Красноярске (сразу представляйте, где находится город Красноярск) у хостинг-провайдера . Трассировка до сервера показала, что трафик идет по России, пинг 95 мс (у меня был мобильный LTE (4G) интернет, на проводном интернете пинг будет на 5-10 мс пониже).

Пинг – это задержка интернет-сигнала. Измеряется задержка на прохождение интернет-трафика в обе стороны (туда и обратно). Измерить задержку только в одну сторону стандартными средствами невозможно, поскольку ваш компьютер отправляет запрос на пингуемый сервер и засекает время, за которое придет ответ.

В трассировках пинг до каждой точки (до каждого пункта маршрута, иначе называемого хопом – прыжком) показывается также для трафика в обе стороны.

Часто бывает так, что в разные стороны маршрут разный.

Далее была сделана трассировка с красноярского сервера до yunpan.360.cn. Пинг в районе 150 мс. Трассировка показала, что трафик от красноярского сервера до китайского идет через прямой пиринг (межсетевое взаимодействие) провайдера «Транстелеком» и «China Telecom».

Вот эта самая трассировка (сделана из-под Linux):

tracepath yunpan.360.cn
1?: pmtu 1500
1: srx.optibit.ru 0.361ms
1: srx.optibit.ru 0.381ms
2: border-r4.g-service.ru 0.392ms
3: kyk02.transtelecom.net 0.855ms asymm 5
4: 10.25.27.5 112.987ms asymm 8
5: ChinaTelecom-gw.transtelecom.net 125.707ms asymm 7
6: 202.97.58.113 119.092ms asymm 7
7: 202.97.53.161 120.842ms asymm 8
8: no reply
9: 220.181.70.138 122.342ms asymm 10
10: 223.202.72.53 116.530ms asymm 11
11: 223.202.73.86 134.029ms asymm 12
12: no reply

Что мы видим? Красноярский сервер находится на хостинге (хостинг – услуга размещения и аренды серверных мощностей) optibit.ru, подключен к интернет-провайдеру «Игра-Сервис» (g-service.ru). «Игра-Сервис», в свою очередь, трафик до yunpan.360.cn пускает через крупного российского магистрального провайдера «Транстелеком» (за что платит ему деньги). ТТК трафик направляет через свое прямое включение в сеть китайского магистрального провайдера China Telecom, об этом нам говорит домен хопа ChinaTelecom-gw.transtelecom.net.

Давайте вспомним, в чем была наша проблема. У нас трафик до того китайского сервера шел через США, скорость была низкой. Что я сделал? На этот красноярский сервер поставил VPN. И настроил свой компьютер на работу через этот VPN-сервер. Что получилось? Теперь трафик до yunpan.360.cn шел не по старому маршруту Орел-Москва-США-Китай, а вот так:

сначала до VPN-сервера – Орел-Красноярск,

затем от VPN-сервера до Пекина – Красноярск-Пекин.

Уловили суть? Мы развернули маршрут. Что это дало? Скорость исходящего соединения от меня до yunpan.360.cn возросла. Пинг был уменьшен. Результат был достигнут.

Как определить ваш маршрут? Для новичков самый простой способ это сделать – воспользоваться программой VisualRoute, которую можно найти в интернете как в лицензионном, так и взломанном видах.

Нужно запустить эту программу и выставить следующие настройки:

Получится вот так:

По этой таблице вы увидите, через какие страны проходит трафик. Еще раз обращаю внимание на то, что трассировка показывает маршрут только исходящего трафика (то есть трафика от вашего компьютера к серверу). Маршрут в обратную сторону может показать только трассировка, сделанная с сервера до вашего компьютера. У VisualRoute есть небольшой глюк: она часто показывает Australia (?) в качестве страны, когда не может определить настоящую геопозицию узла.

VPN – Virtual private network – виртуальная частная сеть – это, можно сказать, своя сеть поверх интернета, весь трафик внутри которой шифруется. Подробно изучить эту технологию можно и . Если объяснить совсем на пальцах, то:

  • ваш компьютер и VPN-сервер соединяются по интернету
  • весь трафик между вами и VPN-сервером шифруется
  • VPN-сервер его отправляет в место назначения
  • ваш IP скрывается, вместо него виден IP-адрес VPN-сервера

VPN рекомендуется использовать при работе через бесплатный (или просто чужой) WiFi, поскольку существует возможность перехвата всего трафика, проходящего через WiFi-роутер. А при использовании VPN весь трафик будет зашифрован. Более того, если вы зайдете на yandex.ru, vk.com и google.ru без VPN, то на уровне роутера и вашего интернет-провайдера зафиксируются подключения к yandex.ru, vk.com и google.ru. При использовании VPN все подключения идут на адрес VPN сервера.

Существует множество платных сервисов VPN. К их преимуществам можно отнести разве что только простоту использования. Из недостатков следует выделить высокую стоимость, отсутствие 100% конфиденциальности (написать можно многое, а что на самом деле происходит на VPN-сервере, не перехватывается ли трафик, гарантировать невозможно). Невозможность сменить IP адрес в пару кликов также следует отнести к недостаткам платных сервисов.

Сравним стоимость нашего самостоятельно настроенного решения и платных VPN-сервисов. Последние стоят в районе 300 руб. в месяц. Наше решение будет стоить 0,007 долларов в час. Не используем VPN прямо сейчас – не платим. При использовании по 2 часа каждый день в течение 30 дней это удовольствие нам обойдется в 30-50 рублей.

Мы сделаем следующее:

  1. Арендуем сервер для VPN.
  2. Настроим на нем VPN.
  3. Будем ими пользоваться и платить только за каждый час реального использования VPN.

Шаг №1. Аренда сервера.

Нет, арендовать полноценный сервер мы не будем. Мы арендуем виртуальный сервер – VPS (virtual private server). В очень многих случаях для размещения сайтов в интернете или для других целей (в т. ч. для организации VPN) не требуется больших серверных мощностей, но необходимо «под себя» настроить операционную систему сервера. Одновременно на одном компьютере (и сервере в том числе, ведь это тот же компьютер, только обычно более мощный) сразу несколько операционных систем работать не может. Как быть? На помощь приходят виртуальные машины. Эта технология позволяет запускать операционную систему внутри операционной системы, что называется виртуализацией. В случае с серверами тоже создаются аналоги виртуальных машин – виртуальные сервера.

Существует несколько распространенных технологий виртуализации. Самые распространенные – это OpenVZ, KVM, Xen. Грубо говоря, у Xen и KVM для каждой виртуальной машины создаются своя «имитация железа», своя ОС и т.д. В случае с OpenVZ используется общее ядро ОС, в результате чего некоторые функции (например, внесение правок в ядро ОС) становятся недоступными, или их можно включать и отключать только для всех VPS сразу. VPS на Xen и KVM, как правило, более стабильны в работе, однако разница существенна только для крупных проектов, для которых критична отказоустойчивость серверов.

VPS на OpenVZ всегда дешевле, поскольку один виртуальный сервер требует меньше ресурсов. Из-за более низкой цена мы обратим свой взор именно на VPS на базе OpenVZ.

Внимание! Некоторые хостинги (компании, предоставляющие услуги аренды серверов) намеренно блокируют работу VPN на серверах на базе OpenVZ! Поэтому перед арендой такого сервера нужно уточнять в службе поддержки (у хорошего хостинга она должна отвечать в течение 15 минут, максимум часа), будет ли работать VPN.

Для работы на сервере персонального VPN хватит минимальной конфигурации – 256 МБ ОЗУ и 0,5-1 ГГц процессора. Однако не все хостинги предоставляют VPS с 256 МБ ОЗУ: у многих минимальный тариф– 512 МБ ОЗУ. Такого VPS нам и подавно хватит.

Какие еще критерии выбора VPS существуют? Как вы уже поняли, интернет-трафик будет постоянно «ходить» от вас к VPS и обратно. Поэтому у магистральных каналов должна быть достаточная пропускная способность в обе стороны. Иначе говоря, скорость интернет-соединения между вашим компьютером и VPS должна быть достаточной для выполнения требуемых вам задач. Для повседневной комфортной работы хватит и 15 МБит/сек, а если вы собираетесь скачивать торренты через VPN, то вам могут понадобятся и все 100 Мбит/сек. Но! Если вы и VPS находитесь в сетях разных интернет-провайдеров (особенно в разных городах), вряд ли магистральные сети «вытянут» более 70 Мбит/сек внутри России (или вашей страны) и более 50 Мбит/сек с серверами в Европе.

Большинство хостингов требует помесячную оплату. Стоит сразу отметить, что разброс цен очень большой при примерно одинаковом качестве. Мы же будем пользоваться услугами с почасовой оплатой: 0,007 долларов за час работы нашего сервера. Таким образом, если мы будем пользоваться VPN по 2 часа каждый день, то в месяц мы заплатим около 30 рублей. Согласитесь, это не 350 руб/мес за платный VPN-сервис!

Первым делом нужно перейти на сайт и зарегистрироваться:

Далее откроется страница, на которой нужно указать данные своей банковской карты. Без этого система не будет работать и не даст возможности воспользоваться бонусными 10 долларами (об этом позже). Данные можно указать любые, система «съест» ненастоящие.

При этом на вашей карте может быть заблокирована сумма в несколько рублей, которая затем будет возвращена. Списания с вашей карты будут только по факту использования серверов.

Что делать, если банковской карты нет? Заведите себе , он автоматически дает виртуальную карту, баланс которой равен балансу кошелька. Пополнять кошелек можно почти везде, см. .

Однако, если вы введете в DigitalOcean данные карты Киви, то система ее «выплюнет», сославшись на то, что DigitalOcean не работает с предоплаченными и виртуальными картами. В таком случае вам нужно пополнить баланс на 5 долларов через систему PayPal, заплатив картой Киви.

После всего этого на той же странице в личном кабинете DigitalOcean вводим промо-код DROPLET10 , начисляющий нам 10 долларов, которые мы сможем полноценно использовать на сервера, не опасаясь дополнительных списаний с нашей карты.

Готово! Теперь перейдем к созданию VPS. Смотрим видео-урок:

При создании сервера выбирайте ОС Ubuntu версии 14.04, а не какой-либо более новой, в т.ч. не выбирайте 16.04.

Расположение сервера

Домен для пинга

Франкфурт, Германия

http://speedtest-fra1.digitalocean.com/

speedtest-fra1.digitalocean.com

Амстердам-1, Нидерланды

http://speedtest-ams1.digitalocean.com/

speedtest-ams1.digitalocean.com

Амстердам-2

http://speedtest-ams2.digitalocean.com/

speedtest-ams2.digitalocean.com

Нью-Йорк-1, США

http://speedtest-ny1.digitalocean.com/

speedtest-ny1.digitalocean.com

Нью-Йорк-2

http://speedtest-ny2.digitalocean.com/

speedtest-ny2.digitalocean.com

Нью-Йорк-3

http://speedtest-ny3.digitalocean.com/

speedtest-ny3.digitalocean.com

Сан-Франциско, США

http://speedtest-sfo1.digitalocean.com/

speedtest-sfo1.digitalocean.com

Лондон, Великобритания

http://speedtest-lon1.digitalocean.com/

speedtest-lon1.digitalocean.com

Сингапур

http://speedtest-sgp1.digitalocean.com/

Speedtest-sgp1.digitalocean.com

Примечание. Большинству жителей России и стран СНГ подойдет Амстердам или Франкфурт (пинг до Франкфурта в большинстве случаев будет немного меньше, чем до Амстердама). Жителям Дальнего востока России рекомендую протестировать Сингапур и сравнить показатели с европейскими серверами.

Расположение серверов за рубежом позволит с помощью VPN обходить запреты государственных органов на посещение определенных сайтов (если это актуально для вас).

У DigitalOcean в стоимость включено 1 терабайт (1024 ГБ) трафика (см. ). Большинству этого хватит с головой. У остальных хостингов трафик формально безлимитный, однако он становится нерентабельным для них при достижении порога 1-2 ТБ/мес.

Всё, мы заказали VPS. Поздравляю. Теперь пора перейти к его настройке.

Шаг №2. Настройка VPN.

Не пугайтесь, процесс настройки своего собственного VPN прост, как дважды-два!

В видео-уроке выше мы подключились к нашему серверу с помощью Putty. Теперь продолжим.

Копируем и вставляем (нажатием правой кнопки мыши, как мы делали в видео-уроке) команду:

Теперь копируем и вставляем в открывшееся окно редактирования файла следующее:

Нажимаем Ctrl+O, затем Enter.

Нажимаем Ctrl+X.

Копируем и вставляем команду:

Вводим 1 и нажимаем Enter. Ждем. Согласно запросам системы, вводим желаемый логин и нажимаем Enter. Аналогично с паролем. На вопросы “[Y]/[N]” вводим Y и нажимаем Enter. После завершения настройки будут показаны наши логин и пароль и IP адрес сервера.

Готово! VPN настроен!

Теперь открываем «Центр управления сетями и общим доступом» Windows:

Выбираем настройку нового подключения:

Выбираем «Подключение к рабочему месту»:

Ждем немного. Теперь мы работаем через VPN! Чтобы в этом удостовериться, идем на и убеждаемся в том, что показываемый нам наш IP адрес совпадает с IP адресом нашего VPS.

Теперь внимание! Через личный кабинет DigitalOcean мы можем выключить наш VPS (droplet в терминологии DigitalOcean), однако даже за сервер в выключенном состоянии идет списание денежных средств по стандартному тарифу. Поэтому мы сделаем резервную копию нашего сервера, удалим его, а когда нам снова понадобится VPN, мы его восстановим из резервной копии!

Перейдем в управление сервером (панель управления DigitalOcean находится по адресу cloud.digitalocean.com, вход в нее возможен через кнопку Sign In на главное странице digitalocean.com в правом верхнем углу).

Нам нужно создать резервную копию (снимок, snapshot) нашего VPS. Но для этого его сначала нужно выключить.

Ждем около минуты, пока сервер выключится. Затем переходим в раздел Snapshots, вводим произвольное имя снимка и создаем его:

За каждый гигабайт «веса» нашего VPS при создании снимка спишется по 2 цента. Создание резервной копии (снимка) займет несколько минут.

Теперь удаляем сервер:

Все! Больше ни за что с нас деньги не списываются.

Что делаем, когда VPN понадобится снова

Нам нужно создать новый VPS из той резервной копии, которую мы сделали до этого.

Нажимаем «создать дроплет»:

Теперь, как и прежде, вводим любое имя сервера латинскими буквами без пробелов, выбираем первый минимальный тариф, регион должен быть тот же самый , что и тот, в котором у нас до этого был сервер.

Чуть ниже нажимаем на название снимка, который мы сделали (был серым, а должен стать синим):

…и нажимаем большую зеленую кнопку «Create droplet».

Ждем около минуты.

Смотрим, совпадает ли IP адрес нашего сервера с прежним. Если да, то в Windows просто возобновляем уже ранее созданное подключение:

Если нет, то нажимаем правой кнопкой мыши на название нашего подключения и меняем IP адрес на новый:

Вводим новый IP и нажимаем «ОК»:

Внимание! Теперь, чтобы выключить VPN, нам не нужно делать резервную копию, просто сразу удаляем сервер, а в следующий раз все восстановим из старого снимка. Перед удалением сервер выключать необязательно. На всякий случай такой порядок действий в скриншотах:

Это мы удалили VPS на время неиспользования VPN. Теперь его восстановим из старого снимка:

Опять проверяем, сохранился ли старый IP и продолжаем работу.

На том же самом сервере (или еще одном) можно поднять свой личный прокси, например, на базу ПО 3proxy, однако это не тема этой статьи.

Нашли опечатку? Нажмите Ctrl + Enter

Интернет прочно вошел в нашу жизнь, и если ранее, в годы господства аналоговых модемов, для выхода в Интернет приходилось учитывать и объем трафика, и время соединения, то сегодня нормой стало безлимитное подключение к Интернету. То есть если Интернета нет в любое время и в любом «объеме», то это уже что-то из ряда вон выходящее. Причем если раньше наличие безлимитного Интернета считалось стандартом де-факто для корпоративных сетей, то сегодня это уже стало нормой для конечных пользователей. Вместе с развитием Интернета меняется и концептуальная модель его использования. Появляются все новые сервисы, например видео по запросу и VoIP, развиваются пиринговые файлообменные сети (BitTorrent) и пр. В последнее время очень популярной стала организация виртуальных частных сетей (VPN) через Интернет с возможностью организации удаленного доступа к любому компьютеру в составе этой сети. О том, как это можно сделать, и пойдет речь в настоящей статье.

Зачем это нужно

Организация VPN-сетей через Интернет или внутри локальной сети имеет много сценариев использования: сетевые игры в Интернете в обход игровых серверов (точно так же, как игры по локальной сети), создание закрытой от посторонних сети для передачи конфиденциальной информации, возможность удаленного и безопасного управления компьютерами (полный контроль над удаленным ПК), организация защищенного доступа для сотрудников, находящихся в командировке, к ресурсам корпоративной сети, связь по виртуальной сети отдельных офисов (локальных сетей).

Традиционный подход к развертыванию такой виртуальной частной сети заключается в том, что в корпоративной сети поднимается и конфигурируется VPN-сервер (обычно на базе ОС Linux) и удаленные пользователи заходят в корпоративную сеть по VPN-соединениям.

Однако такой подход неприменим в случае, когда пользователю необходимо получить удаленный доступ к своему домашнему компьютеру. Вряд ли ситуацию, когда дома поднимается отдельный VPN-сервер, можно считать обычной. Впрочем, не стоит отчаиваться. Задача создания VPN-сети решаема и под силу даже начинающему пользователю. Для этой цели существует специальная программа Hamachi, которую можно свободно скачать из Интернета (http://www.hamachi.cc/download/list.php). Что особенно радует, так это наличие ее русифицированной версии, так что освоить программу сможет любой пользователь.

Hamachi 1.0.2.2

Итак, Hamachi (текущая версия - 1.0.2.2) - это программа, позволяющая создать виртуальную частную сеть (VPN) через Интернет и объединить в ней несколько компьютеров. После создания такой сети пользователи могут устанавливать VPN-сессии между собой и работать в этой сети точно так же, как в обычной локальной (LAN) сети с возможностью обмена файлами, удаленного администрирования компьютеров и т.д. Преимущество VPN-сети заключается в том, что она полностью защищена от несанкционированного вмешательства и невидима из Интернета, хотя и существует в нем.

Программа Hamachi должна быть установлена на всех компьютерах, которые предполагается объединить в виртуальную частную сеть.

Виртуальная сеть создается с помощью специализированного сервера Hamachi в Интернете. Для соединения с этим сервером используются порты 12975 и 32976. Первый порт (12975) применяется только для установки соединения, а второй - во время работы. Впрочем, обычным пользователям вряд ли потребуется столь подробная информация.

После того как с помощью сервера Hamachi создается виртуальная сеть между выбранными компьютерами, обмен информацией между клиентами VPN-сети происходит уже напрямую, то есть без участия сервера Hamachi. Для обмена данными между клиентами VPN-сети используется протокол UDP.

Установка программы

Программа Hamachi устанавливается на компьютеры с операционной системой Windows 2000/XP/2003/Vista. Существуют также консольные версии программы для Linux и Mac OS X. Далее мы рассмотрим установку и настройку программы на примере операционной системы Windows XP.

Установка программы Hamachi достаточно проста и не вызывает проблем (особенно учитывая, что интерфейс запускаемого мастера установки русский). После начала установки программы на компьютере запускается мастер установки, который предложит согласиться с лицензионным соглашением, выбрать папку для установки программы (рис. 1), создать иконку на рабочем столе и т.д.

Среди полезных опциональных возможностей, которые можно активировать в процессе установки программы, - автоматический запуск Hamachi при загрузке компьютера и блокирование уязвимых служб для соединений Hamachi (рис. 2). В последнем случае будет заблокирована служба Windows File Sharing для виртуального сетевого адаптера Hamachi. В результате другие пользователи VPN-сети не получат доступа к имеющимся в вашем компьютере файлам и папкам, открытым для совместного использования. При этом данные файлы и папки останутся доступными для обычных пользователей локальной сети, для соединения с которыми не применяется VPN-соединение.

Рис. 1. Мастер установки программы Hamachi позволяет указать папку
для размещения программы, создать иконку на рабочем столе
и выбрать опциональную возможность автоматического запуска программы
при загрузке компьютера

Кроме блокирования службы Windows File Sharing, блокирование уязвимых служб для соединений Hamachi также приводит к блокированию удаленного доступа к определенным службам Windows, которые часто подвергаются атакам. Соответственно если вы используете программу Hamachi для соединения с надежными клиентами, которым вы доверяете, то опцию блокирования уязвимых служб лучше отключить.

Рис. 2. Мастер установки программы Hamachi позволяет заблокировать
уязвимые службы для соединений Hamachi

На последнем этапе мастер установки предложит выбрать, какой вариант программы установить: базовую версию или Premium. Программа Hamachi существует в двух версиях. Базовая версия является бесплатной, а версия Premium, обладающая более широкими возможностями, - платной. Отметим, что для большинства пользователей вполне достаточно бесплатной базовой версии программы (о детальных отличиях базовой версии от версии Premium мы расскажем чуть позже), но стандартный поход следующий: сначала устанавливается Premium-версия на 45 дней (бесплатно), а по истечении этого периода автоматически происходит переход к базовой версии.

После установки и запуска программы Hamachi на компьютере в том случае, если программа устанавливалась впервые, запустится краткий путеводитель по Hamachi, в котором описывается, как работать с программой.

Первый запуск программы

При первом запуске программы будет создана ваша учетная запись. На этом этапе необходимо задать имя компьютера, под которым он будет виден другим пользователям VPN-сети (рис. 3).

Рис. 3. Задание имени компьютера, под которым
он будет виден другим пользователям VPN-сети

Когда имя компьютера задано, программа устанавливает соединение с сервером базы данных Hamachi и запрашивает IP-адрес, который будет присвоен виртуальному сетевому адаптеру Hamachi и будет использоваться в дальнейшем для установления VPN-соединения. Каждому клиенту Hamachi присваивается IP-адрес из диапазона 5.0.0.0/8 (маска подсети 255.0.0.0), который в принципе не относится к зарезервированным для применения в Интернете диапазонам адресов. К таким зарезервированным для частного использования в локальных сетях относятся следующие диапазоны: 10.0.0.0/8 (диапазон от 10.0.0.0 до 10.255.255.254), 172.16.0.0/12 (диапазон от 172.16.0.0 до 172.31.255.254) и 192.168.0.0/16 (диапазон от 192.168.0.0 до 192.168.255.254). Однако диапазон 5.0.0.0/8 на протяжении уже более 10 лет зарезервирован организацией IANA (Internet Assigned Numbers Authority - американская организация, управляющая пространствами IP-адресов) и не используется в качестве публичных (внешних) адресов Интернета. Таким образом, диапазон 5.0.0.0/8, с одной стороны, относится к диапазону внешних (публичных) адресов Интернета, то есть исключена вероятность, что присвоенный вам IP-адрес уже применяется в вашей локальной сети (в локальных сетях используются только зарезервированные для частного применения IP-адреса), а с другой - эти адреса еще никем не заняты.

После присвоения вам IP-адреса из диапазона 5.0.0.0/8 он становится своеобразным идентификатором вашего компьютера в виртуальной частной сети. Этот IP-адрес присваивается виртуальному сетевому адаптеру Hamachi. Так, если набрать в командной строке команду ipconfig/all, то кроме настроек сетевого интерфейса реального сетевого адаптера (который физически присутствует в вашем ПК) можно обнаружить, что появился еще один виртуальный Ethernet-адаптер Hamachi с присвоенными ему MAC-адресом, IP-адресом, маской подсети, IP-адресом шлюза и т.д. (рис. 4).

Рис. 4. После первого запуска программы виртуальному сетевому адаптеру
Hamachi присваивается IP-адрес из диапазона 5.0.0.0/8 и производится настройка
сетевого интерфейса

Итак, после того как программа Hamachi сконфигурировала виртуальный сетевой адаптер, можно приступать к работе с программой.

На этом этапе ваш компьютер еще не является членом какой-либо виртуальной частной сети, поэтому первым делом нужно подключиться к уже существующей виртуальной частной сети или создать новую VPN-сеть.

Работа с программой

Интерфейс программы очень прост (рис. 5). Имеется всего три функциональных кнопки: «включить/выключить», кнопка сетевого меню и кнопка системного меню.

Рис. 5. Интерфейс программы
Hamachi очень простой -
всего три функциональные кнопки

Для создания новой VPN-сети или присоединения компьютера к уже существующей нажмите на кнопку сетевого меню и выберите соответствующий пункт (рис. 6).

Рис. 6. Кнопка сетевого меню позволяет
создать новую VPN-сеть или присоединить
компьютер к уже существующей

Присоединение ПК к существующей виртуальной сети и выход из нее

Если требуется подсоединить компьютер к уже существующей виртуальной сети и известно ее название и пароль (в случае, если он используется), то в сетевом меню выберите пункт Войти в существующую сеть Далее откроется окно, в котором необходимо задать имя сети и пароль (рис. 7).

Рис. 7. Добавление компьютера
в существующую виртуальную сеть

После этого в окне программы появятся название сети и список присоединенных к ней компьютеров (кроме вашего) - рис. 8.

Рис. 8. После присоединения компьютера
к виртуальной сети в окне программы
отображается список присоединенных
к ней компьютеров

Если рядом с названием компьютера стоит зеленая точка или звезда, то это означает, что связь с компьютером установлена. Мигание зеленой точки свидетельствует о том, что связь находится в процессе установки. Светлый круг вокруг зеленой точки указывает на то, что с данным компьютером идет обмен информацией.

Хуже всего, когда рядом с названием компьютера стоит желтая точка - это означает, что прямое соединение с ним по каким-то причинам установить не удалось. Если желтым цветом отображается название компьютера, то это означает, что связь с ним потеряна.

Появление голубой точки указывает на то, что прямое соединение с компьютером установить не удалось и связь осуществляется через сервер Hamachi. Проблема заключается в том, что в этом случае канал связи с компьютером имеет очень низкую пропускную способность и большие задержки.

Если название компьютера и точка около его имени отображаются серым цветом, то это означает, что компьютер хотя и присоединен к данной виртуальной сети, но недоступен (например, ПК выключен, нет соединения с Интернетом или не запущена программа Hamachi).

Для того чтобы выйти из сети, достаточно щелкнуть правой кнопкой мыши на ее названии и в ниспадающем списке выбрать пункт Отключиться или Покинуть сеть . В первом случае вы лишь временно покидаете сеть и список присоединенных к ней компьютеров остается для вас видимым. Во втором случае для входа в сеть придется заново повторить всю процедуру присоединения компьютера к существующей сети.

Создание новой сети и удаление созданной сети

Если требуется создать новую виртуальную сеть, то в сетевом меню выберите пункт Создать новую сеть… Откроется окно, в котором необходимо задать имя создаваемой сети и пароль, который будут использовать другие пользователи для присоединения к этой сети (рис. 9).

Рис. 9. Создание новой VPN-сети

После создания новой сети к ней можно присоединять компьютеры пользователей. Если сеть создана вами, то вы являетесь ее администратором и получаете полный контроль над нею, которого лишены другие пользователи. При этом важно помнить, что управлять созданной сетью можно только с того компьютера, на котором она была создана. Если точнее, то управлять сетью можно только с компьютера, которому присвоен точно такой же виртуальный IP-адрес, как тот, что использовался при создании виртуальной сети. Почему это замечание так важно? Представьте себе ситуацию: вы установили программу Hamachi и создали новую VPN-сеть. Потом вы полностью удалили (включая все конфигурационные файлы) программу Hamachi и через некоторое время установили ее вновь. Вам будет присвоен новый виртуальный IP-адрес, но, используя его, вы уже не сможете контролировать созданную вами ранее VPN-сеть.

Если вы являетесь администратором сети, то можете удалить ее. Для этого щелкните правой кнопкой мыши по названию сети и в ниспадающем списке выберите пункт Удалить . Отметим, что при удалении сети полностью уничтожаются все связи между другими ее пользователями.

Другие действия с компьютерами сети

Если вы присоединились к сети, то можете совершать над присоединенными к ней компьютерами следующие действия:

  • проверка доступности;
  • просмотр папок;
  • отправка сообщения;
  • копирование адреса;
  • блокирование;
  • установка метки.

Для того чтобы выполнить одно из них, щелкните на имени компьютера правой кнопкой мыши и в ниспадающем меню выберите соответствующий пункт (рис. 10).

Рис. 10. Список возможных действий
с выбранным компьютером сети

При выборе пункта Проверить доступность будет выполнена обычная команда ping по адресу соответствующего компьютера.

Пункт Просмотреть папки позволяет получить доступ к открытым для совместного доступа (Sharing) папкам на компьютере.

Пункт Отправить сообщение дает возможность обмениваться сообщениями между отдельными компьютерами сети наподобие тому, как это делается в ICQ.

Пункт Копировать адрес вставляет в буфер обмена IP-адрес выбранного компьютера, что удобно, если требуется использовать этот адрес в других программах (например, удаленного администрирования).

Пункт Блокировать позволяет временно заблокировать выбранный компьютер, то есть ваш с ним VPN-канал окажется заблокированным и обмен информацией будет невозможен.

Пункт Установить метку позволяет выбрать формат отображения атрибутов компьютера в сети. По умолчанию отображается IP-адрес компьютера и его название. Можно задать отображение только имени компьютера или только IP-адреса.

Настройка программы

Для того чтобы получить доступ к настройке программы, необходимо нажать на кнопку системного меню и выбрать пункт Установки… (рис. 11).

Рис. 11. Получение доступа к настройкам
программы

После этого откроется окно Статус и конфигурация , позволяющее произвести детальную настройку программы (рис. 12).

Рис. 12. Окно детальной конфигурации программы

Собственно, здесь все достаточно просто, и вряд ли нужны подробные комментарии, поэтому просто перечислим возможности, которые можно реализовать в окне конфигурации. Итак, в этом окне можно изменить имя компьютера, произвести детальную настройку соединения, задать тип запуска программы, заблокировать или разблокировать уязвимые службы Windows, заблокировать новых членов сети и реализовать другие, менее значимые опции. Среди важных возможностей отметим отключение шифрования при передаче данных между отдельными компьютерами сети. Для того чтобы сделать это, необходимо нажать на иконку Окно и в группе Внешний вид отметить пункт Show «Advanced…» per menu item (рис. 13).

Рис. 13. Добавление пункта Advanced…
в ниспадающее меню

После этого, если на имени компьютера, присоединенного к сети, щелкнуть правой кнопкой мыши, в ниспадающем меню появится пункт Advanced… Если выбрать его, то откроется окно Tunnel Configuration , позволяющее изменить настройки VPN-туннеля. Для отключения шифрования в пункте Encryption необходимо выбрать значение Оff . В этом случае данные с вашего компьютера будут передаваться на выбранный ПК в незашифрованном виде. Однако в обратном направлении данные будут передаваться зашифрованными. Для того чтобы полностью отключить шифрование для VPN-туннеля между двумя компьютерами, его нужно отключить на обоих компьютерах.

Отметим, что отключать шифрование следует только в исключительных случаях, поскольку сама процедура шифрования вряд ли отразится на трафике. Дело в том, что трафик будет определяться пропускной способностью вашего интернет-канала, а отнюдь не применением или отсутствием шифрования. Только в том случае, если VPN-туннель образуется между компьютерами в пределах одной локальной сети и его пропускная способность составляет порядка 100 Мбит/с, использование шифрования может немного снизить максимальную скорость передачи (до 70-80 Мбит/с).

Заключение

Программа Hamachi - это мощный инструмент, позволяющий очень быстро создавать VPN-сети. Отметим, что изначально она была создана для того, чтобы пользователи могли играть в сетевые игры в обход игровых серверов. Однако возможные сценарии применения этой программы значительно шире. Так, создав виртуальную сеть и присоединив к ней компьютеры, можно, воспользовавшись стандартными программами удаленного администрирования, получить удаленный доступ к любому компьютеру виртуальной сети, поскольку каждый компьютер такой сети имеет свой выделенный IP-адрес.

В то же время нужно отметить, что далеко не всегда удается установить прямое соединение между отдельными компьютерами. И несмотря на то, что на сайте производителя утверждается, что программа легко «пробивает» маршрутизаторы и NAT-устройства, на самом деле все не столь оптимистично. В документации к программе утверждается, что в 5% случаев прямое соединение между отдельными компьютерами установить не удается, однако, как нам кажется, эта цифра явно занижена. Реальная ситуация такова: если речь идет о соединении двух компьютеров, которым присваивается динамический или статический публичный IP-адрес, то проблем не возникает. То есть если у вас дома имеется всего один компьютер с выходом в Интернет и вам нужно соединиться с пользователем, у которого также один компьютер с выходом в Интернет, то никаких проблем не будет. Как показывает практика, не возникает проблем установления соединения и между компьютером пользователя с присвоенным ему динамическим или статическим публичным IP-адресом и компьютером в составе локальной сети, защищенной маршрутизатором. Однако если связь устанавливается между двумя компьютерами, принадлежащими разным локальным сетям, защищенным маршрутизаторами, то возможны проблемы и не факт, что прямое соединение будет установлено. То есть соединение может быть установлено, но с большой вероятностью оно будет не прямое, а через сервер Hamachi. Соответственно скорость такого канала связи окажется очень низкой и проку от такого соединения будет не много. К примеру, у вас дома выход в Интернет реализован с использованием беспроводного маршрутизатора, то есть ваш компьютер находится в составе домашней локальной сети и ему присваивается IP-адрес из диапазона зарезервированных для частного применения адресов, а публичный адрес присваивается WAN-порту маршрутизатора, через который вы выходите в Интернет. Если вы пытаетесь установить соединение с другим компьютером, который также находится в составе локальной сети (например, с рабочим компьютером в офисе или с компьютером пользователя, у которого дома развернута локальная сеть и используется маршрутизатор), то в большинстве случаев появляются проблемы.

В руководстве пользователя программы Hamachi описывается, каким образом можно избежать подобных проблем. Для этого предлагается использовать фиксированный (а не динамический) UDP-порт и реализовать функцию перенаправления портов на маршрутизаторе. Однако, как показывает практика, перенаправление портов или применение демилитаризованной зоны в маршрутизаторе далеко не всегда помогает.

VPN (Virtual Private Network) – широко распространённая технология, позволяющая организовывать виртуальные сети поверх существующих реальных сетей. В данной статье речь пойдёт о терминологии и общих принципах, настройка таких сетей будет рассматриваться отдельно.

Не смотря на слово «Private» в названии технологии, существует возможность организации и общедоступных – нешифрованных сетей. Вообще, организация VPN может осуществляться огромным количеством способов с использованием разных технологий (SSL VPN, IPSec, GRE и др.).

Любое построение VPN-а означает создание туннелей, под туннелем подразумевается канал между двумя устройствами, по которому передаётся данные. Важное условие – данные изолированы от особенностей построения канала. Устройство, передающее полезные данные делает это так, как будто бы никакого туннеля нет, а настройка самого туннеля при этом выделяется в отдельную задачу. Существует два типа VPN туннелей:

  1. Remote access VPN – означает, что туннель организуется между приложением на компьютере клиента и каким-либо устройством, которое выступает в качестве сервера и организовывает подключения от различных клиентов (например, VPN-концентратор, маршрутизатор, Cisco ASA и т.п.)
  2. Site-to-site VPN – подразумевает наличие двух устройств (например, маршрутизаторов), между которыми имеется перманентный туннель, в этом случае, пользователи находятся за устройствами, в локальный сетях и на их компьютерах не требуется установки какого-либо специального программного обеспечения.

Первый тип используется для подключения, например, удалённых работников в корпоративную сеть предприятия по защищённому каналу. В этом случае работник может находиться в любом месте, где есть интернет, и программное обеспечение на его компьютере построит туннель до маршрутизатора компании, по которому будут передаваться полезные данные. Второй тип используется в случае необходимости стационарного соединения между двумя удалёнными филиалами, или филиалом и центральным офисом. В этом случае сотрудники без специального ПО работают в локальной сети офиса, а на границе этой сети стоит маршрутизатор, который незаметно для пользователя создаёт туннель с удалённым маршрутизатором и передаёт на него полезный трафик.

В туннеле обычно используется три прослойки протоколов:

  1. Транспортный протокол (например, IP). Это протокол, на котором построена существующая реальная сеть, то есть, он изначально не связан с VPN-ом, но используется для транспортировки инкапсулированных пакетов, содержащих внутри себя зашифрованную, или открытую информацию, относящуюся ко внутренней сети туннеля.
  2. Протокол инкапсуляции (например, GRE) – используется как прослойка между транспортным протоколом и внутренним транспортируемым протоколом.
  3. Инкапсулированный (транспортируемый) протокол (например, IP, IPX, IPSec) – это собственно пакеты внутритуннельной сети, пользователь, подключенный к VPN-у отправляет пакеты, которые на входе в туннель становятся инкапсулированными, например, в GRE, который, в свою очередь, инкапсулируется в транспортный протокол.

Таким образом, общий порядок инкапсуляции, в случае использования site-to-site VPN следующий: пользователь отправляет обычный пакет, пакет доходит до устройства, на котором поднят туннель, устройство заворачивает этот полезный пакет в поле «data» протокола инкапсуляции, который, в свою очередь заворачивается в поле «data» транспортного протокола. После чего из устройства выходит с виду обычный, например, ip пакет, в котором, на самом деле, в поле с полезными данными содержится GRE-пакет, в котором, в свою очередь, содержится другой внутренний IP пакет. Это позволяет использовать независимую адресацию внутри туннеля и снаружи туннеля. Когда целевое устройство получает такой пакет, оно разворачивает его, декапсулируя из него GRE и потом внутренний IP пакет. После чего внутренний пакет направляется получателю. В данной ситуации, как не сложно догадаться, отправитель и получатель ничего не знаю о наличии туннеля, и работают так, как будто бы его нет. При этом в транспортном протоколе используется одна адресация (например, публичные IP адреса), а в транспортируемом протоколе могут использоваться приватные адреса, что не мешает ему транспортироваться через интернет (так как маршрутизация осуществляется для внешнего, транспортного пакета).

VPN (Virtual Private Network) - это виртуальная частная сеть или логическая сеть, которая создается поверх незащищённых сетей (сетей оператора связи или сервис-провайдера Интернет). VPN – это технология, которая обеспечивает защиту данных при передаче их по незащищенным сетям. Виртуальная частная сеть позволяет организовать туннель в незащищённых сетях (между двумя точками сети), например в ATM, FR или IP-сетях.

С помощью VPN можно осуществить соединения: сеть-сеть, узел-сеть или узел-узел. Такие свойства технологии VPN предоставляют возможность объединить территориально удаленные друг от друга локальные сети офисов компании в единую корпоративную информационную сеть. Необходимо отметить, что корпоративные вычислительные сети (КВС) можно организовывать и на базе выделенных (частных или арендованных) каналов связи. Такие средства организации используются для небольших КВС (предприятий с компактно расположенными офисами) с неизменяющимся во времени трафиком.

Известны основные виды VPN и их комбинации:

  • Intranet VPN (внутрикорпоративные VPN);
  • Extranet VPN (межкорпоративные VPN);
  • Remote Access VPN (VPN с удаленным доступом);
  • Client/Server VPN (VPN между двумя узлами корпоративной сети).

В настоящее время для построения корпоративных территориально распределенных сетей в разделяемой инфраструктуре сервис-провайдеров и операторов связи применяются следующие технологий:

  • IP-туннели с использованием технологий GRE или IPSec VPN;
  • SSL, к которой относятся OpenVPN и SSL VPN (SSL/TLS VPN) для организации безопасных каналов связи;
  • MPLS в сети оператора (L3 VPN) или VPN в сети BGP/MPLS;
  • Metro Ethernet VPN в сети оператора (L2 VPN). Наиболее перспективная технология, используемая в Metro Ethernet VPN, - это VPN на базе MPLS (MPLS L2 VPN) или VPLS.

Что касается применения выделенных линий и технологий Frame Relay, ATM для организации корпоративных территориально распределенных сетей, то они уже для этих целей практически не применяются. Сегодня, как правило, КВС строятся на основе оверлейных сетей (клиент-серверных и одноранговых сетей), которые работают в разделяемой инфраструктуре операторов, и являются «надстройками» над классическими сетевыми протоколами.

Для организации территориально распределенных корпоративных сетей провайдеры предоставляют заказчикам следующие основные модели VPN в среде Интернет:

  • модель IP VPN (GRE, IPSec VPN, OpenVPN) через WAN сеть, в которой настройка VPN обеспечивается заказчиком;
  • модель L 3 VPN или MPLS L3 VPN через WAN сеть, в которой настройка VPN обеспечивается сервис-провайдером или оператором связи;
  • модель L2 VPN через MAN сеть, в которой настройка VPN обеспечивается провайдером или оператором связи:
    • point-to-point (AToM, 802.1Q, L2TPv3);
    • multipoint (VPLS и H-VPLS).

Технологии VPN можно классифицировать и по способам их реализации с помощью протоколов: аутентификации, туннелирования и шифрования IP-пакетов. Например, VPN (IPSec, OpenVPN, PPTP) основаны на шифровании данных заказчиков, VPN (L2TP и MPLS) базируются на разделении потоков данных между заказчиками VPN, а SSL VPN основана на криптографии и аутентификации трафика. Но, как правило, VPN используют смешанные варианты, когда совместно используются технологии: аутентификации, туннелирования и шифрования. В основном организация VPN-сетей осуществляется на основе протоколов канального и сетевого уровней модели OSI.

Необходимо отметить, что для мобильных удаленных пользователей была разработана технология SSL VPN (Secure Socket Layer - уровень защищенных сокетов), которая основана на ином принципе передачи частных данных (данных пользователей) через Интернет. Для организации SSL VPN используется протокол прикладного уровня HTTPS. Для HTTPS используется порт 443, по которому устанавливается соединение с использованием TLS (Transport Layer Security - безопасность транспортного уровня).

TLS и SSL (TLS и SSL- протоколы 6 уровня модели OSI) - это криптографические протоколы, которые обеспечивают надежную защиту данных прикладного уровня, так как используют асимметричную криптографию, симметричное шифрование и коды аутентичности сообщений. Но поскольку в стеке TCP/IP определены 4 уровня, т.е. отсутствуют сеансовый и представительский уровни, то эти протоколы работают над транспортным уровнем в стеке TCP/IP, обеспечивая безопасность передачи данных между узлами сети Интернет.

Модель IP VPN, в которой настройка VPN обеспечивается заказчиком

Модель IP VPN может быть реализована на базе стандарта IPSec или других протоколов VPN (PPTP, L2TP, OpenVPN). В этой модели взаимодействие между маршрутизаторами заказчика устанавливается через WAN сеть сервис-провайдера. В этом случае провайдер не участвует в настройке VPN, а только предоставляет свои незащищённые сети для передачи трафика заказчика. Сети провайдеров предназначены только для инкапсулированного или наложенного (прозрачного) соединения VPN между офисами заказчика.

Настройка VPN осуществляется телекоммуникационными средствами заказчика, т.е. заказчик сам управляет маршрутизацией трафика. VPN соединение – это соединение поверх незащищённой сети типа точка-точка: «VPN шлюз - VPN шлюз» для объединения удаленных локальных сетей офисов, «VPN пользователь - VPN шлюз» для подключения удаленных сотрудников к центральному офису.

Для организации VPN-сети в каждый офис компании устанавливается маршрутизатор, который обеспечивает взаимодействие сети офиса с VPN-сетью. На маршрутизаторы устанавливается программное обеспечение для построения защищённых VPN, например, бесплатный популярный пакет OpenVPN (в этом случае пакет OpenVPN надо сконфигурировать для работы в режиме маршрутизации). Технология OpenVPN основана на SSL стандарте для осуществления безопасных коммуникаций через Интернет.

OpenVPN обеспечивает безопасные соединения на основе 2-го и 3-го уровней OSI. Если OpenVPN сконфигурировать для работы в режиме моста - он обеспечивает безопасные соединения на основе 2 уровня OSI, если в режиме маршрутизации - на основе 3-го уровня. OpenVPN в отличие от SSL VPN не поддерживает доступ к VPN-сети через web-браузер. Для OpenVPN требуется дополнительное приложение (VPN-клиент).

Маршрутизатор головного офиса компании настраивается в качестве VPN-сервера, а маршрутизаторы удаленных офисов в качестве VPN-клиентов. Маршрутизаторы VPN-сервер и VPN-клиенты подключаются к Интернету через сети провайдера. Кроме того, к главному офису можно подключить ПК удаленного пользователя, настроив на ПК программу VPN-клиента. В итоге получаем модель IP VPN (скриншот представлен на рис. 1).

Рис. 1. Модель сети IP VPN (Intranet VPN + Remote Access VPN)

Модель MPLS L3 VPN или L3 VPN, в которой настройка VPN обеспечивается сервис-провайдером или оператором связи (поставщиком услуг)

Рассмотрим процесс организации VPN-сети для трех удаленных локальных сетей офисов заказчика услуг (например, корпорации SC-3), размещенных в различных городах, с помощью магистральной сети MPLS VPN поставщика услуг, построенной на базе технологии MPLS L3 VPN. Кроме того, к сети корпорации SC-3 подключен ПК удаленного рабочего места и ноутбук мобильного пользователя. В модели MPLS L3 VPN оборудование провайдера участвует в маршрутизации клиентского трафика через сеть WAN.

В этом случае доставка клиентского трафика от локальных сетей офисов заказчика услуг к магистральной сети MPLS VPN поставщика услуг осуществляется с помощью технологии IP. Для организации VPN-сети в каждый офис компании устанавливается периферийный или пограничный CE-маршрутизатор (Customer Edge router), который соединяется физическим каналом с одним из пограничных РЕ-маршрутизаторов (Provider Edge router) сети MPLS провайдера (оператора). При этом на физическом канале, соединяющем CE и PE маршрутизаторы, может работать один из протоколов канального уровня (PPP, Ethernet, FDDI, FR, ATM и т.д.).

Сеть поставщика услуг (сервис-провайдера или оператора связи) состоит из периферийных РЕ-маршрутизаторов и опорной сети (ядра сети) с коммутирующими по меткам магистральными маршрутизаторами P (Provider router). Таким образом, MPLS L3 VPN состоит из офисных локальных IP-сетей заказчика и магистральной сети MPLS провайдера (домена MPLS), которая объединяет распределенные локальные сети офисов заказчика в единую сеть.

Удаленные локальные сети офисов заказчика обмениваются IP-пакетами через сеть провайдера MPLS, в которой образуются туннели MPLS для передачи клиентского трафика по опорной сети поставщика. Скриншот модели сети MPLS L3 VPN (Intranet VPN + Remote Access VPN) представлен на рис. 2. С целью упрощения схемы сети приняты следующие начальные условия: все ЛВС офисов относятся к одной VPN, а опорная (магистральная) сеть является доменом MPLS (MPLS domain), находящаяся под единым управлением национального сервис-провайдера (оператора связи).

Необходимо отметить, что MPLS L3 VPN может быть организована с помощью нескольких доменов MPLS разных сервис-провайдеров. На рисунке 2 представлена полносвязная топология VPN.


Рис. 2. Модель сети MPLS L3 VPN (Intranet VPN + Remote Access VPN)

Функционирование PE-маршрутизаторов

Периферийные маршрутизаторы CE и PE (заказчика и провайдера) обмениваются друг с другом маршрутной информацией одним из внутренних протоколов маршрутизации IGP (RIP, OSPF или IS-IS). В результате обмена маршрутной информацией каждый РЕ-маршрутизатор создает свою отдельную (внешнюю) таблицу маршрутизации VRF (VPN Routing and Forwarding) для локальной сети офиса заказчика, подключенной к нему через CE-маршрутизатор. Таким образом, маршрутная информация, полученная от CE, фиксируется в VRF-таблице PE.

Таблица VRF называется виртуальной таблицей маршрутизации и продвижения. Только РЕ-маршрутизаторы знают о том, что в сети MPLS организована VPN для заказчика. Из модели сети MPLS L3 VPN следует, что между CE-маршрутизаторами заказчика не осуществляется обмен маршрутной информацией, поэтому заказчик не участвует в маршрутизации трафика через магистраль MPLS, настройку VPN (РЕ-маршрутизаторов и Р-маршрутизаторов) осуществляет провайдер (оператор).

К РЕ-маршрутизатору могут быть подключены несколько VPN-сетей разных заказчиков (рис.3). В этом случае на каждый интерфейс (int1, int2 и т.д.) PE-маршрутизатора, к которому подключена локальная сеть офиса заказчика, устанавливается отдельный протокол маршрутизации. Для каждого интерфейса РЕ-маршрутизатора один из протоколов IGP создает таблицу маршрутизации VRF, а каждая таблица маршрутизации VRF соответствует VPN-маршрутам для каждого заказчика.

Например, для заказчика SC-3 и его сети LAN0 (главного офиса), подключенной через CE0 к PE0, на PE0 будет сформирована таблица VRF1 SC-3, для LAN1 заказчика SC-3 на PE1 будет создана VRF2 SC-3, для LAN2 на PE2 - VRF3 SC-3 и т.д., а принадлежат они одной VPN SC3. Таблица VRF1 SC-3 является общей для маршрутной информации CE0 и CE4. Необходимо отметить, что таблицы VRF пополняются информацией об адресах локальных сетей всех других офисов данного заказчика с помощью протокола MP-BGP (multiprotocol BGP). Протокол MP-BGP используется для обмена маршрутами непосредственно между РЕ-маршрутизаторами и может переносить в маршрутной информации адреса VPN-IPv4.

Адреса VPN-IPv4 состоят из исходных адресов IPv4 и префикса RD (Route Distinguisher) или различителя маршрутов, который идентифицирует конкретную VPN. В итоге на маршрутизаторах РЕ будут созданы VRF-таблицы с идентичными маршрутами для одной сети VPN. Только те РЕ-маршрутизаторы, которые участвуют в организации одной и той же VPN-сети заказчика, обмениваются между собой маршрутной информацией по протоколу MP-BGP. Префикс RD конфигурируется для каждой VRF-таблицы.

Маршрутная информация, которой обмениваются РЕ-маршрутизаторы по протоколу MP-BGP через глобальный или внутренний интерфейс:

  • Адрес сети назначения (VPN-IPv4);
  • Адрес следующего маршрутизатора для протокола (next hop);
  • Метка Lvpn – определяется номером интерфейса (int) РЕ-маршрутизатора, к которому подключена одна из ЛВС офиса заказчика;
  • Атрибут сообщения RT (route-target) – это атрибут VPN, который идентифицирует все ЛВС офисов, принадлежащие одной корпоративной сети заказчика или одной VPN.

Рис. 3. РЕ-маршрутизатор

Кроме того, каждый РЕ-маршрутизатор обменивается маршрутной информацией с магистральными P-маршрутизаторами одним из внутренних протоколов маршрутизации (OSPF или IS-IS) и создает также отдельную (внутреннюю) глобальную таблицу маршрутизации (ГТМ) для магистральной сети MPLS. Внешняя (VRF) таблица и внутренняя (ГТМ) глобальная таблицы маршрутизации в РЕ-маршрутизаторах изолированы друг от друга. P-маршрутизаторы обмениваются маршрутной информацией между собой и PЕ-маршрутизаторами с помощью традиционных протоколов внутренней IP-маршрутизации (IGP), например OSPF или IS-IS, и создают свои таблицы маршрутизации.

На основе таблиц маршрутизации с помощью протоколов распределения меток LDP или протоколов RSVP на основе технологии Traffic Engineering строятся таблицы коммутации меток на всех маршрутизаторах P (на PE создаются FTN), образующих определенный маршрут LSP (Label Switched Paths). В результате формируются маршруты с коммутацией по меткам LSP, по которым IP-пакеты продвигаются на основе значений меток заголовка MPLS и локальных таблиц коммутации, а не IP-адресов и таблиц маршрутизации.

Заголовок MPLS добавляется к каждому IP-пакету, поступающему на входной PE-маршрутизатор, и удаляется выходным PE-маршрутизатором, когда пакеты покидают сеть MPLS. В заголовке MPLS используется не метка, а стек из двух меток, т.е. входной PE назначает пакету две метки. Одна из них внешняя L, другая внутренняя Lvpn. Внешняя метка или метка верхнего уровня стека используется непосредственно для коммутации пакета по LSP от входного до выходного PE.

Необходимо отметить, что PE направляет входной трафик в определенный виртуальный путь LSP на основании FEC (Forwarding Equivalence Class – класса эквивалентности продвижения). FEC – это группа пакетов к условиям, транспортировки которых предъявляются одни и те же требования. Пакеты, принадлежащие одному FEC, перемещаются по одному LSP. Классификация FEC может осуществляться различными способами, например: по IP-адресу сети (префиксу сети) назначения, типу трафика, требованиям инжиниринга и т.д.

Если использовать классификацию по IP-адресу сети назначения, то для каждого префикса сети назначения создается отдельный класс. В этом случае протокол LDP полностью автоматизирует процесс создание классов и назначение им значений меток (табл. 1). Каждому входящему пакету, который направляется маршрутизатором PE на определенный IP-адрес сети офиса, назначается определенная метка на основании таблицы FTN.

Таблица 1. FTN (FEC To Next hop) на маршрутизаторе PE1

Из таблицы 1 следует, что значение внешней метки назначает входной маршрутизатор PE1 на основании IP-адреса локальной сети офиса. Внутренняя метка или метка нижнего уровня стека в процессе коммутации пакета по LSP от входного до выходного PE не участвует, а она определяет VRF или интерфейс на выходном PE, к которому присоединена ЛВС офиса заказчика.

Обмен информацией о маршрутах VPN по протоколу MP-BGP

Маршрутная информация (информация о маршрутах VPN), которую передает маршрутизатор PE1 маршрутизатору PE2 по протоколу BGP (красные линии):

  • Адрес VPN-IPv4: 46.115.25.1:106:192.168.1.0;
  • Next Hop = 46.115.25.1;
  • Lvpn=3;
  • RT= SC-3.

Различитель маршрутов RD=46.115.25.1:106 добавляется к IPv4-адресу сети LAN1 регионального офиса 1. Где 46.115.25.1 – это IP-адрес глобального интерфейса маршрутизатора PE1, через который PE1 взаимодействует с P-маршрутизаторами. Для данного маршрута VPN SC-3 администратор сети провайдера в маршрутизаторе PE1 или PE1 назначает метку (номер), например 106.

Когда маршрутизатор PE2 получает от PE1 адрес сети назначения VPN-IPv4, он отбрасывает разграничитель маршрутов RD, помещает адрес 192.168.1.0 в таблицу VRF3 SC-3 и отмечает, что запись была сделана протоколом BGP. Кроме того, он объявляет этот маршрут, подключенному к нему маршрутизатору заказчика CE2 для данной VPN SC-3.

Таблица VRF3 SC-3 также пополняется протоколом MP-BGP – об адресах сетей других ЛВС офисов данной VPN SC-3. Маршрутизатор PE1 направляет по протоколу MP-BGP маршрутную информация также другим маршрутизаторам: PE0 и PE3. В итоге, все маршруты в таблицах VRF маршрутизаторов (PE0, PE1, PE2 и PE3) содержат адреса всех сетей ЛВС офисов данного заказчика в формате IPv4.

Рис. 4. Таблицы VRF маршрутизаторов (PE0, PE1, PE2 и PE3)

Маршрутная информация, которую передает маршрутизатор PE2 маршрутизатору PE1 по протоколу MP-BGP (красные линии):

  • Адрес VPN-IPv4: 46.115.25.2:116:192.168.2.0;
  • Next Hop = 46.115.25.2;
  • Lvpn=5;
  • RT=SC-3.
Передача данных между ПК в корпоративной сети организованной на базе технологии MPLS L3 VPN

Рассмотрим, как происходит обмен данными между ПК 2 (IP: 192.168.1.2) сети LAN1 и ПК 1 (IP: 192.168.3.1) сети LAN. Для доступа к файлам, размещенным в директориях или логических дисках ПК 1 (LAN) с общим доступом, необходимо на ПК 2 (LAN1) в строке "Найти программы и файлы" (для ОС Win 7) ввести \\192.168.3.1 и нажать клавишу Enter. В результате на экране ПК 2 будут отображены директории с общим доступом ("расшаренные" директории или папки), которые размещены на ПК 1. Как это происходит?

При нажатии клавишу Enter в ПК 2 (LAN1) на сетевом уровне сформировался пакет с IP-адресом назначения 192.168.3.1. В первую очередь пакет поступает на маршрутизатор CE1 (рис. 5), который направляет его в соответствии с таблицей маршрутизацией на интерфейс int3 маршрутизатора PE1, так как он является следующим маршрутизатором для доступа к сети 192.168.3.0/24, в которой находятся ПК 1 (LAN ГО) с IP-адресом 192.168.3.1. С интерфейсом int3 связана таблица маршрутизации VRF2 SC-3, поэтому дальнейшее продвижение пакета осуществляется на основе ее параметров.

Как следует из таблицы VRF2 SC-3, следующим маршрутизатором для продвижения пакета к сети 192.168.3/24 является PE0 и эта запись была выполнена протоколом BGP. Кроме того, в таблице указано значение метки Lvpn=2, которая определяет интерфейс выходного маршрутизатора PE0. Отсюда следует, что дальнейшее продвижение пакета к сети 192.168.3/24 определяется параметрами глобальной таблицы маршрутизации ГТМ PE1.

Рис. 5. Передача данных между ПК2 (192.168.1.2) и ПК1 (192.168.3.1) сетей LAN1 и LAN главного офиса КС SC-3

В глобальной таблице (ГТМ PE1) адресу следующего маршрутизатора (NH - Next Hop) PE0 соответствует начальное значение внешней метки L=105, которая определяет путь LSP до PE0. Продвижение пакета по LSP происходит на основании L-метки верхнего уровня стека (L=105). Когда пакет проходит через маршрутизатор P3, а затем через маршрутизатор P1, метка L анализируется и заменяется новыми значениями. После достижения пакетом конечной точки LSP, маршрутизатор PE0 удаляет внешнюю метку L из стека MPLS.

Затем маршрутизатор PE0 извлекает из стека метку нижнего уровня стека Lvpn=2, которая определяет интерфейс int2, к которому присоединен маршрутизатор CE0 локальной сети главного офиса заказчика (LAN ГО). Далее из таблицы (VRF1 SC-3), содержащей все маршруты VPN SC3, маршрутизатор PE0 извлекает запись о значении метки Lvpn=2 и о связанном с ней маршруте к сети 192.168.3/24, который указывает на CE0 в качестве следующего маршрутизатора. Из таблицы следует, что запись о маршруте была помещена в таблицу VRF1 SC-3 протоколом IGP, поэтому путь движения пакета от PE0 до CE0 осуществляется по IP-протоколу.

Дальнейшее движение пакета от CE0 к ПК 1 с IP-адресом 192.168.3.1 осуществляется по MAC-адресу, так как CE0 и ПК 1 (192.168.3.1) находятся в одной ЛВС. После получения пакета-запроса от ПК 2 операционная система компьютера ПК 1 отправит копии своих директорий с общим доступом для ПК 2. Операционная система ПК 2, получив копии директорий с общим доступом от ПК 1, отображает их на экране монитора. Таким образом, через общественные сети MPLS провайдера по виртуальным каналам LSP осуществляется обмен данными между двумя ПК, принадлежащим разным ЛВС офисов одного заказчика.

Что касается подключения удаленного мобильного пользователя к ресурсам территориально распределенной корпоративной сети, то его можно реализовать с помощью одной из технологий Remote Access VPN (Remote Access IPSec VPN и SSL VPN). Необходимо отметить, что технология SSL VPN поддерживает два типа доступа: полный сетевой доступ и clientless. Технология clientless SSL VPN обеспечивает удаленный доступ к сети через стандартный веб-браузер, но в этом случае доступны только сетевые приложения с web-интерфейсом. Технология SSL VPN с полным сетевым доступом, после установки на ПК дополнительного приложения (VPN-клиента) обеспечивает доступ ко всем ресурсам территориально распределенной корпоративной сети.

Как правило, подключение удалённого пользователя к MPLS L3 VPN производится посредством сервера удаленного доступа (RAS), который подключается к одному из PE-маршрутизаторов MPLS сети. В нашем случае мобильный пользователь через сеть доступа (Интернет) подключен с помощью Remote Access IPSec VPN к RAS, который соединен с маршрутизатором PE0. Таким образом, мобильный пользователь через IPSec VPN подключается к своей корпоративной сети (корпорации SC-3), организованной на основе MPLS L3 VPN.

Модель MPLS L2 VPN, в которой настройка VPN обеспечивается провайдером или оператором связи (поставщиком услуг)

Организовать единое информационное пространство в трех офисах (например, корпорации SC-3), расположенных в пределах одного города можно на базе широкополосной Metro Ethernet сети оператора связи (L2 VPN). Одной из услуг сетей Metro Ethernet является организация корпоративных сетей через магистральные сети MAN (сети оператора связи в масштабах города). Для организации Metro Ethernet VPN (L2 VPN) используются различные технологии, например AToM (в основном EoMPLS), 802.1Q, L2TPv3 и так далее, но наиболее перспективной является технология MPLS L2 VPN или VPLS. В этом случае доставка клиентского трафика от локальных сетей офисов заказчика услуг к опорной сети MPLS VPN поставщика услуг осуществляется с помощью технологии второго уровня (Ethernet, Frame Relay или ATM).

Операторы связи предоставляют два типа услуг Ethernet сетей для организации виртуальных частных сетей на втором уровне модели OSI, которые формируются на базе технологии MPLS - это VPWS (Virtual Private Wire Services) и VPLS (Virtual Private LAN Services). Эти VPN строятся на базе псевдоканалов (pseudowire), которые связывают пограничные PE-маршрутизаторы сети провайдера (MPLS domain). Туннели LSP или логические каналы создаются при помощи меток, внутри которых прокладываются псевдоканалы (эмулированные VC) и по этим псевдоканалам передаются пакеты MPLS. VPWS основана на Ethernet over MPLS (EoMPLS). Но в VPLS в отличие от сетей point-to-point (P2P) VPWS организация псевдоканалов осуществляется с помощью многоточечных соединений (P2M).

В VPLS существует два способа установления псевдоканалов между любыми двумя PE, которые входят в состав данной VPLS (с помощью протокола BGP и протокола рассылки меток LDP). Расширенный протокол BGP (MP-BGP) обеспечивает автоматическое определения PE, которые взаимодействуют при построении территориально распределенной ЛВС на основе сервиса VPLS, и сигнализацию меток (vc-labels) виртуальных каналов. Для сигнализации vc-labels можно использовать и расширенный протокол LDP. В этом случае выявление всех PE-маршрутизаторов, которые входят в состав данной VPLS, осуществляется в режиме ручной настройки.

Можно также использовать системы управления, которые автоматизируют поиск и настройку PE устройств для организации VPLS сервисов. Для передачи кадров использует стек меток, верхняя метка предназначена для туннелей LSP, которая используется для достижения выходного PE. Нижняя метка - это метка VC Label, которая используется для демультиплексирования виртуальных каналов (pseudowires), передаваемых внутри одного туннеля. В одном туннеле может быть проложено множество псевдоканалов для разных экземпляров VPLS.

Для каждого экземпляра VPLS на PE создаются отдельные виртуальные коммутаторы VSI. Коммутаторы VSI изучают MAC-адреса и строят таблицы продвижения MPLS-пакетов. На основании данных таблицы продвижения коммутаторы VSI, получив кадры, инкапсулированные в пакеты MPLS, направляют их в псевдоканалы ведущие к пограничным PE, к которым подключены пограничные коммутаторы CE сегментов ЛВС офисов заказчика.

На базе VPWS (point-to-point) можно объединить две подсети офисов корпорации в одиную сеть, с единой сквозной IP-адресацией. VPLS – это технология, которая обеспечивает многоточечные соединения поверх пакетной сетевой инфраструктуры IP/MPLS. VPLS позволяет объединить несколько территориально распределенных локальных сетей офисов корпорации в единую локальную сеть. В этом случае магистральная сеть MPLS сервис-провайдера представляет собой виртуальный Ethernet-коммутатор (L2-коммутатор), который пересылает Ethernet-фреймы между сегментами ЛВС отдельных офисов заказчика. Схема территориально распределенной (в пределах города) локальной сети корпорации представлена на рис. 6.

Рис. 6. Схема территориально распределенной (в пределах города) локальной сети корпорации

Суть концепции VPLS заключается в прозрачной передаче Ethernet-фреймов ПК локальных сетей офисов (сегментов сетей офисов заказчика) заказчика по магистральной сети MPLS провайдера. Пограничными устройствами на стороне заказчика VPLS 1 служат коммутаторы CE0, CE1, CE2, которые соединены с устройствами PE0, PE1, PE2. PE-маршрутизаторы взаимодействуют друг с другом, с целью выявления всех PE, подключенных к VPLS 1. Устройства PE и P строят таблицы маршрутизации, на основе которых создаются каналы LSP и псевдоканалы.

В качестве протоколов сигнализации могут использоваться как BGP, так и LDP. Виртуальные коммутаторы VSI 1 устройств PE0, PE1, PE2 строят таблицы продвижения MPLS-пакетов. Например, VSI 1 устройства PE0 формирует таблицу коммутации, представленную на рис. 6. При поступлении Ethernet-фрейма c одного из ПК сети LAN главного офиса на вход устройства PE0 он инкапсулирует Ethernet-фрейм в MPLS пакет и, используя таблицу коммутации, направляет его в туннель, по которому пакет поступает на выходное устройство PE1.

Для продвижения пакета через MPLS сеть (через псевдоканалы в туннелях LSP) используется стек меток, который состоит из метки туннеля LSP и метки псевдоканала VC Label, например, 15. На выходном устройстве PE1 пакеты MPLS преобразуются в Ethernet-фреймы и направляются на коммутатор С1, к которому подключен ПК назначения с MAC-адресом 90:5C:E7:C8:56:93. В документах RFC 4761 и RFC 4762 подробно изложены методы сигнализации на базе протоколов BGP и LDP для локальных сетей организованных с помощью услуг VPLS.

Список источников информации:

1. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 4-е изд. / В.Г. Олифер, Н.А. Олифер –СПб. Питер, 2010. – 944 с.

2. Олвейн, Вивек. Структура и реализация современной технологии MPLS.: Пер. с англ. – М. : Издательский дом «Вильямс», 2004. – 480 с.