Из одной системы счисления в другую. Быстрый перевод числа из десятичной системы счисления в двоичную

Чтобы быстро переводить числа из десятичной системы счисления в двоичную, нужно хорошо знать числа "2 в степени". Например, 2 10 =1024 и т.д. Это позволит решать некоторые примеры на перевод буквально за секунды. Одной из таких задач является задача A1 из демо ЕГЭ 2012 года . Можно, конечно, долго и нудно делить число на "2". Но лучше решать по-другому, экономя драгоценное время на экзамене.

Метод очень простой. Суть его такая: если число, которое нужно перевести из десятичной системы, равно числу "2 в степени", то это число в двоичной системе содержит количество нулей, равное степени. Впереди этих нулей добавляем "1".

  • Переведем число 2 из десятичной системы. 2=2 1 . Поэтому в двоичной системе число содержит 1 нуль . Впереди ставим "1" и получаем 10 2 .
  • Переведем 4 из десятичной системы. 4=2 2 . Поэтому в двоичной системе число содержит 2 нуля . Впереди ставим "1" и получаем 100 2.
  • Переведем 8 из десятичной системы. 8=2 3 . Поэтому в двоичной системе число содержит 3 нуля . Впереди ставим "1" и получаем 1000 2.


Аналогично и для других чисел "2 в степени".

Если число, которое нужно перевести, меньше числа "2 в степени" на 1, то в двоичной системе это число состоит только из единиц, количество которых равно степени.

  • Переведем 3 из десятичной системы. 3=2 2 -1. Поэтому в двоичной системе число содержит 2 единицы . Получаем 11 2.
  • Переведем 7 из десятичной системы. 7=2 3 -1. Поэтому в двоичной системе число содержит 3 единицы . Получаем 111 2.

На рисунке квадратиками обозначено двоичное представление числа, а слева розовым цветом-десятичное.


Аналогичен перевод и для других чисел "2 в степени-1".

Понятно, что перевод чисел от 0 до 8 можно сделать быстро или делением, или просто знать наизусть их представление в двоичной системе. Я привела эти примеры, чтобы Вы поняли принцип данного метода и использовали его для перевода более "внушительных чисел", например, для перевода чисел 127,128, 255, 256, 511, 512 и т.д.

Можно встретить такие задачи, когда нужно перевести число, не равное числу "2 в степени", но близкое к нему. Оно может быть больше или меньше числа "2 в степени". Разница между переводимым числом и числом "2 в степени" должна быть небольшая. Например, до 3. Представление чисел от 0 до 3 в двоичной системе надо просто знать без перевода.

Если число больше , то решаем так:

Переводим сначала число "2 в степени" в двоичную систему. А потом прибавляем к нему разницу между числом "2 в степени" и переводимым числом.

Например, переведем 19 из десятичной системы. Оно больше числа "2 в степени" на 3.

16=2 4 . 16 10 =10000 2 .

3 10 =11 2 .

19 10 =10000 2 +11 2 =10011 2 .

Если число меньше числа "2 в степени", то удобнее пользоваться числом "2 в степени-1". Решаем так:

Переводим сначала число "2 в степени-1" в двоичную систему. А потом вычитаем из него разницу между числом "2 в степени-1" и переводимым числом.

Например, переведем 29 из десятичной системы. Оно больше числа "2 в степени-1" на 2. 29=31-2.

31 10 =11111 2 .

2 10 =10 2 .

29 10 =11111 2 -10 2 =11101 2

Если разница между переводимым числом и числом "2 в степени" больше трех , то можно разбить число на составляющие, перевести каждую часть в двоичную систему и сложить.

Например, перевести число 528 из десятичной системы. 528=512+16. Переводим отдельно 512 и 16.
512=2 9 . 512 10 =1000000000 2 .
16=2 4 . 16 10 =10000 2 .
Теперь сложим столбиком:

Теги: Система счисления, перевод системы счисления, родственные системы счисления

Изменение основания для позиционных систем счисления

В позиционной системе счисления с основанием q число может быть представлено в виде полинома

… + a 2 ∙q 2 + a 1 q 1 + a 0 ∙q 0 + a -1 ∙q -1 + a -2 ∙q -2 + …

где коэффициенты a i – это цифры системы счисления с основанием q.

Например, в десятичной системе счисления

124.733 = 1∙10 2 + 2∙10 1 + 4∙10 0 + 7∙10 -1 + 3∙10 -2 + 3∙10 -3

Число цифр в системе счисления с основанием q равно q, при этом максимальная цифра равна q - 1. Цифра не может стать равной q, потому что в этом случае произойдёт перенос единицы в новый разряд.

Например, нужно найти минимальное основание системы счисления, в которой записано число 7832. Так как максимальная цифра равна 8, то минимальное значение q = 8 + 1 = 9.

Основанием системы счисления может быть, в принципе, любой число: целое, отрицательное, рациональное, иррациональное, комплексное и т.д. Будем рассматривать только положительные целые основания.

Особый интерес для нас будут представлять основание 2 и основания, являющиеся степенью двойки – 8 и 16.

В случае, если основание с. с. больше десяти, то новые цифры берутся по порядку из алфавита. Например, для 16-ричной системы это будут цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Перевод целой части десятичной системы счисления

Первый способ перевода из десятичной системы счисления в n-ричную заключается в последовательном делении числа на новое основание.

123/12 = 10 (3) 10/12 = 0 (10=A)

Собираем в обратном порядке, сначала последнее значение (это 0), потом сверху вниз все остатки. Получаем 0A3 = A3

4563/8 = 570 (3) 570/8 = 71 (2) 71/8 = 8 (7) 8/8 = 1 (0)

Собираем обратно, получаем 10723

3349 10 → X 16

3349/16 = 209 (5) 209/16 = 13 (1) 13/16 = 0 (13 = D)

Собираем вместе: 0D15 = D15

545/2 = 272 (1) 272/2 = 136 (0) 136/2 = 68 (0) 68/2 = 34 (0) 34/2 = 17 (0) 17/2 = 8 (1) 8/2 = 4 (0) 4/2 = 2(0) 2/2 = 1 (0) 1/2 = 0(1)

Собираем 01000100001 = 1000100001

Перевод на бумаге обычно осуществляется делением в столбик. Пока деление не приведёт к нулю, каждый следующий ответ делится на основание с. с. В конце, из остатков от деления собирается ответ.

Также часто можно перевести число в другую с. с. , если в уме представить его как сумму степеней соответствующего основания, в которое мы хотим перевести число.

Например, 129 очевидно 128 + 1 = 2 7 + 1 = 10000001 2

80 = 81 - 1 = 3 4 - 1 = 10000 - 1 = 2222 3

Перевод в десятичную систему счисления целой части

Перевод осуществляется, используя представление числа в позиционной системе счисления. Пусть необходимо перевести A3 12 → X 10 Известно, что A3 – это 3∙q 0 + A∙q 1 , то есть 3*1 + A*12 = 3 + 120 = 123

10723 8 → X 10

1∙q 4 + 0∙q 3 + 7∙q 2 + 2∙q 1 + 3∙q 0 = 1∙8 4 + 0 + 7∙8 2 + 2∙8 + 3 = 1∙4096 + 7∙64 + 2∙8 + 3 = 4563

D∙16 2 + 1∙16 1 +5∙16 0 = 13∙256 + 16 + 5 = 3349

1000100001 2 → X 10

2 9 + 2 5 + 1 = 512 + 32 + 1 = 545.

Перевод на бумаге обычно осуществляется следующим образом. Над каждой цифрой по порядку пишут номер степени. Затем уже выписывают все слагаемые.

Перевод дробной части из десятичной системы

Во время перевода дробной части часто случается ситуация, когда конечная десятичная дробь превращается в бесконечную. Поэтому обычно при переводе указывается точность, с которой необходимо переводить. Перевод осуществляется путём последовательного умножения дробной части на основание системы счисления. Целая часть при этом откидывается и входит в состав дроби.

0.625 10 → X 2

0.625 * 2 = 1.250 (1) 0.25 * 2 = 0.5 (0) 0.5 * 2 = 1.0 (1)

0 – дальнейшее умножение будет давать только нули
Собираем сверху вниз, получаем 0.101

0.310 → X2 0.3 * 2 = 0.6 (0) 0.6 * 2 = 1.2 (1) 0.2 * 2 = 0.4 (0) 0.4 * 2 = 0.8 (0) 0.8 * 2 = 1.6 (1) 0.6 * 2 = 1.2 (1)

0.2 … получим периодическую дробь
Собираем, получаем 0.0100110011001… = 0.0(1001)

0.64510 → X5 0.645 * 5 = 3.225 (3) 0.255 * 5 = 1.275 (1) 0.275 * 5 = 1.375 (1) 0.375 * 5 = 1.875 (1) 0.875 * 5 = 4.375 (4) 0.375 * 5 = 1.875 (1) …

0.3111414… = 0.311(14)

Перевод дробной части в десятичную систему

Осуществляется аналогично переводу целой части, путём домножения цифры разряда на основание в степени, равной положению разряда в числе.

0.101 2 → X 10

1∙2 -1 + 0∙2 -2 + 1∙2 -3 = 0.5 + 0.125 = 0.625

0.134 5 → X 10

1∙5 -1 + 3∙5 -2 +4∙5 -3 = 0.2 + 3∙0.04 + 4∙0.008 = 0.2 + 0.12 + 0.032 = 0.352

Перевод из произвольной системы счисления в произвольную

Перевод из произвольной системы счисления в произвольную с. с. осуществляется с помощью десятичной с. с.

X N → X M ≡ X N → X 10 → X M

Например

1221201 3 → X 7

1221201 3 = 1∙3 6 + 2∙3 5 + 2∙3 4 + 1∙3 3 + 2∙3 2 + 1 = 729 + 2∙243 + 2∙81 + 27 + 9 + 1 = 1414 10

1414/7 = 202 (0) 202/7 = 28 (6) 28/7 = 4 (0) 4/7 = 0 (4)

1221201 3 → 4060 7

Родственные системы счисления

Системы счисления называют родственными, когда их основания являются степенями одного числа. Например, 2, 4, 8, 16. Перевод между родственными системами счисления можно осуществлять, воспользовавшись таблицей

Таблица для перевода между родственными системами счисления с базой 2
10 2 4 8 16
0 0000 000 00 0
1 0001 001 01 1
2 0010 002 02 2
3 0011 003 03 3
4 0100 010 04 4
5 0101 011 05 5
6 0110 012 06 6
7 0111 013 07 7
8 1000 020 10 8
9 1001 021 11 9
10 1010 022 12 A
11 1011 023 13 B
12 1100 030 14 C
13 1101 031 15 D
14 1110 032 16 E
15 1111 033 17 F

Для перевода из одной родственной системы счисления в другую, сначала нужно перевести число в двоичную систему. Для перевода в двоичную систему счисления каждая цифра числа подменяется на соответствующую двойку (для четверичной), тройку (для восьмеричной) или четвёрку (для шестнадцатеричной).

Для 123 4 единица подменяется на 01, двойка на 10, тройка нa 11, получаем 11011 2

Для 5721 8 соответственно 101, 111, 010, 001, итого 101111010001 2

Для E12 16 получим 111000010010 2

Для перевода из двоичной системы следует разбить число на двойки (4-я), тройки (8-я) или четвёрки чисел (16-я), а затем подменить на соответствующие значения.

Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.

1. Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней двойки:

Таблица 4. Степени числа 2

n (степень)

2. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней восьмерки:

Таблица 5. Степени числа 8

n (степень)

Пример. Число перевести в десятичную систему счисления.

3. Для перевода шестнадцатеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 16, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней числа 16:

Таблица 6. Степени числа 16

n (степень)

Пример. Число перевести в десятичную систему счисления.

4. Для перевода десятичного числа в двоичную систему его необходимо последовательно делить на 2 до тех пор, пока не останется остаток, меньший или равный 1. Число в двоичной системе записывается как последовательность последнего результата деления и остатков от деления в обратном порядке.

Пример. Число перевести в двоичную систему счисления.

5. Для перевода десятичного числа в восьмеричную систему его необходимо последовательно делить на 8 до тех пор, пока не останется остаток, меньший или равный 7. Число в восьмеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

6. Для перевода десятичного числа в шестнадцатеричную систему его необходимо последовательно делить на 16 до тех пор, пока не останется остаток, меньший или равный 15. Число в шестнадцатеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.


Пример. Число перевести в шестнадцатеричную систему счисления.

7. Чтобы перевести число из двоичной системы в восьмеричную, его нужно разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, и каждую триаду заменить соответствующей восьмеричной цифрой (табл. 3).

Пример. Число перевести в восьмеричную систему счисления.

8. Чтобы перевести число из двоичной системы в шестнадцатеричную, его нужно разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, и каждую тетраду заменить соответствующей восьмеричной цифрой (табл. 3).

Когда занимаешься настройками сетей различного масштаба и каждый день сталкиваешься с вычислениями – то такого рода шпаргалки заводить не обязательно, все и так делается на безусловном рефлексе. Но когда в сетях ковыряешься очень редко, то не всегда вспомнишь какая там маска в десятичной форме для префикса 21 или же какой адрес сети при этом же префиксе. В связи с этим я и решил написать несколько маленьких статей-шпаргалок по переводом чисел в различные системы счислений, сетевым адресам, маскам и т.п. В это части пойдет речь о переводи чисел в различные системы счислений.

1. Системы счислений

Когда вы занимаетесь чем-то связанным с компьютерными сетями и ИТ, вы по любому столкнетесь с этим понятием. И как толковый ИТ-шник вам нужно разбираться в этом хотя бы чу-чуть даже если на практике вы это будете применять очень редко.
Рассмотрим перевод каждой цифры из IP-адреса 98.251.16.138 в следующие системы счислений:

  • Двоичная
  • Восьмеричная
  • Десятичная
  • Шестнадцатеричная

1.1 Десятичная

Так как цифры записаны в десятичной, перевод с десятичной в десятичную пропустим 🙂

1.1.1 Десятичная → Двоичная

Как мы знаем двоичная система счисления используется практически во всех современных компьютерах и многих других вычислительных устройствах. Система очень проста – у нас есть только 0 и 1.
Для преобразования числа с десятиной в двоичную форму нужно использовать деление по модулю 2 (т.е. целочисленное деление на 2) в результате чего мы всегда будем иметь в остатке либо 1, либо 0. При этом результат записываем справа налево. Пример все поставит на свои места:


Рисунок 1.1 – Перевод чисел из десятичной в двоичную систему


Рисунок 1.2 – Перевод чисел из десятичной в двоичную систему

Опишу деление числа 98. Мы делим 98 на 2, в результате имеем 49 и остаток 0. Далее продолжаем деление и делим 49 на 2, в результате имеем 24 с остатком 1. И таким же образом добираемся до 1-ки или 0-ка в делимом. Затем результат записываем справа налево.

1.1.2 Десятичная → Восьмеричная

Восьмеричная система – это целочисленная система счисления с основанием 8. Т.е. все числа в ней представлены диапазоном 0 – 7 и для перевода с десятичной системы нужно использовать деление по модулю 8.


Рисунок 1.3 – Перевод чисел из десятичной в восьмеричную систему

Деление аналогично 2-чной системе.

1.1.3 Десятичная → Шестнадцатеричная

Шестнадцатеричная система почти полностью вытеснила восьмеричную систему. У нее основание 16, но используются десятичные цифры от 0 до 9 + латинские буквы от A(число 10) до F(число 15). С ней вы сталкиваетесь каждый раз, когда проверяете настройки сетевого адаптера — это МАС-адрес. Так же, когда используется IPv6.


Рисунок 1.4 – Перевод чисел из десятичной в шестнадцатеричную систему

1.2 Двоичная

В предыдущем примере мы перевели все десятичные числа в другие системы счислений, одна из которых двоичная. Теперь переведем каждое число с двоичной формы.

1.2.1 Двоичная → Десятичная

Для перевода чисел с двоичной формы в десятичную нужно знать два нюанса. Первый – у каждого нолика и единички есть множитель 2 в n-й степени, при котором n увеличивается справа налево ровно на единичку. Второй – после перемножения все числа нужно сложить и мы получим число в десятичной форме. В итого у нас будет формула такого вида:

D = (a n × p n-1) + (a n-1 × p n-2) + (a n-2 × p n-3) +…, (1.2.1)

Где,
D – это число в десятичной форме, которое мы ищем;
n – количество символов в двоичном числе;
a – число в двоичной форме на n-й позиции (т.е. первый символ, второй, и т.п.);
p – коэффициент, равный 2,8 или 16 в степени n (в зависимости от системы счисления)

К примеру возьмем число 110102. Смотрим на формулу и записываем:

  • Число состоит из 5 символов (n =5)
  • a 5 = 1, a 4 = 1, a 3 = 0, a 2 = 1, a 1 = 0

  • p = 2 (так как переводим из двоичной в десятичную)

В итоге имеем:

D = (1 × 2 5-1) + (1 × 2 5-2) + (0 × 2 5-3) + (1 × 2 5-4) + (0 × 2 5-5) = 16 + 8 + 0 + 2 + 0 = 26 10

Кто привык записывать справа на лево, форму будет выглядеть так:

D = (0 × 2 5-5) + (1 × 2 5-4) + (0 × 2 5-3) + (1 × 2 5-2) + (1 × 2 5-1) = 0 + 2 + 0 + 8 + 16 = 26 10

Но, как мы знаем, от перестановки слагаемых сумма не меняется. Давайте теперь переведем наши числа в десятичную форму.


Рисунок 1.5 – Перевод чисел из двоичной в десятичную систему

1.2.2 Двоичная → Восьмеричная

При переводе нам нужно двоичное число разбить на группы по три символа справа налево. Если последняя группа не состоит из трех символов, то мы просто возмещаем недостающие биты ноликами. К примеру:

10101001 = 0 10 101 001

1011100 = 00 1 011 100

Каждая группа битов – это одно из восьмеричных чисел. Чтобы узнать какое, нужно использовать написанную выше формулу 1.2.1 для каждой группы битов. В результате мы получим.


Рисунок 1.6 – Перевод чисел из двоичной в восьмеричную систему

1.2.3 Двоичная → Шестнадцатеричная

Здесь нам нужно двоичное число разбивать на группы по четыре символа справа налево с последующим дополнением недостающих битов группы ноликами, как писалось выше. Если последняя группа состоит из ноликов, то их нужно игнорировать.

110101011 = 000 1 1010 1011

1011100 = 0 101 1100

001010000 = 00 0101 0000 = 0101 0000

Каждая группа битов – это одно из шестнадцатеричных чисел. Используем формулу 1.2.1 для каждой группы битов.


Рисунок 1.7 – Перевод чисел из двоичной в шестнадцатеричную систему

1.3 Восьмеричная

В этой системе у нас могут возникнуть сложности только при переводе в 16-ричную систему, так как остальной перевод проходит гладко.

1.3.1 Восьмеричная → Двоичная

Каждое число в восьмеричной системе – это группа из трех битов в двоичной системе, как писалось выше. Для перевода нам нужно воспользоваться табличкой-шпаргалкой:


Рисунок 1.8 – Шпора по переводу чисел из восьмеричной системы

Используя эту табличку переведем наши числа в двоичную систему.


Рисунок 1.9 – Перевод чисел из восьмеричной в двоичную систему

Немного опишу вывод. Первое число у нас 142, значит будет три группы по три бита в каждой. Юзаем шпору и видим, что цифра 1 это 001, цифра 4 это 100 и цифра 2 это 010. В результате имеем число 001100010.

1.3.2 Восьмеричная → Десятичная

Здесь мы используем формулу 1.2.1 только с коэффициентом 8 (т.е. p=8). В результате имеем


Рисунок 1.10 – Перевод чисел из восьмеричной в десятеричную систему

  • Число состоит из 3 символов (n =3)
  • a 3 = 1, a 2 = 4, a 1 = 2

  • p = 8 (так как переводим из восьмеричной в десятичную)

В результате имеем:

D = (1 × 8 3-1) + (4 × 8 3-2) + (2 × 8 3-3) = 64 + 32 + 2 = 98 10

1.3.3 Восьмеричная → Шестнадцатеричная

Как писалось раньше, для перевода нам нужно сначала перевести числа в двоичную систему, потом с двоичной в шестнадцатеричную, поделив на группы по 4-ре бита. Можно использовать следующею шпору.


Рисунок 1.11 – Шпора по переводу чисел из шестнадцатеричной системы

Эта табличка поможет перевести из двоичной в шестнадцатеричную систему. Теперь переведем наши числа.


Рисунок 1.12 – Перевод чисел из восьмеричной в шестнадцатеричную систему

1.4 Шестнадцатеричная

В этой системе та же проблема, при переводе в восьмеричную. Но об этом позже.

1.4.1 Шестнадцатеричная → Двоичная

Каждое число в шестнадцатеричной системе – это группа из четырех битов в двоичной системе, как писалось выше. Для перевода нам можно воспользоваться табличкой-шпаргалкой, которая находиться выше. В результате:


Рисунок 1.13 – Перевод чисел из шестнадцатеричной в двоичную систему

Возьмем первое число – 62. Используя табличку (рис. 1.11) мы видим, что 6 это 0110, 2 это 0010, в результате имеем число 01100010.

1.4.2 Шестнадцатеричная → Десятичная

Здесь мы используем формулу 1.2.1 только с коэффициентом 16 (т.е. p=16). В результате имеем


Рисунок 1.14 – Перевод чисел из шестнадцатеричной в десятеричную систему

Возьмем первое число. Исходя из формулы 1.2.1:

  • Число состоит из 2 символов (n =2)
  • a 2 = 6, a 1 = 2

  • p = 16 (так как переводим из шестнадцатеричной в десятичную)

В результате имеем.

D = (6 × 16 2-1) + (2 × 16 2-2) = 96 + 2 = 98 10

1.4.3 Шестнадцатеричная → Восьмеричная

Для перевода в восьмеричную систему нужно сначала перевести в двоичную, затем разбить на группы по 3-и бита и воспользоваться табличкой (рис. 1.8). В результате:


Рисунок 1.15 – Перевод чисел из шестнадцатеричной в восьмеричную систему

В пойдет речь о IP-адресах, масках и сетях.