Смотреть что такое "Tcp" в других словарях. Чем отличается протокол TCP от UDP, простым языком

За время развития вычислительных сетей было предложено и реализовано много протоколов обмена данными, самыми удачными из которых явились семейство протоколов TCP/IP (Transmission Control Protocol/Internet Protocol – протокол управления передачей/межсетевой протокол).

ТСР/IР – это набор протоколов, состоящий из следующих компонентов:

· межсетевой протокол (Internet Protocol) , обеспечивающий адресацию в сетях (IP-адресацию);

· межсетевой протокол управления сообщениями (Internet Control Message Protocol – ICMP) , который обеспечивает низкоуровневую поддержку протокола IP, включая такие функции, как сообщения об ошибках, квитанции, содействие в маршрутизации и т. п.;

· протокол разрешения адресов (Address Resolution Protocol – ARP) , выполняющий преобразование логических сетевых адресов в аппаратные, а также обратный ему RARP (Reverse ARP);

· протокол пользовательских датаграмм (User Datagramm Protocol – UDP) ;

· протокол управления передачей (Transmission Control Protocol – TCP) .

Протокол UDP обеспечивает передачу пакетов без проверки доставки, в то время как протокол TCP требует установления виртуального канала и соответственно подтверждения доставки пакета с повтором в случае ошибки.

Этот набор протоколов образует самую распространенную модель сетевого обмена данными, получившую название – TCP/IP. Модель TCP/IP иерархическая и включает четыре уровня.

Прикладной уровень определяет способ общения пользовательских приложений. В системах "клиент-сервер" приложение-клиент должно знать, как посылать запрос, а приложение-сервер должно знать, как ответить на запрос. Этот уровень обеспечивает такие протоколы, как HTTP, FTP, Telnet.

Транспортный уровень позволяет сетевым приложениям получать сообщения по строго определенным каналам с конкретными параметрами.

На сетевом уровне определяются адреса включенных в сеть компьютеров, выделяются логические сети и подсети, реализуется маршрутизация между ними.

На канальном уровне определяется адресация физических интерфейсов сетевых устройств, например, сетевых плат. К этому уровню относятся программы управления физическими сетевыми устройствами, так называемые, драйверы.

Как уже отмечалось ранее, в сетях с коммутацией пакетов, а модель TCP/IP относится к таким, для передачи по сети сообщение (сформированное на прикладном уровне) разбивается на пакеты или датаграммы. Пакет или датаграмма – это часть сообщения с добавленным заголовком пакета или датаграммы.

На транспортном уровне к полезной информации добавляется заголовок – служебная информация. Для сетевого уровня полезной информацией является уже пакет или датаграмма транспортного уровня. К ним добавляется заголовок сетевого уровня.

Полученный блок данных называется IP-пакетом. Полезной нагрузкой для канального уровня является уже IP-пакет. Здесь перед передачей по каналу к нему добавляются собственный заголовок и еще завершитель. Получившийся блок называется кадром. Он и передается по сети.

Переданный по сети кадр в пункте назначения преобразуется в обратном порядке, проходя по уровням модели снизу вверх.

Выводы по теме

1. Протокол сетевого обмена информацией – это перечень форматов передаваемых блоков данных, а также правил их обработки и соответствующих действий.

2. Протокол обмена данными – это подробная инструкция о том, какого типа информация передается по сети, в каком порядке обрабатываются данные, а также набор правил обработки этих данных.

3. В настоящее время почти все сети в мире являются сетями коммутации пакетов.

4. Существуют два принципа организации обмена данными: установление виртуального соединения с подтверждением приема каждого пакета и передача датаграмм.

5. При виртуальном соединении пункт приема информации уведомляет отправителя о правильном или неправильном приеме каждого пакета. Виртуальным его называют потому, что в отличие от телефонного коммутированного канала обмен информацией может идти по различным физическим путям даже в процессе передачи одного сообщения.

6. При передаче датаграммы короткие пакеты пересылаются адресату без подтверждения получения каждой из них, а о получении всего сообщения целиком должна уведомить целевая программа.

7. ТСР/IР – это набор протоколов, состоящий из следующих компонентов: межсетевой протокол (IP), межсетевой протокол управления сообщениями (ICMP), протокол разрешения адресов (ARP), протокол пользовательских датаграмм (UDP) и протокол управления передачей (TCP).

Вопросы для самоконтроля

1. Что понимается под протоколом передачи данных?

2. Охарактеризуйте сети с коммутацией сообщений и коммутацией пакетов.

3. Чем отличается соединение по виртуальному каналу от передачи датаграмм?

4. Какие протоколы образуют модель TCP/IP?

5. Какие уровни входят в сетевую модель TCP/IP?

6. Дайте характеристику всех уровней модели TCP/IP и укажите соответствующие этим уровням протоколы.

7. Соотнесите по уровням модели TCP/IP понятия "пакет" и "кадр". Чем они отличаются?

8. Какой протокол обеспечивает преобразование логических сетевых адресов в аппаратные?

Протокол TCP (Transmission Control Protocol) является протоколом транспортного уровня, обеспечивающим надежную передачу данных в сети. Его транспортный адрес в заголовке IP-сегмента равен 6. Обмен данными осуществляется посредством "TCP-пакетов". В Таблице приведен формат заголовка TCP-пакета.

Порт источника и порт приемника : 16-битовые поля, содержащие номера портов. Существует набор служб, использующих TCP, за которыми закреплены определенные порты: 20/21 - FTP; 22 - SSH; 23 - Telnet; 25 - SMTP; 80,8080 - HTTP, альтернативный порт HTTP; 110 - POP3; 194 - IRC (Internet Relay Chat); 443 - HTTPS (Secure HTTP); 8080 - альтернативный порт HTTP

Номер в последовательности : 32-битовое поле, определяющее положение данных TCP-пакета внутри исходящего потока данных. Номер последовательности выполняет две задачи:

1. Если установлен флаг SYN, то это начальное значение номера последовательности - ISN (Initial Sequence Number), и первый байт данных, которые будут переданы в следующем пакете, будет иметь номер последовательности равный ISN + 1.

2. В противном случае, если SYN не установлен, первый байт данных, передаваемый в данном пакете, имеет этот номер последовательности.

Номер подтверждения : 32-битовое поле содержит количество принятых данных из входящего потока к TCP-модулю, формирующему TCP-пакет. Если установлен флаг ACK, то это поле содержит номер последовательности, ожидаемый получателем в следующий раз. Помечает этот сегмент как подтверждение получения.

Смещение данных : содержит длину заголовка TCP-пакета в 32-битовых словах и используется для определения начала расположения данных в TCP-пакете. Это поле определяет размер заголовка пакета TCP в 32-битных словах. Минимальный размер составляет 5 слов, а максимальный - 15, что составляет 20 и 60 байт соответственно. Смещение считается от начала заголовка TCP.

Зарезервировано (6 бит) для будущего использования и должно устанавливаться в ноль. Из них два (5-й и 6-й) уже определены:

· CWR (Congestion Window Reduced) - Поле «Окно перегрузки уменьшено» - флаг установлен отправителем, чтоб указать, что получен пакет с установленным флагом ECE (RFC 3168)

· ECE (ECN-Echo) - Поле «Эхо ECN» - указывает, что данный узел способен на ECN (явное уведомление перегрузки) и для указания отправителю о перегрузках в сети (RFC 3168)

Флаги (управляющие биты) Это поле содержит 6 битовых флагов:

  • URG: бит= 1 означает, что пакет содержит важные (urgent) данные
  • ACK=1 означает, что пакет содержит в поле "номер подтверждения" верные данные.
  • PSH=1 инструктирует получателя протолкнуть данные, накопившиеся в приемном буфере, в приложение пользователя
  • RST=1 Оборвать соединения, сбросить буфер (очистка буфера)
  • SYN= 1 означает, что TCP-пакет представляет собой запрос на установление логического соединения.
  • FIN= 1 означает, что TCP-пакет представляет запрос на закрытие соединения.

Размер окна : содержит количество байт информации, которое может принять TCP-модуль, отправляющий партнеру TCP-пакет. Поле используется принимающим поток данных TCP-модулем для управления интенсивностью этого потока.

Контрольная сумма : 16-битовое поле, содержащее контрольную сумму, подсчитанную для TCP-заголовка, данных пакета и псевдозаголовка.

Указательважности : 16-битовое поле, содержащее указатель на первый байт в теле TCP-пакета, начинающий последовательность важных (urgent) данных.

Дополнительные данные заголовка : Протокол TCP определяет три типа дополнительных данных заголовка: конец списка полей дополнительных данных; пусто (No Operation); максимальный размер пакета.

В отличие от протокола UDP, который может сразу же начать передачу пакетов, TCP перед передачей данных устанавливает соединения:

  • Установка соединения
  • Передача данных
  • Завершение соединения

При обмене данными приемник использует номер последовательности, содержащийся в получаемых сегментах, для восстановления их исходного порядка. Приемник уведомляет передающую сторону о номере последовательности, до которой он успешно получил данные, включая его в поле «номер подтверждения». Если впоследствии будет принят сегмент, относящийся к ожидаемому номеру последовательности, то порядок данных будет автоматически восстановлен исходя из номеров последовательностей в сегментах.

Для того, чтобы передающая сторона не отправляла данные интенсивнее, чем их может обработать приемник, TCP содержит средства управления потоком. Для этого используется поле «окно». В сегментах, направляемых от приемника передающей стороне в поле «окно» указывается текущий размер приемного буфера. Передающая сторона сохраняет размер окна и отправляет данных не более, чем указал приемник. Если приемник указал нулевой размер окна, то передача данных в направлении этого узла не происходит, пока приемник не сообщит о большем размере окна.

Последний сегмент, содержащий команду, обязан содержать флаг PSH, чтобы приложение на принимающей стороне смогло начать её выполнение.

Завершение соединения можно рассмотреть в три этапа:

  1. Посылка серверу от клиента флагов FIN и ACK на завершение соединения.
  2. Сервер посылает клиенту флаги ответа ACK , FIN, что соединение закрыто.
  3. После получения этих флагов клиент закрывает соединение и в подтверждение отправляет серверу ACK , что соединение закрыто.

Протоколы транспортного уровня, обеспечивающие надежную передачу данных, предполагают подтверждение принимающей стороной правильности полученных данных. Для этого используется принцип "скользящего окна" (sliding window), который заключается в том, что каждая сторона может отправлять партнеру максимум столько байт, сколько партнер указал в поле "размер окна" заголовка TCP-пакета, подтверждающего получение предыдущих данных. Принцип "скользящего окна" обеспечивает опережающую посылку данных с отложенным их подтверждением. Если в течение некоторого времени не будет получено отложенное подтверждение отправленного пакета, то отправляющий TCP-модуль будет вынужден повторить посылку всех TCP-пакетов, начиная с неподтвержденного пакета.

Хотя протокол осуществляет проверку контрольной суммы по каждому сегменту, используемый алгоритм считается слабым по надежности. В общем случае распределенным сетевым приложениям рекомендуется использовать дополнительные программные средства для гарантирования целостности передаваемой информации.

Протокол TCP (TransmissionControlProtocol, протокол управления передачей) представляет собой надежный протокол с установлением соединения, являющийся альтернативой UDP, и отвечающий за большинство передач пользовательских данных по сетям TCP/IP, и даже внесший свой вклад в название всего набора протоколов. Протокол TCP, как определено в документе RFC 793, обеспечивает приложения всем диапазоном транспортных услуг, включая подтверждение получения пакетов, отслеживание ошибок и их исправление, а также управление потоком.

Протокол TCP предназначен для передачи относительно больших объемов информации, которая заведомо не сможет быть упакована в один пакет. Информация обычно принимает форму целых файлов, которые должны быть разделены на множественные дейтаграммы для передачи. Информация, поставляемая Транспортному уровню, в терминологии протокола TCP рассматривается как последовательность (sequence), которую протокол разбивает на сегменты (segment) для передачи по сети. Как и в случае протокола UDP, сегменты затем упаковываются в IP-дейтаграммы, которые могут преодолевать маршрут до места назначения различными способами. Поэтому, протокол TCP снабжает каждый из сегментов порядковым номером для того, чтобы система-получатель смогла собрать их воедино в правильном порядке.

Перед началом любой передачи пользовательских данных с применением протокола TCP две системы обмениваются сообщениями с целью установления соединения. Это позволяет убедиться, что система-получатель функционирует и в состоянии принять данные. Как только соединение установлено и начинается процесс передачи данных, система-получатель периодически посылает сообщения, подтверждающие прием пакетов. Эти сообщения оповещают систему-отправителя о потерянных пакетах, а также обеспечивают ее информацией, используемой при контроле скорости потока передачи.

Формат TCP –сообщения

Функции полей TCP-заголовка описаны ниже.

Порт источника (SourcePort), 2 байта. Идентифицирует номер порта передающей системы, используемый процессом, который создал информацию, переносимую TCP-сегментами. В некоторых случаях это может быть фиктивный номер порта, выделенный клиентом специально для данной транзакции.

Порт назначения (DestinationPort), 2 байта. Указывает номер порта системы назначения, на который должна быть передана информация ТСР-сегментов. Номера портов перечислены в документе "AssignedNumbers", а также в файле SERVICES каждой ТСР/1Р-системы.

Порядковый номер (SequenceNumber), 4 байта. Определяет положение конкретного сегмента по отношению ко всей последовательности данных.

Подтвержденный номер (AcknowledgmentNumber), 4 байта. Задает максимальный номер байта в сегменте, увеличенный на единицу, который подтверждающая система ожидает получить от отправителя. Используется совместно с битом управления АСК.

Смещение данных (DataOffset), 4 бита. Задает длину в 4-байтных словах, TCP-заголовка (который может содержать опции, увеличивающие его размер вплоть до 60 байт).

Зарезервировано (Reserved), 6 битов. Выделено для последующих применений.

Биты управления (ControlBits), 6 битов. Содержит шесть 1-битных флагов, выполняющих перечисленные ниже функции:

URG - показывает, что последовательность содержит срочные данные (urgentdata) и активирует поле указателя срочности;

АСК - отмечает, что сообщение является подтверждением ранее полученных данных и активирует поле номера подтверждения;

PSH - предписывает системе-получателю передать всю информацию текущей последовательности, полученную на данный момент, приложению, идентифицированному полем порта назначения, не дожидаясь поступления остальных фрагментов;

RST - инструктирует систему-получателя отбросить все сегменты текущей последовательности, полученные к настоящему моменту, и начать установление TCP-соединение заново;

SYN - используется во время процедуры установления соединения для синхронизирования нумераторов переданных данных между взаимодействующими системами;

FIN - извещает другую систему, что передача данных закончена и соединение должно быть завершено.

Окно (Window), 2 байта. Реализует механизм управления потоком протокола TCP (скользящее окно) путем объявления количества байтов, которое система-получатель может принять от системы-источника.

Контрольная сумма (Checksum), 2 байта. Содержит результат вычисления контрольной суммы с учетом TCP-заголовка, данных, а также псевдозаголовок, составленный из полей IP-адреса источника, протокола, IP-адреса назначения из IP-заголовка плюс длина всего ТСР-сообщения.

Указатель срочности (UrgentPointer), 2 байта. Задействуется совместно с битом URG, определяет данные последовательности, которые должны рассматриваться получателем как срочные.

Опции (Options), переменный размер. Может содержать дополнительные конфигурационные параметры для TCP-соединения вместе с битами выравнивания, требуемыми для того, чтобы привести размер поля до ближайшего значения, кратного 4 байтам. Возможные опции перечислены ниже.

Максимальный размер сегмента (MaximumSegmentSize). Задает размер максимального сегмента, который текущая система может получить от другой системы, соединенной с ней.

Фактормасштабаокна (Window Scale Factor). Используется для увеличения размера поля окна с 2 до 4 байтов.

Временная отметка (Timestamp). Используется для хранения временных отметок пакетов данных, которые система-получатель возвращает отправителю с целью подтверждения. Это позволяет отправителю измерять время путешествия данных в оба конца.

Данные (Data), переменный размер. Может включать в себя сегменты данных, поступившие с вершины протокольного стека, от протоколов Прикладного уровня. В пакетах SYN, АСК и FIN это поле оставляется пустым.

IPX/SPX: Для обеспечения транспортных услуг для операционной системы NovellNetWare, фирмой Novell был создан свой собственный стек протоколов, получивший общее название по наименованию протокола Сетевого уровня - IPX (InternetworkPacketExchange, межсетевой обмен пакетами). По аналогии с TCP/IP этот стек иногда также называют IPX/SPX. Вторая часть этого обозначения соотносится с SPX (SequencedPacketeXchange, последовательный обмен пакетами), протоколом, работающим на Транспортном уровне. Однако, в отличие от комбинации TCP и IP, которая повсеместно встречается в TCP/IP- сетях и предназначена в основном для доставки большого количества трафика, комплекс IPX/SPX в сетях NetWare можно встретить относительно редко.

Протоколы IPX в нескольких аспектах похожи на TCP/IP. Оба стека протоколов задействуют на Сетевом уровне ненадежные протоколы без установления соединения (IPX и IP соответственно) для переноса дейтаграмм, содержащих данные множества протоколов верхних уровней, что обеспечивает широкий спектр услуг для различных применений. Подобно IP, IPX отвечает за адресацию дейтаграмм и маршрутизацию их к месту назначения в другой сети.

Однако в отличие от TCP/IP протоколы IPX были разработаны для применения в локальных сетях, и не поддерживают той почти неограниченной масштабируемости, свойственной протоколам Интернета. IPX не обладает такой самостоятельной адресной системой, какая имеется у протокола IP. Системы в сети NetWare идентифицируют другие системы посредством аппаратных адресов, "зашитых" в платы сетевых адаптеров в сочетании с адресом сети, назначенным администратором (или ОС) во время инсталляции операционной системы.

Дейтаграммы IPX переносятся внутри стандартных кадров протокола Канального уровня точно так же, как дейтаграммы IP. Протоколы IPX не имеют собственных протоколов Канального уровня. Тем не менее, в большинстве сетей данные IPX инкапсулируются кадрами Ethernet или TokenRing.

IPX базируется на протоколе IDP (InternetworkDatagramPacket, межсетевой обмен дейтаграммами), разработанном для сетевых служб Xerox (XNS, XeroxNetworkServices). IPX обеспечивает базовые транспортные услуги без установления соединения между системами интерсети при широковещательной и однонаправленной передаче. Большая часть обычного трафика между серверами NetWare или между клиентами и серверами переносится посредством дейтаграмм IPX.

Заголовок дейтаграммы IPX имеет длину 30 байтов (для сравнения: размер заголовка IP равен 20 байтам). Назначение полей заголовка перечислено ниже.

Контрольная сумма (Checksum), 2 байта. В оригинальном заголовке IDP это поле содержит значение CRC для дейтаграммы. Так как протоколы Канального уровня сами выполняют проверку контрольных сумм, то данная функция при обработке дейтаграмм IPX не задействована и поле всегда содержит шестнадцатеричное значение ffff.

Длина (Length), 2 байта. Задает размер дейтаграммы в байтах, включая заголовок IPX и поле данных.

Управление доставкой (TransportControl), 1 байт. Это поле также известно как счетчик транзитов (hopcount). Оно фиксирует количество маршрутизаторов, через которые прошла дейтаграмма на пути к месту назначения. Передающая система сбрасывает его в 0, а каждый из маршрутизаторов при обработке дейтаграммы увеличивает значение счетчика на 1. Как только количество транзитных маршрутизаторов достигает 16, последний из них отбрасывает дейтаграмму.

Тип пакета (Packet Туре), 1 байт. Идентифицирует сервис или протокол верхнего уровня, который создал данные, переносимые дейтаграммой. Используются следующие значения:

0 - не определен;

1 - RoutingInformationProtocol (RIP, протокол информации маршрутизации);

4 - ServiceAdvertisingProtocol (SAP, протокол извещения об услугах);

5 - SequencedPacketExchange (SPX, последовательный обмен пакетами);

17 - NetWare Core Protocol (NCP, основнойпротокол NetWare).

Адрессетиназначения (Destination Network Address), 4 байта. Указывает сеть, в которой расположена система-получатель, содержит значение, выделенное администратором или операционной системой во время инсталляции NetWare.

Адрес узла назначения (DestinationNodeAddress), 6 байтов. Определяет сетевой интерфейс компьютера, которому должны быть доставлены данные, представляет собой аппаратный адрес протокола Канального уровня. Широковещательные сообщения передаются с шестнадцатеричным адресом ffffffffffff.

Сокет назначения (DestinationSocket), 2 байта. Отвечает за идентификацию процесса, выполняющегося на системе-получателе, для которого, собственно, и предназначены данные внутри дейтаграммы. Используетсяодноизследующихзначений:

0451 - NetWare Core Protocol;

0452 - Service Advertising Protocol;

0453 - Routing Information Protocol;

0456 - диагностический пакет;

0457 - пакет присваивания номера (serializationpacket);

4000-6000 - сокеты, отведенные процессам сервера;

9004 - IPXWAN Protocol.

Адрес сети источника (SourceNetworkAddress), 4 байта. Идентифицирует сеть, в которой находится система, пославшая дейтаграмму. Используется значение, выделенное администратором или операционной системой во время инсталляции NetWare.

Адрес узла источника (SourceNodeAddress), 6 байтов. Содержит аппаратный адрес протокола Канального уровня для сетевого интерфейса компьютера, который отправил дейтаграмму.

Сокет источника (SourceSocket), 2 байта. Определяет процесс, выполняющийся на локальной системе, сформировавший данные пакета. Применяются те же значения, что и для поля сокета назначения.

Протоколы TCP/IP основа работы глобальной сети Интернет. Если быть более точным, то TCP/IP это список или стек протоколов, а по сути, набор правил по которым происходит обмен информации (реализуется модель коммутации пакетов).

В этой статье разберем принципы работы стека протоколов TCP/IP и попробуем понять принципы их работы.

Примечание: Зачастую, обревиатурой TCP/IP называют всю сеть, работающую на основе этих двух протоколов, TCP и IP.

В модель такой сети кроме основных протоколов TCP (транспортный уровень) и IP (протокол сетевого уровня) входят протоколы прикладного и сетевого уровней (смотри фото). Но вернемся непосредственно к протоколам TCP и IP.

Что такое протоколы TCP/IP

TCP — Transfer Control Protocol . Протокол управления передачей. Он служит для обеспечения и установление надежного соединения между двумя устройствами и надежную передачу данных. При этом протокол TCP контролирует оптимальный размер передаваемого пакета данных, осуществляя новую посылку при сбое передачи.

IP — Internet Protocol. Интернет протокол или адресный протокол — основа всей архитектуры передачи данных. Протокол IP служит для доставки сетевого пакета данных по нужному адресу. При этом информация разбивается на пакеты, которые независимо передвигаются по сети до нужного адресата.

Форматы протоколов TCP/IP

Формат IP протокола

Существуют два формата для IP адресов IP протокола.

Формат IPv4. Это 32-битовое двоичное число. Удобная форма записи IP-адреса (IPv4) это запись в виде четырёх групп десятичных чисел (от 0 до 255), разделённых точками. Например: 193.178.0.1.

Формат IPv6. Это 128-битовое двоичное число. Как правило, адреса формата IPv6 записываются в виде уже восьми групп. В каждой группе по четыре шестнадцатеричные цифры разделенные двоеточием. Пример адреса IPv6 2001:0db8:85a3:08d3:1319:8a2e:0370:7889.

Как работают протоколы TCP/IP

Если удобно представьте передаче пакетов данных в сети, как отправку письма по почте.

Если неудобно, представьте два компьютера соединенных сетью. Причем сеть соединения может быть любой как локальной, так и глобальной. Разницы в принципе передачи данных нет. Компьютер в сети также можно считать хостом или узлом.

Протокол IP

Каждый компьютер в сети имеют свой уникальный адрес. В глобальной сети Интернет, компьютер имеет этот адрес, который называется IP-адрес (Internet Protocol Address).

По аналогии с почтой, IP- адрес это номер дома. Но номера дома для получения письма недостаточно.

Передаваемая по сети информация передается не компьютером, как таковым, а приложениями, установленными на него. Такими приложениями являются сервер почты, веб-сервер, FTP и т.п. Для идентификации пакета передаваемой информации, каждое приложение прикрепляется к определенному порту. Например: веб-сервер слушает порт 80, FTP слушает порт 21, почтовый SMTP сервер слушает порт 25, сервер POP3 читает почту почтовых ящиков на порте 110.

Таким образом, в адресном пакете в протоколе TCP/IP, в адресатах появляется еще одна строка: порт. Аналог с почтой — порт это номер квартиры отправителя и адресата.

Пример:

Source address (Адрес отправителя):

IP: 82.146.47.66

Destination address (Адресполучателя):

IP: 195.34.31.236

Стоит запомнить: IP адрес + номер порта — называется «сокет». В примере выше: с сокета 82.146.47.66:2049 пакет отправляется на сокет 195.34.31.236: 53.

Протокол TCP

Протокол TCP это протокол следующего после протокола IP уровня. Предназначен этот протокол для контроля передачи информации и ее целостности.

Например, Передаваемая информация разбивается на отдельные пакеты. Пакеты доставят получателю независимо. В процессе передачи один из пакетов не передался. Протокол TCP обеспечивает повторные передачи, до получения этого пакета получателем.

Транспортный протокол TCP скрывает от протоколов высшего уровня (физического, канального, сетевого IP все проблемы и детали передачи данных).

Всем привет сегодня расскажу чем отличается протокол TCP от UDP. Протоколы транспортного уровня, следующие в иерархии за IP, используются для передачи данных между прикладными процессами, реализующимися в сетевых узлах. Пакет данных, поступивший от одного компьютера другому через Интернет, должен быть передан процессу-обработчику, и именно по конкретному назначению. Транспортный уровень принимает на себя ответственность за это. На этом уровне два основных протокола – TCP и UDP.

Что означают TCP и UDP

TCP – транспортный протокол передачи данных в сетях TCP/IP, предварительно устанавливающий соединение с сетью.

UDP – транспортный протокол, передающий сообщения-датаграммы без необходимости установки соединения в IP-сети.

Напоминаю, что оба протокола работают на транспортном уровне модели OSI или TCP/IP, и понимание того чем они отличаются очень важно.

Разница между протоколами TCP и UDP

Разница между протоколами TCP и UDP – в так называемой “гарантии доставки”. TCP требует отклика от клиента, которому доставлен пакет данных, подтверждения доставки, и для этого ему необходимо установленное заранее соединение. Также протокол TCP считается надежным, тогда как UDP получил даже именование “протокол ненадежных датаграмм. TCP исключает потери данных, дублирование и перемешивание пакетов, задержки. UDP все это допускает, и соединение для работы ему не требуется. Процессы, которым данные передаются по UDP, должны обходиться полученным, даже и с потерями. TCP контролирует загруженность соединения, UDP не контролирует ничего, кроме целостности полученных датаграмм.

С другой стороны, благодаря такой не избирательности и бесконтрольности, UDP доставляет пакеты данных (датаграммы) гораздо быстрее, потому для приложений, которые рассчитаны на широкую пропускную способность и быстрый обмен, UDP можно считать оптимальным протоколом. К таковым относятся сетевые и браузерные игры, а также программы просмотра потокового видео и приложения для видеосвязи (или голосовой): от потери пакета, полной или частичной, ничего не меняется, повторять запрос не обязательно, зато загрузка происходит намного быстрее. Протокол TCP, как более надежный, с успехом применяется даже в почтовых программах, позволяя контролировать не только трафик, но и длину сообщения и скорость обмена трафиком.

Давайте рассмотрим основные отличия tcp от udp.

  1. TCP гарантирует доставку пакетов данных в неизменных виде, последовательности и без потерь, UDP ничего не гарантирует.
  2. TCP нумерует пакеты при передаче, а UDP нет
  3. TCP работает в дуплексном режиме, в одном пакете можно отправлять информацию и подтверждать получение предыдущего пакета.
  4. TCP требует заранее установленного соединения, UDP соединения не требует, у него это просто поток данных.
  5. UDP обеспечивает более высокую скорость передачи данных.
  6. TCP надежнее и осуществляет контроль над процессом обмена данными.
  7. UDP предпочтительнее для программ, воспроизводящих потоковое видео, видеофонии и телефонии, сетевых игр.
  8. UPD не содержит функций восстановления данных

Примерами UDP приложений, например можно привести, передачу DNS зон, в Active Directory, там не требуется надежность. Очень часто такие вопросы любят спрашивать на собеседованиях, так, что очень важно знать tcp и udp отличия.

Заголовки TCP и UDP

Давайте рассмотрим как выглядят заголовки двух транспортных протоколов, так как и тут отличия кардинальные.

Заголовок UDP

  • 16 битный порт источника > Указание порта источника для UDP необязательно. Если это поле используется, получатель может отправить ответ этому порту.
  • 16 битный порт назначения > Номер порта назначения
  • 16 битная длина UDP > Длина сообщения, включая заголовок и данные.
  • 16 битная контрольная сумма > Контрольная сумма заголовка и данных для проверки

Заголовок TCP

  • 16 битный порт источника > Номер порта источника
  • 16 битный порт назначения > Номер порта назначения
  • 32 битный последовательный номер > Последовательный номер генерируется источником и используется назначением, чтобы переупорядочить пакеты для создания исходного сообщения и отправить подтверждение источнику.
  • 32 битный номер подтверждения > Если установлен бит АСК поля "Управление", в данном поле содержит следующий ожидаемый последовательный номер.
  • 4 бита длина заголовка > Информация о начале пакета данных.
  • резерв > Резервируются для будущего использования.
  • 16 битная контрольная сумма > Контрольная сумма заголовка и данных; по ней определяется, был ли искажен пакет.
  • 16 битный указатель срочности > В этом поле целевое устройство получает информацию о срочности данных.
  • Параметры > Необязательные значения, которые указываются при необходимости.

Размер окна позволяет экономить трафик, рассмотрим когда его значение равно 1, тут на каждый отправленный ответ, отправитель ждет подтверждения, не совсем рационально.

При размере окна 3, отправитель отправляет уже по 3 кадра, и ждет от 4, который подразумевает, что все три кадра у него есть, +1.

Надеюсь у вас теперь есть представления об отличиях tcp udp протоколов.

Протокол TCP/IP впервые был создан в начале 1970-х годов и использовался для создания сети ARPANET. Технология разрабатывалась в рамках исследовательского проекта, который был нацелен на изучение потенциальной возможности объединения компьютеров в рамках одной локальной или виртуальной сети internetwork.

Установка соединения в TCP осуществляется при помощи специальной программы-клиента, например браузера, почтовой программы или клиента для обмена сообщениями.

Структура TCP

Структура TCP/IP позволяет формировать доступ к удаленным компьютерам, а также объединять отдельные устройства для создания локальных сетей, работающих отдельно от общих. TCP является надежным протоколом передачи данных. Таким образом, вся информация, которая будет отправлена в сети, гарантировано будет получена адресатом, т.е. пользователем, которому данные предоставлялись.

Альтернативой для TCP является UDP. Важными отличиями между данными сетями является то, что TCP необходимо предварительно установить доверительное соединение между отправителем и получателем информации. После установки соединения проходит передача данных, а затем начинается процедура завершения соединения. UDP сразу же устанавливает передачу нужных пакетов информации пользователю без предварительного создания канала.

Отправка данных по TCP

После установки соединения TCP отправляет данные по созданным маршрутам в соответствии с IP-адресами отправителя и получателя информации. IP-адрес является уникальным идентификатором каждого сетевого устройства в интернете, а потому отправленный по созданному туннелю пакет не может быть потерян или ошибочно послан другому пользователю.

На физическом уровне передачи данных информация имеет вид частот, амплитуд и других форм сигнала, которые уже обрабатываются сетевой картой адресата.

За обработку информации компьютером и ее передачу другим составляющим отвечают канальные протоколы, среди которых можно упомянуть Ethernet, ATM, SLIP, IEEE 802.11. Данные каналы обеспечивают не только передачу данных, но и форму доставки адресату. Так, в сетях IEEE 802.11 передача информации осуществляется при помощи беспроводного радиосигнала. При этом сигнал подается с сетевой карты компьютера, также имеющей собственный код MAC. В случае с Ethernet вся передача данных осуществляется при помощи кабельного соединения.

Видео по теме

В современных условиях деятельность общества и цивилизации невозможна без применения средств быстрого обмена информацией. Данную проблему призваны решать глобальные компьютерные сети.

Глобальная сеть (ГКС) - это сеть, которая состоит из компьютеров, охватывающих огромные территории при неограниченном количестве включенных в данную сеть компьютерных систем. Главным условием функционирования подобных сетей является моментальная передача информации по сети независимо от удаленности передающего и принимающего компьютера.

Глобальная сеть отличается от локальной, во-первых, более низкими скоростями передачи данных. Работают глобальные сети через протоколы TCP/IP, MPLS, ATM и некоторые других. Наиболее известным из указанных является протокол TCP/IP, который включает в себя подпротоколы разных уровней: прикладной, транспортный, сетевой, физический и канальный.

На прикладном уровне работает большинство программ, обладающих собственными протоколами, которые широко известны обычным пользователям ПК (HTTP, WWW, FTP и т.д.). Данные протоколы обеспечивают визуализацию и отображение необходимой пользователю информации.

Транспортный протокол ответственен за доставку данных именно тому приложению, которое способно их обработать. Он носит название TCP.

Сетевой уровень является, фактически, принимающим при передаче информации и отправляющей запросы на более низкие уровни для получения всей информации. Носит название протокола IP.

Физический и канальный уровни ответственны за определение условий и методов передачи информации.

Наиболее известной глобальной сетью является WWW (World Wide Web), которая представляет из себя совокупность серверов, где хранится необходимая для пользователей информация, и компьютеров, которые могут как принимать с серверов информацию, так и загружать ее на них. WWW отличается удобством и простотой использования, а также низкими требованиями к скорости передачи данных. Это позволило развиться данной сети за период чуть больший, чем десятилетие.

Видео по теме

Принято именовать символьное обозначение, заменяющее числовую адресацию, основанную на IP-адресах, в сети интернет. Числовая адресация, применяемая при обработке таблиц маршрутов, идеально подходит для компьютерного использования, но представляет значительные трудности при запоминании пользователем. На помощь приходят мнемонически осмысленные доменные имена.

Установка соединений в сети интернет происходит по числовым группам в 4 значения, разделенных символом «.» и именуемым IP-адресами. Символьные имена комплекса доменных имен представляют собой службу, призванную облегчить нахождение необходимого IP-адреса в сети.Техническим показателем доменного имени выступает символ «.» в электронном адресе пользователя. Так, в адресе google.com доменным именем будет com.Само доменное имя не способно предоставить доступ к требуемому интернет-ресурсу. Процедура использования мнемонического имени состоит из двух этапов:- IP-адреса по имени в файле hosts, содержащем таблицы соответствия IP-адреса и имени компьютера;- установка соединения с удаленным веб-ресурсом по определенному IP-адресу.Главной задачей сервиса DNS является получение IP-адреса для установки соединения, что делает эту службу вспомогательной по отношению к протоколу TCP/IP.Символ "." является разделителем составляющих доменного имени, хотя для практических целей обычно принимается в качестве обозначения корневого домена, не имеющего собственного обозначения. Корень - все множество хостов интернета - подразделяется на:- первого уровня - gov, edu, com,net;- национальные домены - uk, jp, ch и т.д.;- региональные домены - msk;- корпоративные домены - домены организаций.Сохранение привычной древовидной структуры доменных имен обусловило использование устоявшейся терминологии - корень, узлы дерева, лист. Термин «хост» в данной иерархии присвоен листу, не имеющему под собой ни одного узла. Полным именем хоста становится последовательное перечисление всех промежуточных узлов между корнем и листом, разделяемых символом "." слева направо:ivan.net.abcd.ru, где ru - корень дерева, abcd - название организации, ivan - лист дерева (хост).

Видео по теме

Источники:

  • Система доменных имен Internet в 2018

Протокол TCP (TransmissionControlProtocol, протокол управления передачей) представляет собой надежный протокол с установлением соединения, являющийся альтернативой UDP, и отвечающий за большинство передач пользовательских данных по сетям TCP/IP, и даже внесший свой вклад в название всего набора протоколов. Протокол TCP, как определено в документе RFC 793, обеспечивает приложения всем диапазоном транспортных услуг, включая подтверждение получения пакетов, отслеживание ошибок и их исправление, а также управление потоком.

Протокол TCP предназначен для передачи относительно больших объемов информации, которая заведомо не сможет быть упакована в один пакет. Информация обычно принимает форму целых файлов, которые должны быть разделены на множественные дейтаграммы для передачи. Информация, поставляемая Транспортному уровню, в терминологии протокола TCP рассматривается как последовательность (sequence), которую протокол разбивает на сегменты (segment) для передачи по сети. Как и в случае протокола UDP, сегменты затем упаковываются в IP-дейтаграммы, которые могут преодолевать маршрут до места назначения различными способами. Поэтому, протокол TCP снабжает каждый из сегментов порядковым номером для того, чтобы система-получатель смогла собрать их воедино в правильном порядке.

Перед началом любой передачи пользовательских данных с применением протокола TCP две системы обмениваются сообщениями с целью установления соединения. Это позволяет убедиться, что система-получатель функционирует и в состоянии принять данные. Как только соединение установлено и начинается процесс передачи данных, система-получатель периодически посылает сообщения, подтверждающие прием пакетов. Эти сообщения оповещают систему-отправителя о потерянных пакетах, а также обеспечивают ее информацией, используемой при контроле скорости потока передачи.

Формат TCP –сообщения

Функции полей TCP-заголовка описаны ниже.

Порт источника (SourcePort), 2 байта. Идентифицирует номер порта передающей системы, используемый процессом, который создал информацию, переносимую TCP-сегментами. В некоторых случаях это может быть фиктивный номер порта, выделенный клиентом специально для данной транзакции.

Порт назначения (DestinationPort), 2 байта. Указывает номер порта системы назначения, на который должна быть передана информация ТСР-сегментов. Номера портов перечислены в документе "AssignedNumbers", а также в файле SERVICES каждой ТСР/1Р-системы.

Порядковый номер (SequenceNumber), 4 байта. Определяет положение конкретного сегмента по отношению ко всей последовательности данных.

Подтвержденный номер (AcknowledgmentNumber), 4 байта. Задает максимальный номер байта в сегменте, увеличенный на единицу, который подтверждающая система ожидает получить от отправителя. Используется совместно с битом управления АСК.


Смещение данных (DataOffset), 4 бита. Задает длину в 4-байтных словах, TCP-заголовка (который может содержать опции, увеличивающие его размер вплоть до 60 байт).

Зарезервировано (Reserved), 6 битов. Выделено для последующих применений.

Биты управления (ControlBits), 6 битов. Содержит шесть 1-битных флагов, выполняющих перечисленные ниже функции:

URG - показывает, что последовательность содержит срочные данные (urgentdata) и активирует поле указателя срочности;

АСК - отмечает, что сообщение является подтверждением ранее полученных данных и активирует поле номера подтверждения;

PSH - предписывает системе-получателю передать всю информацию текущей последовательности, полученную на данный момент, приложению, идентифицированному полем порта назначения, не дожидаясь поступления остальных фрагментов;

RST - инструктирует систему-получателя отбросить все сегменты текущей последовательности, полученные к настоящему моменту, и начать установление TCP-соединение заново;

SYN - используется во время процедуры установления соединения для синхронизирования нумераторов переданных данных между взаимодействующими системами;

FIN - извещает другую систему, что передача данных закончена и соединение должно быть завершено.

Окно (Window), 2 байта. Реализует механизм управления потоком протокола TCP (скользящее окно) путем объявления количества байтов, которое система-получатель может принять от системы-источника.

Контрольная сумма (Checksum), 2 байта. Содержит результат вычисления контрольной суммы с учетом TCP-заголовка, данных, а также псевдозаголовок, составленный из полей IP-адреса источника, протокола, IP-адреса назначения из IP-заголовка плюс длина всего ТСР-сообщения.

Указатель срочности (UrgentPointer), 2 байта. Задействуется совместно с битом URG, определяет данные последовательности, которые должны рассматриваться получателем как срочные.

Опции (Options), переменный размер. Может содержать дополнительные конфигурационные параметры для TCP-соединения вместе с битами выравнивания, требуемыми для того, чтобы привести размер поля до ближайшего значения, кратного 4 байтам. Возможные опции перечислены ниже.

Максимальный размер сегмента (MaximumSegmentSize). Задает размер максимального сегмента, который текущая система может получить от другой системы, соединенной с ней.

Фактормасштабаокна (Window Scale Factor). Используется для увеличения размера поля окна с 2 до 4 байтов.

Временная отметка (Timestamp). Используется для хранения временных отметок пакетов данных, которые система-получатель возвращает отправителю с целью подтверждения. Это позволяет отправителю измерять время путешествия данных в оба конца.

Данные (Data), переменный размер. Может включать в себя сегменты данных, поступившие с вершины протокольного стека, от протоколов Прикладного уровня. В пакетах SYN, АСК и FIN это поле оставляется пустым.

IPX/SPX: Для обеспечения транспортных услуг для операционной системы NovellNetWare, фирмой Novell был создан свой собственный стек протоколов, получивший общее название по наименованию протокола Сетевого уровня - IPX (InternetworkPacketExchange, межсетевой обмен пакетами). По аналогии с TCP/IP этот стек иногда также называют IPX/SPX. Вторая часть этого обозначения соотносится с SPX (SequencedPacketeXchange, последовательный обмен пакетами), протоколом, работающим на Транспортном уровне. Однако, в отличие от комбинации TCP и IP, которая повсеместно встречается в TCP/IP- сетях и предназначена в основном для доставки большого количества трафика, комплекс IPX/SPX в сетях NetWare можно встретить относительно редко.

Протоколы IPX в нескольких аспектах похожи на TCP/IP. Оба стека протоколов задействуют на Сетевом уровне ненадежные протоколы без установления соединения (IPX и IP соответственно) для переноса дейтаграмм, содержащих данные множества протоколов верхних уровней, что обеспечивает широкий спектр услуг для различных применений. Подобно IP, IPX отвечает за адресацию дейтаграмм и маршрутизацию их к месту назначения в другой сети.

Однако в отличие от TCP/IP протоколы IPX были разработаны для применения в локальных сетях, и не поддерживают той почти неограниченной масштабируемости, свойственной протоколам Интернета. IPX не обладает такой самостоятельной адресной системой, какая имеется у протокола IP. Системы в сети NetWare идентифицируют другие системы посредством аппаратных адресов, "зашитых" в платы сетевых адаптеров в сочетании с адресом сети, назначенным администратором (или ОС) во время инсталляции операционной системы.

Дейтаграммы IPX переносятся внутри стандартных кадров протокола Канального уровня точно так же, как дейтаграммы IP. Протоколы IPX не имеют собственных протоколов Канального уровня. Тем не менее, в большинстве сетей данные IPX инкапсулируются кадрами Ethernet или TokenRing.

Протокол IPX

IPX базируется на протоколе IDP (InternetworkDatagramPacket, межсетевой обмен дейтаграммами), разработанном для сетевых служб Xerox (XNS, XeroxNetworkServices). IPX обеспечивает базовые транспортные услуги без установления соединения между системами интерсети при широковещательной и однонаправленной передаче. Большая часть обычного трафика между серверами NetWare или между клиентами и серверами переносится посредством дейтаграмм IPX.

Заголовок дейтаграммы IPX имеет длину 30 байтов (для сравнения: размер заголовка IP равен 20 байтам). Назначение полей заголовка перечислено ниже.

Контрольная сумма (Checksum), 2 байта. В оригинальном заголовке IDP это поле содержит значение CRC для дейтаграммы. Так как протоколы Канального уровня сами выполняют проверку контрольных сумм, то данная функция при обработке дейтаграмм IPX не задействована и поле всегда содержит шестнадцатеричное значение ffff.

Длина (Length), 2 байта. Задает размер дейтаграммы в байтах, включая заголовок IPX и поле данных.

Управление доставкой (TransportControl), 1 байт. Это поле также известно как счетчик транзитов (hopcount). Оно фиксирует количество маршрутизаторов, через которые прошла дейтаграмма на пути к месту назначения. Передающая система сбрасывает его в 0, а каждый из маршрутизаторов при обработке дейтаграммы увеличивает значение счетчика на 1. Как только количество транзитных маршрутизаторов достигает 16, последний из них отбрасывает дейтаграмму.

Тип пакета (Packet Туре), 1 байт. Идентифицирует сервис или протокол верхнего уровня, который создал данные, переносимые дейтаграммой. Используются следующие значения:

0 - не определен;

1 - RoutingInformationProtocol (RIP, протокол информации маршрутизации);

4 - ServiceAdvertisingProtocol (SAP, протокол извещения об услугах);

5 - SequencedPacketExchange (SPX, последовательный обмен пакетами);

17 - NetWare Core Protocol (NCP, основнойпротокол NetWare).

Адрессетиназначения (Destination Network Address), 4 байта. Указывает сеть, в которой расположена система-получатель, содержит значение, выделенное администратором или операционной системой во время инсталляции NetWare.

Адрес узла назначения (DestinationNodeAddress), 6 байтов. Определяет сетевой интерфейс компьютера, которому должны быть доставлены данные, представляет собой аппаратный адрес протокола Канального уровня. Широковещательные сообщения передаются с шестнадцатеричным адресом ffffffffffff.

Сокет назначения (DestinationSocket), 2 байта. Отвечает за идентификацию процесса, выполняющегося на системе-получателе, для которого, собственно, и предназначены данные внутри дейтаграммы. Используетсяодноизследующихзначений:

0451 - NetWare Core Protocol;

0452 - Service Advertising Protocol;

0453 - Routing Information Protocol;

0455 - NetBIOS;

0456 - диагностический пакет;

0457 - пакет присваивания номера (serializationpacket);

4000-6000 - сокеты, отведенные процессам сервера;

9000 - NetWareLinkServicesProtocol;

9004 - IPXWAN Protocol.

Адрес сети источника (SourceNetworkAddress), 4 байта. Идентифицирует сеть, в которой находится система, пославшая дейтаграмму. Используется значение, выделенное администратором или операционной системой во время инсталляции NetWare.

Адрес узла источника (SourceNodeAddress), 6 байтов. Содержит аппаратный адрес протокола Канального уровня для сетевого интерфейса компьютера, который отправил дейтаграмму.

Сокет источника (SourceSocket), 2 байта. Определяет процесс, выполняющийся на локальной системе, сформировавший данные пакета. Применяются те же значения, что и для поля сокета назначения.

Данные (Data), переменной длины. Информация, сгенерированная протоколом вышележащего уровня.

Поскольку IPX является протоколом без установления соединения, для подтверждения правильности доставленных данных он полагается на протоколы верхних уровней. Тем не менее, клиенты NetWare активируют системные часы таймаута запроса, по истечении которого таймер вынуждает их повторно отправить дейтаграмму IPX, если ответ не был получен в течение заданного периода времени.