Оперативные запоминающие устройства. Реферат: Статическая память


Статическая и динамическая оперативная память

Оперативная память - совокупность специальных электронных ячеек, каждая из которых может хранить конкретную 8-значную комбинацию из нулей и единиц - 1 байт (8 бит). Каждая такая ячейка имеет адрес (адрес байта) и содержимое (значение байта). Адрес нужен для обращения к содержимому ячейки, для записи и считывания информации. Оперативное запоминающее устройство (ОЗУ) хранит информацию только во время работы компьютера. Емкость оперативной памяти современного компьютера 32-138 Мбайт.
При выполнении микропроцессором вычислительных операций должен быть в любой момент обеспечен доступ к любой ячейке оперативной памяти. Поэтому ее называют памятью с произвольной выборкой - RAM (Random Access Memory). Оперативная память выполнена обычно на микросхемах динамического типа с произвольной выборкой (Dynamic Random Access Memory, DRAM). Каждый бит такой памяти представляется в виде наличия (или отсутствия) заряда на конденсаторе, образованном в структуре полупроводникового кристалла. Другой, более дорогой тип памяти - статический (Static RAM, SRAM) в качестве элементарной ячейки использует так называемый статический триггер (схема которого состоит из нескольких транзисторов). Статический тип памяти обладает более высоким быстродействием и используется, например, для организации кэш-памяти.

Статическая память
Статическая память (SRAM) в современных ПК обычно применяется в качестве кэш-памяти второго уровня для кэширования основного объема ОЗУ. Статическая память выполняется обычно на основе ТТЛ-, КМОП- или БиКМОП-микросхем и по способу доступа к данным может быть как асинхронной, так и синхронной. Асинхронным называется доступ к данным, который можно осуществлять в произвольный момент времени. Асинхронная SRAM применялась на материнских платах для третьего - пятого поколения процессоров. Время доступа к ячейкам такой памяти составляло от 15 нс (33 МГц) до 8 нс (66 МГц).
Для описания характеристик быстродействия оперативной памяти применяются так называемые циклы чтения/записи. Дело в том, что при обращении к памяти на считывание или запись первого машинного слова расходуется больше тактов, чем на обращение к трем последующим словам. Так, для асинхронной SRAM чтение одного слова выполняется за 3 такта, запись - за 4 такта, чтение нескольких слов определяется последовательностью 3-2-2-2 такта, а запись - 4-3-3-3.
Синхронная память обеспечивает доступ к данным не в произвольные моменты времени, а синхронно с тактовыми импульсами. В промежутках между ними память может готовить для доступа следующую порцию данных. В большинстве материнских плат пятого поколения используется разновидность синхронной памяти - синхронно-конвейерная SRAM (Pipelined Burst SRAM), для которой типичное время одиночной операции чтения/записи составляет 3 такта, а групповая операция занимает 3-1-1-1 такта при первом обращении и 1-1-1-1 при последующих обращениях, что обеспечивает ускорение доступа более, чем на 25%.

Динамическая память
Динамическая память (DRAM) в современных ПК используется обычно в качестве оперативной памяти общего назначения, а также как память для видеоадаптера. Из применяемых в современных и перспективных ПК типов динамической памяти наиболее известны DRAM и FPM DRAM, EDO DRAM и BEDO DRAM, EDRAM и CDRAM, Synchronous DRAM, DDR SDRAM и SLDRAM, видеопамять MDRAM, VRAM, WRAM и SGRAM, RDRAM.
В памяти динамического типа биты представляются в виде отсутствия и наличия заряда на конденсаторе в структуре полупроводникового кристалла. Конструктивно она выполняется в виде модуля SIMM (Single in line memory module). Каждый бит информации записывается в отдельной ячейке памяти, состоящей из конденсатора и транзистора. Наличие заряда на конденсаторе соответствует 1 в двоичном коде, отсутствие - 0. Транзистор при переключении дает возможность считывать бит информации или записывать новый бит в пустую ячейку памяти.
Поиск ячейки по адресу осуществляется специальными дешифрующими схемами, которые образуют матрицу, то есть пересекают кристалл памяти двумя полосами - по горизонтали и вертикали. Когда центральный процессор сообщает адрес ячейки, горизонтальные дешифраторы указывают нужный столбец, а вертикальные - строку. На пересечении находится искомая ячейка. После нахождения ячейки происходит выборка их нее байта данных.

РЕСПУБЛИКА КАЗАХСТАН

УНИВЕРСИТЕТ "ТУРАН"

Кафедра "информационных технологий"

тема:"Статическая память"

Выполнил: Айнакулов Д.А. 3курс, "ИС" 9 гр. Проверила: ЗиятбековаГ.З.

Алматы 2009 г.


1. Введение

2. Статическая память

4. Типы статической памяти

5. Заключение


1. Введение

Персональные компьютеры PC сегодня стали незаменимыми помощниками человека во всех без исключения сферах человеческой деятельности. На компьютерах рассчитывают заработную плату и объем урожая, рисуют графики движения товаров и изменения общественного мнения, проектируют атомные реакторы и т.д.

Слово "компьютер" означает "вычислитель". Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно. В настоящее время индустрия производства компьютерного железа и программного обеспечения является одной из наиболее важных сфер экономики развитых и развивающихся стран. Причины стремительного роста индустрии персональных компьютеров: невысокая стоимость; сравнительная выгодность для многих деловых применений; простота использования; возможность индивидуального взаимодействия с компьютеров без посредников и ограничений; высокие возможности по переработке, хранению и выдаче информации; высокая надежность, простота ремонта и эксплуатации; компьютерное железо адаптивно к особенностям применения компьютеров; наличие программного обеспечения, охватывающего практически все сферы человеческой деятельности, а также мощных систем для разработки нового программного обеспечения. Мощность компьютеров постоянно увеличивается, а область их применения постоянно расширяется. Компьютеры могут объединяться в сети, что позволяет миллионам людей легко обмениваться информацией с компьютерами, находящимися в любой точке земного шара. Так что же представляет собой это уникальное человеческое изобретение? Первый признак, по которому разделяют компьютеры, - платформа. Можно выделить две основные платформы ПК: Платформа IBM – совместимых компьютеров включает в себя громадный спектр самых различных компьютеров, от простеньких домашних персоналок до сложных серверов. Именно с этим типом платформ обычно сталкивается пользователь. Кстати, совершенно не обязательно, что лучшие IBM – совместимые компьютеры изготовлены фирмой IBM – породивший этот стандарт "голубой гигант" сегодня лишь один из великого множества производителей ПК. Платформа Apple - представлена довольно популярными на Западе компьютерами Macintosh. Они используют своё, особое программное обеспечение, да и "начинка" их существенно отличается от IBM. Обычно IBM-совместимые ПК состоят из трех частей (блоков): системного блока; монитора (дисплея); клавиатуры (устройства, позволяющего вводить символы в компьютер). Развитие электронной промышленности осуществляется такими быстрыми темпами, что буквально через один год, сегодняшнее "чудо техники" становится морально устаревшим вследствие того, что компьютерное железо постоянно модифицируется, появляется новое программное обеспечение. Однако принципы устройства компьютера остаются неизменными еще с того момента, как знаменитый математик Джон фон Нейман в 1945 году подготовил доклад об устройстве и функционировании универсальных вычислительных устройств.


2. Статическая память

Статическая память, или SRAM (Statistic RAM) является наиболее производительным типом памяти. Микросхемы SRAM применяются для кэширования оперативной памяти, в которой используются микросхемы динамической памяти, а также для кэширования данных в механических устройствах хранения информации, в блоках памяти видеоадаптеров и т. д. Фактически, микросхемы SRAM используются там, где необходимый объем памяти не очень велик, но высоки требования к быстродействию, а раз так, то оправдано использование дорогостоящих микросхем. В персональных компьютерах с процессорами, у которых не было интегрированной на кристалле кэш-памяти второго уровня, всегда использовались микросхемы SRAM внешнего кэша. Для удешевления системных плат и возможности их модернизации производители системных плат с процессорами 486 и первых поколений Pentium устанавливали специальные кроватки (разъемы для микросхем с DIP-корпусом), в которые можно было устанавливать различные микросхемы SRAM, отличающиеся как по быстродействию и объему памяти, так и различной разрядностью. Для конфигурирования памяти на системной плате предусматривался набор джамперов. Для справки прямо на системной плате краской наносилась информация об установке джамперов, например, как показано в табл.(в колонках JS1 и JS2 указаны номера контактов, которые надо замкнуть перемычками).

Пример таблицы конфигурирования кэш-памяти на системной плате

Size SRAM JS1 JS2
256 К 32x8 1-2 1-2
512 К 64x8 2-3 1-2
1 М 128x8 2-3 2-3

Отметим, что изменением конфигурации кэш-памяти занимались только тогда, когда выходила из строя какая-либо микросхема кэш-памяти. В остальных случаях изменять положение джамперов не рекомендовалось. В дальнейшем, по мере разработки более совершенных микросхем SRAM, они непосредственно припаивались на системную плату в количестве 1, 2 или 4 штук. На системных платах, которые выпускаются в настоящее время, микросхемы SRAM используются, в основном, только для кэширования ввода/вывода и других системных функций.

3. Устройство матрицы статической памяти

Подобно ячейкам динамической, триггеры объединяются в единую матрицу, состоящую из строк (row) и столбцов (column), последние из которых так же называются битами (bit).

В отличии от ячейки динамической памяти, для управления которой достаточно всего одного ключевого транзистора, ячейка статической памяти управляется как минимум двумя. Это не покажется удивительным, если вспомнить, что триггер, в отличии от конденсатора, имеет раздельные входы для записи логического нуля и единицы соответственно. Таким образом, на ячейку статической памяти расходуется целых восемь транзисторов (см. рис.1) - четыре идут, собственно, на сам триггер и еще два - на управляющие "защелки".

Рис. 1. Устройство 6-транзистроной одно-портовой ячейки SRAM-памяти


Причем, шесть транзисторов на ячейку - это еще не предел! Существуют и более сложные конструкции! Основной недостаток шести транзисторной ячейки заключается в том, что в каждый момент времени может обрабатываться всего лишь одна строка матрицы памяти. Параллельное чтение ячеек, расположенных в различных строках одного и того же банка невозможно, равно как невозможно и чтение одной ячейки одновременно с записью другой.

Этого ограничения лишена многопортовая память. Каждая ячейка многопортовой памяти содержит один-единственный триггер, но имеет несколько комплектов управляющих транзисторов, каждый из которых подключен к "своим" линиям ROW и BIT, благодаря чему различные ячейки матрицы могут обрабатываться независимо. Такой подход намного более прогрессивен, чем деление памяти на банки. Ведь, в последнем случае параллелизм достигается лишь при обращении к ячейкам различных банков, что не всегда выполнимо, а много портовая память допускает одновременную обработку любых ячеек, избавляя программиста от необходимости вникать в особенности ее архитектуры.

Наиболее часто встречается двух - портовая память, устройство ячейки которой изображено на рис. 2. (внимание! это совсем не та память которая, в частности, применяется в кэше первого уровня микропроцессоров Intel Pentium). Нетрудно подсчитать, что для создания одной ячейки двух - портовой памяти расходуется аж восемь транзисторов. Пусть емкость кэш-памяти составляет 32 Кб, тогда только на одно ядро уйдет свыше двух миллионов транзисторов!


Рис. 2. Устройство 8-транзистроной двух портовой ячейки SRAM-памяти

Рис. 3. Ячейка динамической памяти воплощенная в кристалле

4. Типы статической памяти

Существует как минимум три типа статической памяти: асинхронная, синхронная и конвейерная. Все они практически ничем не отличаются от соответствующих им типов динамической памяти.

Асинхронная статическая память

Асинхронная статическая память работает независимо от контроллера и потому, контроллер не может быть уверен, что окончание цикла обмена совпадет с началом очередного тактового импульса. В результате, цикл обмена удлиняется по крайней мере на один такт, снижая тем самым эффективную производительность. "Благодаря" последнему обстоятельству, в настоящее время асинхронная память практически нигде не применяется (последними компьютерами, на которых она еще использовались в качестве кэша второго уровня, стали "трешки" - машины, построенные на базе процессора Intel 80386).

Синхронная статическая память

Синхронная статическая память выполняет все операции одновременно с тактовыми сигналами, в результате чего время доступа к ячейке укладывается в один-единственный такт. Именно на синхронной статической памяти реализуется кэш первого уровня современных процессоров.

Конвейерная статическая память

Конвейерная статическая память представляет собой синхронную статическую память, оснащенную специальными "защелками", удерживающими линии данных, что позволяет читать (записывать) содержимое одной ячейки параллельно с передачей адреса другой.

Так же, конвейерная память может обрабатывать несколько смежных ячеек за один рабочий цикл. Достаточно передать лишь адрес первой ячейки пакета, а адреса остальных микросхема вычислит самостоятельно, - только успевай подавать (забирать) записывание (считанные) данные!

За счет большей аппаратной сложности конвейерной памяти, время доступа к первой ячейке пакета увеличивается на один такт, однако, это практически не снижает производительности, т.к. все последующие ячейки пакета обрабатываются без задержек.

Конвейерная статическая память используется в частности в кэше второго уровня микропроцессоров Pentium-II и ее формула выглядит так: 2-1-1-1.


5. Заключение

История создания статической памяти уходит своими корнями в глубину веков. Память первых релейных компьютеров по своей природе была статической и долгое время не претерпевала практически никаких изменений - менялась лишь элементарная база: на смену реле пришли электронные лампы, впоследствии вытесненные сначала транзисторами, а затем TTL- и CMOS-микросхемами: но идея, лежащая в основе статической памяти, была и остается прежней...

К сожалению, между человеком и компьютером стоит трудно преодолимая для многих преграда - различия в способах ввода, обработки и вывода информации. Соответственно, специалистов, которые отлично разбираются в компьютерном железе, не так много, и они всегда на вес золота.

Так как многие любят собирать компьютер самостоятельно, на сайте приведены самые важные сведения о способах сборки и настройки системного блока. Ведь чтобы собрать что-либо толковое, полезное для использования, надо достаточно ясно представлять, что собираешь, для какой области применения и, конечно, из каких узлов. Примерно так можно сформулировать все многообразие вопросов, возникающих перед человеком, когда он решит не купить готовый компьютер, а собрать его собственными руками выбирая то "железо", которое ему необходимо. В связи со стремительным развитие компьютерных технологий а также вследствие того, что компьютерное железо постоянно модифицируется и в прадажу постоянно поступают новые модели, некоторая информация, приведенная на сайте, постепенно теряет свою актуальность.


Список использованной литературы

1. Информатика. Учебное пособие /Ломтадзе В.В., Шишкина Л.П. – Иркутск: ИрГТУ, 1999. – 116с.

2. Информатика. Учебное пособие /Под ред. В.Г. Кирия. – Иркутск: ИрГТУ,1998 часть 2. – 382с.

3. Макарова Н.В. Информатика.- Москва: Финансы и статистика, 1997.

4. Горев А., Ахаян Р., Макашарипов С. Эффективная работа с СУБД. СПб.: Питер, 1997.


"Научно-технические статьи" - подборка научно-технических статей радиоэлектронной тематики: новинки электронных компонентов , научные разработки в области радиотехники и электроники , статьи по истории развития радиотехники и электроники , новые технологии и методы построения и разработки радиоэлектронных устройств, перспективные технологии будущего, аспекты и динамика развития всех направлений радиотехники и электроники , обзоры выставок радиоэлектронной тематики.

Компания АМIС Technology уже достаточно известна на российском рынке микросхем памяти. Будучи последователем знаменитой UMC Group, компания AMIC Technology продолжает идти "на гребне волны" в производстве полного спектра продукции памяти. Что же касается применения микросхем памяти, то говорить об этом много нет смысла - она применяется везде. И если с постоянной памятью все более или менее понятно, то выбор оперативной памяти является довольно сложной задачей. Сколько существует микросхемотехника, столько же существует вопрос, что лучше - медленная, трудноуправляемая, но дешевая динамическая память, либо быстрая, напрямую сопрягаемая с процессором, но дорогая статическая память? Возможно, теперь есть компромиссное решение.

Принципы работы статической памяти

Статическая память называется статической именно потому, что информация в ней "статична", то есть, что я туда положил, то я оттуда и возьму через любой промежуток времени. Такая статичность достигается за счет использования в качестве базового элемента обычного триггера, собранного, например, на паре транзисторов.

P-N переходы транзисторов, на которые поданы постоянные смещения, надежно держат разность потенциалов, либо питание, либо землю (без учета падения напряжения на самом переходе), и возможно лишь два стабильных состояния, условно называемые "0" и "1". Располагаются транзисторы на кремниевой подложке, внутри которой формируются P-N переходы.

Таким образом, простейшим статическим элементом памяти емкостью 1 бит можно считать триггер, построенный на четырех P-N переходах. Теперь, если эти триггеры рассортировать, скажем, по 8, и на каждый из них вывести ножку дешифратора 3x8, то получится простейшая ячейка памяти емкостью 1 байт, которую уже можно адресовать, подав соответствующее значение на дешифратор. Выстроив линейку из таких дешифраторов, и применив к ней дешифратор более высокого порядка, мы уже получим полноценную микросхему статической памяти. Скорость выборки данных из статической памяти будет определяться лишь временем переходного процесса в полупроводниках, а скорость эта довольно большая. Поэтому время доступа к статической памяти исчисляется единицами наносекунд. Что же касается энергопотребления, то оно будет определяться, в основном, током через P-N переходы. Ну и, наконец, наиболее привлекательной стороной статической памяти является возможность прямого сопряжения с процессором, так как адресация осуществляется напрямую по шине адреса с указанием номера (адреса) ячейки.

При всех плюсах, у статической памяти есть достаточно серьезные недостатки. Что же получится, если мы захотим сделать статическую память очень большого объема? Для этого, помимо монтажа огромного количества триггеров, нужно как-то выворачиваться с дешифратором на огромное количество выводов. Не для кого не секрет, что сложность дешифратора растет с увеличением количества адресуемых объектов. Дешифратор 1x2 выполняется на одном триггере с прямым и инверсным выходами, 2x4, уже на 4-х элементах, а попробуйте сделать дешифратор 10x1024! А это всего 1 килобит! Применяется каскадирование дешифраторов, но от этого страдает скорость. Сделать можно, конечно же, все, но за это надо платить, что и доказывается стоимостью быстрой статической памяти большого объема.

Принципы работы динамической памяти

Еще Майкл Фарадей, проводя опыты по прохождению электрического тока через конденсатор, заметил, что последний способен хранить информацию о начальных условиях. Это свойство конденсатора, или просто емкости, и используется при построении элемента динамической памяти. Рассмотрим незаряженный конденсатор, когда разность потенциалов между его клеммами равна нулю. Приложим на некоторое время к конденсатору напряжение, равное напряжению питания. А что значит "некоторое время"? А это такое время, за которое заряд успеет перетечь с входных клемм на обкладки конденсатора. По истечению этого времени отключим конденсатор от нашего источника. Теоретически этот конденсатор будет хранить наше напряжение бесконечно долго, таким образом становясь подобным триггеру на двух транзисторах.

Все это было бы хорошо, если бы не реальная жизнь. В качестве диэлектрика используется оксидная пленка какого-нибудь металла (скажем, алюминия). Эта диэлектрическая пленка обладает хоть и малой, но проводимостью, а следовательно, конденсатор начинает разряжаться через эту оксидную пленку, тем самым выделяя на ней тепло и теряя информацию. Как только напряжение на емкости достигает минимально допустимого значения, мы вновь подключаем к конденсатору наше напряжение питания и вновь заряжаем его, после чего отводим клеммы. Вот эта процедура и есть всем известная и ненавистная процедура регенерации динамической памяти, которую каждый определенный промежуток времени проводит контроллер динамической памяти.

Для адресации динамической памяти используются не прямые адресные сигналы процессора, а адресные сигналы процессора, пропущенные через контроллер динамической памяти и еще сигналы CAS и RAS, вырабатываемые контроллером. Динамическая память имеет матричный принцип строения, и сигнал CAS стробирует выборку колонки, а сигнал RAS стробирует выборку ряда в этой колонке. Без сигналов CAS и RAS динамическая память становится бесполезной, так как способна хранить информацию без регенерации всего в течение нескольких микросекунд. На первый взгляд, в динамической памяти все плохо: и использование внешнего контроллера, и сложность управления. Но есть и значительные плюсы. Выполнить матрицу конденсаторов значительно проще, чем матрицу триггеров, достаточно "вставить" диэлектрики в нужных местах, а значит, динамическая память будет значительно дешевле статической. При необходимости создания динамической памяти большого объема тоже нет проблем, надо "вставить" диэлектрики чаще и быстрее проводить регенерацию. Поэтому динамическая память и получила большее распространение, чем статическая.

Динамическое ядро + статический интерфейс = SuperRAM

Когда-нибудь все мечты становятся реальностью. Мечтал человек получить динамическую память со статическим интерфейсом - и получил SuperRAM от AMIC Technology. Идея здесь предельно проста. Если для управления динамической памятью требуется дополнительный контроллер, то почему бы не встроить его в саму микросхему памяти. У читателя резонно возникнет вопрос: зачем это нужно? Ведь в современных микропроцессорах и микроконтроллерах есть интерфейсы динамической памяти? Отвечаю: да, вы правы, но микроконтроллеры, имеющие этот интерфейс, резко выделяются ценой, естественно в большую сторону. Далее, в подавляющем большинстве случаев это 32-разрядные процессоры, работающие с большой тактовой частотой, и применение к ним динамической памяти по меньшей мере нецелесообразно (если, конечно, не требуется больших объемов). Третье: большинство приложений до сих пор остались восьми-и шестнадцатиразрядными, где и контроллера DRAM нет, и быстродействие соответствующее, а вот объемы памяти зачастую требуются очень даже значительные. Вот именно для таких применений и существует SuperRAM от компании AMIC Technology.

Работа подобной памяти достаточно проста. Процедура регенерации динамического ядра SuperRAM происходит автоматически по истечению определенного времени (когда значения напряжения на емкостях упадут ниже критических), и стробирование происходит постоянно. При запросе процессором определенной ячейки адрес ее приходит на входной буфер микросхемы SuperRAM. И дальше, с первым же сигналом стробирова-ния отправляется к ядру SuperRAM, из которого и происходит выборка значений. Для процессора не имеет значения, что к нему подключена динамическая память, он работает с ней как с менее быстрой статической. Преимущества SuperRAM налицо: прямое сопряжение с совершенно любым процессором или устройством, у которого есть шина данных, адреса и сигналы выбора и записи, не требуется подключения дополнительного контроллера, осуществляющего регенерацию, большой объем за счет присутствия динамического ядра, низкая стоимость. Для примера приведем технические характеристики одного из последних представителей семейства SuperRAM от AMIC Technology - микросхемы A64E16161:

  1. Объем: 32 Мбит, организованных 2 Мх 16 бит.
  2. Время доступа по адресу: 70 нс.
  3. Время доступа к странице: 25 нс.
  4. Рабочий ток 20 мА, ток режима standby 10 мкА.
  5. Полная совместимость с интерфейсом SRAM. Не требуется регенерации или стробирования.
  6. Напряжение питания от 1,65 до 2,2 В.

Будущее SuperRAM

Сказать, что у подобного решения есть будущее - это ничего не сказать. Сейчас компания AMIC Technology достигла рубежа 32 Мбит, но не намерена на этом останавливаться. Уже в начале 2004 года, используя технологию 0,13 мкм, планируется начать серийное производство микросхем серии SuperRAM емкостью 64 Мбит. Время доступа также будет существенно уменьшено, а питание 2,0 В для микросхем памяти является одной из передовых возможностей. По своим возможностям и по стоимости такие продукты могут создать конкуренцию уже имеющимся модулям памяти, таким как SIMM, DIMM, SDRAM и даже DDR, что является немаловажным при проектировании систем нового поколения.

В радиоаппаратуре часто требуется хранение временной информации, значение которой не важно при включении устройства. Такую память можно было бы построить на микросхемах или -памяти, но, к сожалению, эти микросхемы дороги, обладают малым количеством перезаписей и чрезвычайно низким быстродействием при считывании и особенно записи информации. Для хранения временной информации можно воспользоваться . Так как запоминаемые слова не нужны одновременно, то можно воспользоваться механизмом адресации, который применяется в .

Схемы, в которых в качестве запоминающей ячейки используется называются статическим оперативным запоминающим устройством - статическим ОЗУ (RAM - random access memory - память с произвольным доступом), т.к. информация в нем сохраняется все время, пока к микросхеме ОЗУ подключено питание. В отличие от статической ОЗУ в микросхемах постоянно требуется регенерировать их содержимое, иначе информация будет испорчена.

В микросхемах ОЗУ присутствуют две операции: операция записи и операция чтения. Для записи и чтения информации можно использовать различные шины данных (как это делается в сигнальных процессорах), но чаще используется одна и та же шина данных. Это позволяет экономить внешние выводы микросхем, подключаемых к этой шине и легко осуществлять коммутацию сигналов между различными устройствами.

Статического ОЗУ приведена на рисунке 1. Вход и выход ОЗУ в этой схеме объединены при помощи . Естественно, что схемы реальных ОЗУ будутотличаться от приведенной на этом рисунке. Тем не менее, приведенная схема позволяет понять как работает реальное ОЗУ. Условно-графическое обозначение ОЗУ на принципиальных схемах приведено на рисунке 2.


Рисунок 1. Структурная схема ОЗУ (RAM)

Рисунок 2. Условно-графическое обозначение ОЗУ (RAM)

Сигнал записи WR позволяет записать логические уровни, присутствующие на информационных входах во внутреннюю ячейку ОЗУ (RAM). Сигнал чтения RD позволяет выдать содержимое внутренней ячейки памяти на информационные выходы микросхемы. В приведенной на рисунке 1 схеме невозможно одновременно производить операцию записи и чтения, но обычно это и не нужно.

Конкретная ячейка ОЗУ выбирается при помощи двоичного кода - адреса ячейки. Объем памяти ОЗУ (RAM) зависит от количества ячеек, содержащихся в ней или, что то же самое, от количества адресных проводов. Количество ячеек в ОЗУ можно определить по количеству адресных проводов, возводя 2 в степень, равную количеству адресных выводов в микросхеме:

Вывод выбора кристалла CS микросхем ОЗУ позволяет объединять несколько микросхем для увеличения объема памяти ОЗУ. Такая схема приведена на рисунке 3.



Рисунок 3. Схема ОЗУ, построенного на нескольких микросхемах памяти

Статические ОЗУ требуют для своего построения большой площади кристалла, поэтому их ёмкость относительно невелика. Статические ОЗУ применяются для построения микроконтроллерных схем из-за простоты построения принципиальной схемы и возможности работать на сколь угодно низких частотах, вплоть до постоянного тока. Кроме того статические ОЗУ применяются для построения КЭШ-памяти в универсальных компьютерах из-за высокого быстродействия статического ОЗУ.

Временные диаграммы чтения из статического ОЗУ совпадают с временными Временные диаграммы записи в статическое ОЗУ и чтения из него приведены на рисунке 4.



Рисунок 4. Временная диаграмма обращения к ОЗУ принятая для схем, совместимых со стандартом фирмы INTEL

На рисунке 4 стрелочками показана последовательность, в которой должны формироваться управляющие сигналы ОЗУ. На этом рисунке RD - это сигнал чтения; WR - сигнал записи; A - сигналы выбора адреса ячейки (так как отдельные биты в шине адреса могут принимать разные значения, то показаны пути перехода как в единичное, так и в нулевое состояние); DI - входная информация, предназначенная для записи в ячейку ОЗУ, расположенную по адресу A1; DO - выходная информация, считанная из ячейки ОЗУ, расположенной по адресу A2.



Рисунок 5. Временная диаграмма обращения к ОЗУ принятая для схем, совместимых со стандартом фирмы MOTOROLA

На рисунке 5 стрелочками показана последовательность, в которой должны формироваться управляющие сигналы. На этом рисунке R/W - это сигнал выбора операции записи или чтения; DS - сигнал стробирования данных; A - сигналы выбора адреса ячейки (так как отдельные биты в шине адреса могут принимать разные значения, то показаны пути перехода как в единичное, так и в нулевое состояние); DI - входная информация, предназначенная для записи в ячейку ОЗУ, расположенную по адресу A1; DO - выходная информация, считанная из ячейки ОЗУ, расположенной по адресу A2.

Литература:

Вместе со статьей "Статические оперативные запоминающие устройства - ОЗУ (RAM)" читают:

Статическая оперативная память с произвольным доступом (SRAM, static random access memory) -- полупроводниковая оперативная память, в которой каждый двоичный или троичный разряд хранится в схеме с положительной обратной связью, позволяющей поддерживать состояние сигнала без постоянной перезаписи, необходимой в динамической памяти (DRAM). Тем не менее, сохранять данные без перезаписи SRAM может только пока есть питание, то есть SRAM остается энергозависимым типом памяти. Произвольный доступ (RAM -- random access memory) -- возможность выбирать для записи/чтения любой из битов (тритов) (чаще байтов (трайтов), зависит от особенностей конструкции), в отличие от памяти с последовательным доступом (SAM -- sequental access memory).

Двоичная SRAM

Рис. 1.

Типичная ячейка статической двоичной памяти (двоичный триггер) на КМОП-технологии состоит из двух перекрёстно (кольцом) включённых инверторов и ключевых транзисторов для обеспечения доступа к ячейке (рис. 1.). Часто для увеличения плотности упаковки элементов на кристалле в качестве нагрузки применяют поликремниевые резисторы. Недостатком такого решения является рост статического энергопотребления.

Линия WL (Word Line) управляет двумя транзисторами доступа. Линии BL и BL (Bit Line) -- битовые линии, используются и для записи данных и для чтения данных.

Запись. При подаче «0» на линию BL или BL параллельно включенные транзисторные пары (M5 и M1) и (M6 и M3) образуют логические схемы 2ИЛИ, последующая подача «1» на линию WL открывает транзистор M5 или M6, что приводит к соответствующему переключению триггера.

Чтение. При подаче «1» на линию WL открываются транзисторы M5 и M6, уровни записанные в триггере выставляются на линии BL и BL и попадают на схемы чтения.

Восьмитранзисторная ячейка двоичной SRAM описана в .

Переключение триггеров через транзисторы доступа является неявной логической функцией приоритетного переключения, которая в явном виде, для двоичных триггеров, строится на двухвходовых логических элементах 2ИЛИ-НЕ или 2И-НЕ. Схема ячейки с явным переключением является обычным RS-триггером. При явной схеме переключения линии чтения и записи разделяются, отпадает нужда в транзисторах доступа (по 2 транзистора на 1 ячейку), но в самой ячейке требуются двухзатворные транзисторы.

В настоящее время появилась (!) усовершенствованная схема с отключаемой сигналом записи обратной связью, которая не требует транзисторов нагрузки и соответственно избавлена от высокого потребления энергии при записи.

Троичная SRAM

Рис. 2. Проект троичной SRAM на трёхразрядных однозначных троичных триггерах

Один логический элемент 2ИЛИ-НЕ состоит из двух двухзатворных транзисторов, три -- из шести, плюс три транзистора доступа, всего -- девять транзисторов на одну трёхразрядную ячейку памяти.

Преимущества

· Быстрый доступ. SRAM -- это действительно память произвольного доступа, доступ к любой ячейке памяти в любой момент занимает одно и то же время.

· Простая схемотехника -- SRAM не требуются сложные контроллеры.

· Возможны очень низкие частоты синхронизации, вплоть до полной остановки синхроимпульсов.

Недостатки

· Высокое энергопотребление.

· Невысокая плотность записи (шесть элементов на бит , вместо двух у DRAM).

· Вследствие чего -- дороговизна килобайта памяти.

Тем не менее, высокое энергопотребление не является принципиальной особенностью SRAM, оно обусловлено высокими скоростями обмена с данным видом внутренней памяти процессора. Энергия потребляется только в момент изменения информации в ячейке SRAM.

Применение

SRAM применяется в микроконтроллерах и ПЛИС, в которых объём ОЗУ невелик (единицы килобайт), зато нужны низкое энергопотребление (за счёт отсутствия сложного контроллера динамической памяти), предсказываемое с точностью до такта время работы подпрограмм и отладка прямо на устройстве.

В устройствах с большим объёмом ОЗУ рабочая память выполняется как DRAM. SRAM"ом же делают регистры и кеш-память.

DRAM (dynamic random access memory) -- тип энергозависимой полупроводниковой памяти с произвольным доступом (RAM), также запоминающее устройство, наиболее широко используемое в качестве ОЗУ современных компьютеров.

Физически память DRAM состоит из ячеек, созданных в полупроводниковом материале, в каждой из которых можно хранить определённый объём данных, от 1 до 4 бит. Совокупность ячеек такой памяти образуют условный «прямоугольник», состоящий из определённого количества строк и столбцов. Один такой «прямоугольник» называется страницей, а совокупность страниц называется банком. Весь набор ячеек условно делится на несколько областей.

Как запоминающее устройство, DRAM-память представляет собой модуль различных конструктивов, состоящий из электрической платы, на которой расположены микросхемы памяти и разъём, необходимый для подключения модуля к материнской плате.


Рис. 3. Рис. 3.1

Физически DRAM-память представляет собой набор запоминающих ячеек, которые состоят из конденсаторов и транзисторов, расположенных внутри полупроводниковых микросхем памяти.

При отсутствии подачи электроэнергии к памяти этого типа происходит разряд конденсаторов, и память опустошается (обнуляется). Для поддержания необходимого напряжения на обкладках конденсаторов ячеек и сохранения их содержимого, их необходимо периодически подзаряжать, прилагая к ним напряжения через коммутирующие транзисторные ключи. Такое динамическое поддержание заряда конденсатора является основополагающим принципом работы памяти типа DRAM. Конденсаторы заряжают в случае, когда в «ячейку» записывается единичный бит, и разряжают в случае, когда в «ячейку» необходимо записать нулевой бит.

Важным элементом памяти этого типа является чувствительный усилитель (англ. sense amp), подключенный к каждому из столбцов «прямоугольника». Он, реагируя на слабый поток электронов, устремившихся через открытые транзисторы с обкладок конденсаторов, считывает всю страницу целиком. Именно страница является минимальной порцией обмена с динамической памятью, потому что обмен данными с отдельно взятой ячейкой невозможен.

Регенерация

В отличие от статической памяти типа SRAM (англ. static random access memory), которая является конструктивно более сложным и более дорогим типом памяти и используется в основном в кэш-памяти, память DRAM изготавливается на основе конденсаторов небольшой ёмкости, которые быстро теряют заряд, поэтому информацию приходится обновлять через определённые промежутки времени во избежание потерь данных. Этот процесс называется регенерацией памяти. Он реализуется специальным контроллером, установленным на материнской плате или же на кристалле центрального процессора. На протяжении времени, называемого шагом регенерации, в DRAM перезаписывается целая строка ячеек, и через 8-64 мс обновляются все строки памяти.

Процесс регенерации памяти в классическом варианте существенно тормозит работу системы, поскольку в это время обмен данными с памятью невозможен. Регенерация, основанная на обычном переборе строк, не применяется в современных типах DRAM. Существует несколько более экономичных вариантов этого процесса -- расширенный, пакетный, распределённый; наиболее экономичной является скрытая (теневая) регенерация.

память компьютерный триггер кэш

Триггеры

Триггер (триггерная система) -- класс электронных устройств, обладающих способностью длительно находиться в одном из двух или более устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознаётся по значению выходного напряжения.

По характеру действия триггеры относятся к импульсным устройствам -- их активные элементы (транзисторы, лампы) работают в ключевом режиме, а смена состояний длится очень короткое время.

ОЗУ, собранное на триггерах, называется статической памятью с произвольным доступом или просто статической памятью. Достоинство этого вида памяти -- скорость. Поскольку триггеры собраны на вентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов, входящих в состав триггера, обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи. Используется для сверхбыстрого ОЗУ.