Аналоговый и цифровой сигнал. Типы сигналов и как это действует

Люди до сих пор спорят, что лучше: аналоговая или цифровая технология. При этом последняя завоевывает мир окончательно и бесповоротно. Например, на Сиднейском кинофестивале в этом году не было ни одного фильма в формате 35 мм — киноиндустрия черпает вдохновение из новых технологий.

Взгляните на Топ-10 музыкального хитов ARIA (официальный хит-парад Австралийской ассоциации звукозаписи, Australian Recording Industry Association): в процессе записи этой музыки никогда не использовались еще совсем недавно считавшиеся ничем незаменимыми студийные магнитофоны. Наконец, фотографы уже давно предпочитают цифровые камеры аналоговым.

Все перечисленные примеры связаны с носителями информации, используемыми для записи результатов творчества. Раньше авторы сохраняли плоды своих трудов на магнитной ленте или кинопленке, теперь они предпочитают цифровые технологии и соответствующие носители.

Творчество ныне в основном сводится к манипуляции новейшими медиасредствами для того, чтобы рассказать историю, вызвать эмоциональный отклик, задать вопросы, развлечь аудиторию — то есть, делать все то, что искусство должно делать.

Однако в эпоху цифровых технологий находится все больше молодежи, ностальгирующей по старым аналоговым носителям информации. Иногда подобное пристрастие по отношению к вещам, которыми они никогда не пользовались, граничит с фетишизмом.

Не так давно всех удивил музыкант Джек Уайт (Jack White), сделавший запись на винтажном магнитофоне с 8 дорожками. И это далеко не единичный случай. Воскрешение «пленочных» студии звукозаписи и рекорд-лейблов, распространяющих музыку на кассетах, сильно удивило воротил музыкальной индустрии, считавших аналоговый формат мертвым. Тем более, что цифровая техника позволила избавиться от прежних раздражителей (гул, потрескивание, искажения, вспышки и прочие признаки «теплого лампового звука»).

Ностальгия по аналогу

Нелинейность — термин из практики современных медиа, означающий, что входной сигнал, поступающий в устройство, не эквивалентен выходному сигналу.

Любые медиаустройства, в той или иной степени искажающие сигнал — сжатие динамического диапазона музыки в аудиозаписи, размытые контуры изображений и избыточное насыщение кинокадра определенными цветами — можно рассматривать как нелинейные.

Технические специалисты всегда стремились избавиться от погрешностей, а музыкальные продюсеры, фотографы и режиссеры учились вписывать их в творческий продукт. Публика же воспринимала это вполне естественно.

До сих пор много музыкальных продюсеров делают запись на пленке, прежде чем передать ее на оцифровку. Или фотографы — сначала «отщелкивают» материал, а потом редактируют изображения в Photoshop.

Компании Waves и Steven Slate Digital создают программное обеспечение, как можно точнее воссоздающие звуковые эффекты старых магнитофонов.

Конечно, увлечение аналоговым форматом нисколько не умаляет достоинства цифровой технологии. Свое качество она оправдывает, даже слишком. Из-за триумфа «цифры» мы уже заскучали по «зашумленной», нечеткой и перенасыщенной цветом картинке, присущей аналоговым технологиям. Но одновременно никто не оспаривает высокую производительность и экономическую эффективность цифровых форматов обработки сигнала.

Некоторые любители всеми силами стараются сохранить уходящую в прошлое аналоговую технологию исключительно ради идеи. Другим просто доставляет удовольствие пользоваться винтажной техникой, например, камерой Polaroid.

Остальная часть «ретроградов» просто моделирует «полароидные» эффекты на смартфонах ради удовлетворения чувства ностальгии.

Рост «медленных медиа»

Всплеск интереса к старым технологиям со стороны людей, родившихся в цифровую эпоху, напоминает явление конца 80-х годов под названием «движение медленных медиа».

Растут продажи виниловых пластинок. Потому что люди вновь открывают радость встречи с альбомом музыканта как неким посланием. А само прослушивание пластинки? Это целый ритуал: взять в руки круг черной пластмассы, неторопливо подойти и бережно поставить его в проигрыватель.

У музыкантов своя причина любви к пленке. Когда они приходят в студию, то знают, что должны сыграть отменно, потому что «цифровой обман» недоступен.

Режиссеры, в свою очередь, исходят из ограниченности кинопленки. Это налагает ответственность на игру актеров ради избежания лишних дублей.

Музыкальные продюсеры также работают качественнее без огромного количества дорожек и безграничных возможностей наложения звука. Посмотрите, что творили Beatles всего на 4 дорожках. Сегодня их как минимум 96. Слушая современную музыку, приходится сомневаться в пользе дополнительных 92 дорожек.

У любви к старым технологиям есть одна подоплека. Дело тут не столько в монетизации ретро-моды, сколько в претензии к способу работы медиаиндустрии. В аналоговом мире вы вынуждены работать медленнее. В цифровой реальности вы должны сделать работу прямо сейчас.

Старые медиаформаты не уйдут. Слишком много людей заинтересованы в их существовании. Кто-то будет пытаться на волне ретро-моды вернуть утраченную часть прибыли. Кто-то погрузится в ностальгию и начнет коллекционировать старинное оборудование.

Некоторые вещи по-настоящему удивительны. Например, музыкальные инструменты или звукозаписывающее оборудование: 40-50 лет тому назад они делались словно на века, часто из более дорогих материалов, чем сегодня.

Мы живём в эпоху бурной эволюции аналоговых технологий в цифровые. Тем не менее, многие устройства по-прежнему остаются аналоговыми, не спеша переходить на новую ступень развития техники. Более того, бытовые приборы нередко совмещают в себе обе технологии. Попытаемся разобраться, какова разница между аналоговым и цифровым, в чём их преимущества и недостатки.

Естественно, разговор пойдёт с точки зрения обычного пользователя, без заумных терминов и с уклоном на практическое применение в повседневной жизни.

Суть аналоговых технологий

В двадцатом веке, ближе к его середине, появились аналоговые компьютеры - вычислительные устройства. Всяческая информация в них выражалась и обрабатывалась в виде разницы в напряжении сигнала. Причём, даже при обработке числовых данных и совершении подсчётов.

На выходе могли быть графики, различные синусоиды, управляющие сигналы для механизмов и прочие полезности для производственного процесса. Предположим, везде расставили датчики. Изменилось где-то напряжение - и аналоговый компьютер тут же отреагировал, включил что надо (или выключил).

Суть аналоговой технологии в том, что информация не трансформируется в цифровую. Электрический импульс остаётся самим собой, со всеми своими параметрами, даже если чем-то измеряется и что-то означает. Кроме того, сигналы могут варьироваться как угодно, в зависимости от особенностей устройств.

Суть цифровых технологий

Первый прототип цифровой передачи данных - азбука Морзе. Буквы кодируются комбинациями коротких сигналов («точек»), длинных («тире») и разделяющих пауз (тишины) между ними. Неважно, каков уровень сигнала, каково его напряжение и частота, ведь есть только три компонента, передающие информацию.

Теперь представьте себе, что количество компонентов сокращено до двух: «сигнал и тишина». Наличие сигнала - единица, отсутствие - ноль. Параметры тоже не имеют значения.

Так вот, нули и единицы - это биты. Их последовательности объединяются в группы по восемь штук - байты. Ну и, конечно, килобайты, мегабайты, гигабайты.

Работа аналогового устройства

Возьмём, к примеру, звук. Сигнал с микрофона записывается на магнитную ленту в исходном виде. То есть, со всеми частотами, поступающими по проводу. Затем магнитофон (старинный аппарат для воспроизведения звука) считывает записанное с ленты, усиливает и отправляет в динамики, откуда мы всё слышим.

Или же звук транслируется в эфир. Антенна ловит радиоволну и преобразовывает её в такие же электрические сигналы, которые поступали на микрофон. Ну и мембраны динамиков работают точно так же, как в магнитофоне: колеблются под воздействием тока, передающего звуковые частоты.

Другой способ аналоговой записи - виниловые пластинки, большие такие диски, обычно чёрные. На них вырезаются тонкие дорожки, а считывающая игла потом колеблется именно с такими частотами, которые были у исходного звука. Колебания преобразуются в электрические, усиливаются и отправляются, как нетрудно догадаться, на динамики.

То есть, сигнал остаётся таким, как был изначально, не кодируется в цифровой вид. К нему добавляются помехи , шипение усилителей, он искажается некачественной магнитной лентой и аппаратурой. Лента постепенно размагничивается (особенно если эксплуатируется часто), а пластинка - изнашивается (ведь по ней ездит игла).

Работа цифрового устройства

Микрофон подключается к преобразователю, который все звуковые частоты кодирует в форму нулей и единиц. Кроме того, эти нули и единицы идут не сплошным потоком, а дискретно, порциями. Например, 44 тысячи раз в секунду (с частотой 44 килогерца), как на музыкальном компакт-диске.

Кроме того, чем больше нулей и единиц (килобит) используется для одной секунды, тем выше качество звука (тем полнее, адекватнее его описание в цифровой форме).

Оцифрованный звук копируется на CD, транслируется в сети интернет-радиостанциями , распространяется в виде файлов . В общем, тем или иным образом поступает в устройство, способное его воспроизвести.

При воспроизведении нет ни шума магнитной плёнки, ни треска от царапин на виниловой пластинке, потому что обрабатываются только последовательности нулей и единиц.

Однако для того, чтобы из динамиков что-либо зазвучало, на них необходимо подать аналоговый сигнал. То есть, звук, описанный не нулями и единицами, а частотами электрических колебаний.

Предыдущие публикации:

Сигналами называют информационные коды, которые применяются людьми для того, чтобы передавать сообщения в информационной системе. Сигнал может подаваться, но его получение не обязательно. Тогда как сообщением можно считать только такой сигнал (или совокупность сигналов), который был принят и декодирован получателем (аналоговый и цифровой сигнал).

Одними из первых методов передачи информации без участия людей или других живых существ были сигнальные костры. При возникновении опасности последовательно разводились костры от одного поста к другому. Далее мы будем рассматривать способ передачи информации при помощи электромагнитных сигналов и подробно остановимся на рассмотрении темы аналоговый и цифровой сигнал .

Любой сигнал может быть представлен в виде функции, которая описывает изменения его характеристик. Такое представление удобно для изучения устройств и систем радиотехники. Помимо сигнала в радиотехнике есть еще шум, который является его альтернативой. Шум не несет полезной информации и искажает сигнал, взаимодействуя с ним.

Само понятие дает возможность отвлечься от конкретных физических величин при рассмотрении явлений, связанных с кодированием и декодированием информации. Математическая модель сигнала в исследованиях позволяет опираться на параметры функции времени.

Типы сигналов

Сигналы по физической среде носителя информации делятся на электрические, оптические, акустические и электромагнитные.

По методу задания сигнал может быть регулярным и нерегулярным. Регулярный сигнал представляется детерминированной функцией времени. Нерегулярный сигнал в радиотехнике представлен хаотической функцией времени и анализируется вероятностным подходом.

Сигналы в зависимости от функции, которая описывает их параметры могут быть аналоговыми и дискретными. Дискретный сигнал, который был подвергнут квантованию называется цифровым сигналом.

Обработка сигнала

Аналоговый и цифровой сигнал обрабатывается и направлен на то, чтобы передать и получить информацию, закодированную в сигнале. После извлечения информации ее можно применять в разных целях. В частных случаях информация подвергается форматированию.

Аналоговые сигналы подвергаются усилению, фильтрации, модуляции и демодуляции. Цифровые же помимо этого еще могут подвергаться сжатию, обнаружению и др.

Аналоговый сигнал

Наши органы чувств воспринимают всю поступающую в них информацию в аналоговом виде. К примеру, если мы видим проезжающий мимо автомобиль, мы видим его движение непрерывно. Если бы наш мозг мог получать информацию о его положении раз в 10 секунд, люди бы постоянно попадали под колеса. Но мы можем оценивать расстояние куда быстрее и это расстояние в каждый момент времени четко определено.

Абсолютно то же самое происходит и с другой информацией, мы можем оценивать громкость в любой момент, чувствовать какое давление наши пальцы оказывают на предметы и т.п. Иными словами, практически вся информация, которая может возникать в природе имеет аналоговый вид. Передавать подобную информацию проще всего аналоговыми сигналами, которые являются непрерывными и определены в любой момент времени.

Чтобы понять, как выглядит аналоговый электрический сигнал, можно представить себе график, на котором будет отображена амплитуда по вертикальной оси и время по горизонтальной оси. Если мы, к примеру, замеряем изменение температуры, то на графике появится непрерывная линия, отображающая ее значение в каждый момент времени. Чтобы передать такой сигнал с помощью электрического тока, нам надо сопоставить значение температуры со значением напряжения. Так, например, 35.342 градуса по Цельсию могут быть закодированы как напряжение 3.5342 В.

Аналоговые сигналы раньше использовались во всех видах связи. Чтобы избежать помех такой сигнал нужно усиливать. Чем выше уровень шума, то есть помех, тем сильнее надо усиливать сигнал, чтобы его можно было принять без искажения. Такой метод обработки сигнала затрачивает много энергии на выделение тепла. При этом усиленный сигнал может сам стать причиной помех для других каналов связи.

Сейчас аналоговые сигналы еще применяются в телевидении и радио, для преобразования входного сигнала в микрофонах. Но, в целом, этот тип сигнала повсеместно вытеснен или вытесняется цифровыми сигналами.

Цифровой сигнал

Цифровой сигнал представлен последовательностью цифровых значений. Чаще всего сейчас применяются двоичные цифровые сигналы, так как они используются в двоичной электронике и легче кодируются.

В отличие от предыдущего типа сигнала цифровой сигнал имеет два значения «1» и «0». Если мы вспомним наш пример с измерением температуры, то тут сигнал будет сформирован иначе. Если напряжение, которое подается аналоговым сигналом соответствует значению измеряемой температуры, то в цифровом сигнале для каждого значения температуры будет подаваться определенное количество импульсов напряжения. Сам импульс напряжения тут будет равен «1», а отсутствие напряжения – «0». Приемная аппаратура будет декодировать импульсы и восстановит исходные данные.

Представив, как будет выглядеть цифровой сигнал на графике, мы увидим, что переход от нулевого значения к максимальному производится резко. Именно эта особенность позволяет принимающей аппаратуре более четко «видеть» сигнал. Если возникают какие-либо помехи, приемнику проще декодировать сигнал, нежели чем при аналоговой передаче.

Однако цифровой сигнал с очень большим уровнем шума восстановить невозможно, тогда как из аналогового типа при большом искажении еще есть возможность «выудить» информацию. Это связано с эффектом обрыва. Суть эффекта в том, что цифровые сигналы могут передаваться на определенные расстояния, а затем просто обрываются. Этот эффект возникает повсеместно и решается простой регенерацией сигнала. Там, где сигнал обрывается, нужно вставить повторитель или уменьшить длину линии связи. Повторитель не усиливает сигнал, а распознает его изначальный вид и выдает его точную копию и может использоваться сколь угодно в цепи. Такие способы повторения сигнала активно применяются в сетевых технологиях.

Помимо всего прочего аналоговый и цифровой сигнал различается и возможность кодирования и шифрования информации. Это является одной из причин перехода мобильной связи на «цифру».

Аналоговый и цифровой сигнал и цифро-аналоговое преобразования

Следует еще немного рассказать о том, как аналоговая информация передается по цифровым каналам связи. Вновь прибегнем к примерам. Как уже говорилось звук – это аналоговый сигнал.

Что происходит в мобильных телефонах, которые передают информацию по цифровым каналам

Звук, попадая в микрофон подвергается аналого-цифровому преобразованию (АЦП). Этот процесс состоит из 3 ступеней. Берутся отдельные значения сигнала через одинаковые отрезки времени, этот процесс называется дискретизация. По теореме Котельникова о пропускной способности каналов, частота взятия этих значений должна быть вдвое выше, чем самая высокая частота сигнала. То есть, если в нашем канале стоит ограничение на частоту в 4 кГц, то частота дискретизации будет составлять 8 кГц. Далее все выбранные значения сигнала округляются или, иначе говоря, квантуются. Чем больше уровней при этом будет создано, тем выше будет точность восстановленного сигнала на приемнике. Затем все значения преобразуются в двоичный код, который передается на базовую станцию и затем доходит до другого абонента, являющегося приемником. В телефоне приемника происходит процедура цифро-аналогового преобразования (ЦАП). Это обратная процедура, цель которой на выходе получить сигнал как можно более идентичный исходному. Далее уже аналоговый сигнал выходит в виде звука из динамика телефона.

Аналоговые и цифровые сигналы

Основные принципы цифровой электроники.

Введение.

ЦИФРОВЫЕ УСТРОЙСТВА

Конспект лекций

Цифровая электроника в настоящее время всœе более и более вы­тесняет традиционную аналоговую. Ведущие фирмы, произво­дящие самую разную электронную аппаратуру, всœе чаще заяв­ляют о полном переходе на цифровую технологию.

Успехи в технологии производства электронных микросхем обеспечили бурное развитие цифровой техники и устройств. Использование цифровых методов обработки и передачи сигналов позволяет существенно повысить качество линий связи. Цифровые методы обработки и коммутации сигналов в телœефонии позволяют в несколько раз сократить массогабаритные характеристики устройств коммутации, повысить надежность связи, ввести дополнительные функциональные возможности. Появление быстродействующих микропроцессоров, микросхем оперативной памяти больших объёмов, малогабаритных устройств хранения информации на жестких носителях больших объёмов позволило создать достаточно недорогие универсальные персональные электронные вычислительные машины (компьютеры), нашедшие очень широкое применение в быту и производстве. Цифровая техника незаменима в системах телœесигнализации и телœеуправления, применяемых в автоматизированных производствах, управлении удаленными объектами, к примеру, космическими кораблями, газоперекачивающими станциями и т. п. Цифровая техника также заняла прочное место в электро-радиоизмерительных системах. Современные устройства регистрации и воспроизведения сигналов также немыслимы без применения цифровых устройств. Цифровые устройства широко используются для управления в бытовых приборах.

Очень вероятно, что в будущем цифровые устройства займут доминирующее положение на рынке электроники.

Стоит сказать, что для начала дадим несколько базовых определœений.

Сигнал - это любая физическая величина (к примеру, тем­пература, давление воздуха, интенсивность света͵ сила тока и т. д.), изменяющаяся со временем. Именно благодаря этому изменению во времени сигнал может нести в себе какую-то ин­формацию.

Электрический сигнал - это электрическая величина (на­пример, напряжение, ток, мощность), изменяющаяся со време­нем. Вся электроника в основном работает с электрическими сигналами, хотя в последнее время всœе больше используются световые сигналы, которые представляют из себяизменяющуюся во времени интенсивность света.

Аналоговый сигнал - это сигнал, который может прини­мать любые значения в определœенных пределах (к примеру, на­пряжение может плавно изменяться в пределах от нуля до деся­ти вольт). Устройства, работающие только с аналоговыми сиг­налами, называются аналоговыми устройствами.

Цифровой сигнал - это сигнал, который может принимать только два значения (иногда - три значения). Причем разреше­ны некоторые отклонения от этих значений (рис. 1.1). Напри­мер, напряжение может принимать два значения: от 0 до 0,5 В (уровень нуля) или от 2,5 до 5 В (уровень единицы). Устройства, работающие исключительно с цифровыми сигналами, называ­ются цифровыми устройствами.

В природе практически всœе сигналы аналоговые, то есть они изменяются непрерывно в некоторых пределах. Именно поэто­му первые электронные устройства были аналоговыми. Οʜᴎ преобразовывали физические величины в пропорциональные им напряжение или ток, выполняли над ними какие-то операции и затем выполняли обратные преобразования в физические вели­чины. К примеру, голос человека (колебания воздуха) с помощью микрофона преобразуется в электрические колебания, затем эти электрические сигналы усиливаются электронным усилителœем и с помощью акустической системы снова преобразуются в колебания воздуха, в более громкий звук.

Рис. 1.1. Электрические сигналы: аналоговый (слева) и цифровой (справа).

Все операции, производимые электронными устройства­ми над сигналами, можно условно разделить на три большие группы:

‣‣‣ обработка (или преобразование);

‣‣‣ передача;

‣‣‣ хранение.

Во всœех этих случаях полезные сигналы искажаются пара­зитными сигналами - шумами, помехами, наводками. Вместе с тем, при обработке сигналов (к примеру, при усилении, фильт­рации) еще искажается и их форма из-за несовершенст­ва, неидеальности электронных устройств. А при передаче на большие расстояния и при хранении сигналы к тому же ослаб­ляются.

Рис. 1.2. Искажение шумами и наводками аналогового сигнала (слева) и циф­рового сигнала (справа).

В случае аналоговых сигналов всœе это существенно ухуд­шает полезный сигнал, так как всœе его значения разрешены (рис. 1.2). По этой причине каждое преобразование, каждое промежу­точное хранение, каждая передача по кабелю или эфиру ухуд­шает аналоговый сигнал, иногда вплоть до его полного унич­тожения. Надо еще учесть, что всœе шумы, помехи и наводки принципиально не поддаются точному расчету, в связи с этим точноописать поведение любых аналоговых устройств абсолютно не­возможно. К тому же со временем параметры всœех аналоговых устройств изменяются из-за старения элементов, в связи с этим харак­теристики этих устройств не остаются постоянными.

В отличие от аналоговых, цифровые сигналы, имеющие всœе­го два разрешенных значения, защищены от действия шумов, наводок и помех гораздо лучше. Небольшие отклонения от разрешенных значений никак не искажают цифровой сигнал, так как всœегда существуют зоны допустимых отклонений (рис. 1.2). Именно в связи с этим цифровые сигналы допускают гораздо более сложную и многоступенчатую обработку, гораздо более дли­тельное хранение без потерь и гораздо более качественную передачу, чем аналоговые. К тому же поведение цифровых устройств всœегда можно абсолютно точно рассчитать и пред­сказать. Цифровые устройства гораздо меньше подвержены старению, так как небольшое изменение их параметров никак не отражается на их функционировании. Вместе с тем, цифро­вые устройства проще проектировать и отлаживать. Понятно, что всœе эти преимущества обеспечивают бурное развитие циф­ровой электроники.

При этом у цифровых сигналов есть и крупный недостаток. Дело в том, что на каждом из своих разрешенных уровней циф­ровой сигнал должен оставаться хотя бы в течение какого-то минимального временного интервала, иначе его невозможно будет распознать. А аналоговый сигнал может принимать любое свое значение бесконечно малое время. Можно сказать и иначе: аналоговый сигнал определœен в непрерывном времени (то есть в любой момент времени), а цифровой - в дискретном времени (то есть только в выделœенные моменты времени). По этой причине мак­симально достижимое быстродействие аналоговых устройств всœегда принципиально больше, чем цифровых устройств. Ана­логовые устройства могут работать с более быстро меняющи­мися сигналами, чем цифровые. Скорость обработки и передачи информации аналоговым устройством всœегда должна быть сде­лана выше, чем скорость ее обработки и передачи цифровым устройством.

Вместе с тем, цифровой сигнал передает информацию только двумя уровнями и изменением одного своего уровня на другой, а аналоговый передает информацию еще и каждым текущим значением своего уровня, то есть он более емкий с точки зрения передачи информации. По этой причине для передачи того объёма по­лезной информации, который содержится в одном аналоговом сигнале, чаще всœего приходится использовать несколько цифро­вых сигналов

(обычно от 4 до 16).

К тому же, как уже отмечалось, в природе всœе сигналы ана­логовые, то есть для преобразования их в цифровые сигналы и для обратного преобразования требуется применение специальной аппаратуры (аналого-цифровых и

цифро-аналоговых преоб­разователœей). Так что ничто не дается даром, и плата за пре­имущества цифровых устройств может порой оказаться непри­емлемо большой.

Аналоговые и цифровые сигналы - понятие и виды. Классификация и особенности категории "Аналоговые и цифровые сигналы" 2017, 2018.

Цифровая электроника в настоящее время все более и более вы-тесняет традиционную аналоговую. Ведущие фирмы, произво-дящие самую разную электронную аппаратуру, все чаще заяв-ляют о полном переходе на цифровую технологию.

Успехи в технологии производства электронных микросхем обеспечили бурное развитие цифровой техники и устройств. Использование цифровых методов обработки и передачи сигналов позволяет существенно повысить качество линий связи. Цифровые методы обработки и коммутации сигналов в телефонии позволяют в несколько раз сократить массогабаритные характеристики устройств коммутации, повысить надежность связи, ввести дополнительные функциональные возможности.

Появление быстродействующих микропроцессоров, микросхем оперативной памяти больших объемов, малогабаритных устройств хранения информации на жестких носителях больших объемов позволило создать достаточно недорогие универсальные персональные электронные вычислительные машины (компьютеры), нашедшие очень широкое применение в быту и производстве.

Цифровая техника незаменима в системах телесигнализации и телеуправления, применяемых в автоматизированных производствах, управлении удаленными объектами, например, космическими кораблями, газоперекачивающими станциями и т. п. Цифровая техника также заняла прочное место в электро-радиоизмерительных системах. Современные устройства регистрации и воспроизведения сигналов также немыслимы без применения цифровых устройств. Цифровые устройства широко используются для управления в бытовых приборах.

Очень вероятно, что в будущем цифровые устройства займут доминирующее положение на рынке электроники.

Для начала дадим несколько базовых определений .

Сигнал — это любая физическая величина (например, тем-пература, давление воздуха, интенсивность света, сила тока и т. д.), изменяющаяся со временем. Именно благодаря этому изменению во времени сигнал может нести в себе какую-то ин-формацию.

Электрический сигнал — это электрическая величина (на-пример, напряжение, ток, мощность), изменяющаяся со време-нем. Вся электроника в основном работает с электрическими сигналами, хотя в последнее время все больше используются световые сигналы, которые представляют собой изменяющуюся во времени интенсивность света.

Аналоговый сигнал — это сигнал, который может прини-мать любые значения в определенных пределах (например, на-пряжение может плавно изменяться в пределах от нуля до деся-ти вольт). Устройства, работающие только с аналоговыми сиг-налами, называются аналоговыми устройствами.


Цифровой сигнал — это сигнал, который может принимать только два значения (иногда — три значения). Причем разреше-ны некоторые отклонения от этих значений (рис. 1.1). Напри-мер, напряжение может принимать два значения: от 0 до 0,5 В (уровень нуля) или от 2,5 до 5 В (уровень единицы). Устройства, работающие исключительно с цифровыми сигналами, называ-ются цифровыми устройствами.

В природе практически все сигналы аналоговые, то есть они изменяются непрерывно в некоторых пределах. Именно поэто-му первые электронные устройства были аналоговыми. Они преобразовывали физические величины в пропорциональные им напряжение или ток, выполняли над ними какие-то операции и затем выполняли обратные преобразования в физические вели-чины. Например, голос человека (колебания воздуха) с помощью микрофона преобразуется в электрические колебания, затем эти электрические сигналы усиливаются электронным усилителем и с помощью акустической системы снова преобразуются в колебания воздуха, в более громкий звук.

Рис. 1.1. Электрические сигналы: аналоговый (слева) и цифровой (справа).

Все операции, производимые электронными устройства-ми над сигналами, можно условно разделить на три большие группы:

Обработка (или преобразование);

Передача;

Хранение.

Во всех этих случаях полезные сигналы искажаются пара-зитными сигналами — шумами, помехами, наводками. Кроме того, при обработке сигналов (например, при усилении, фильт-рации) еще искажается и их форма из-за несовершенст-ва, неидеальности электронных устройств. А при передаче на большие расстояния и при хранении сигналы к тому же ослаб-ляются.

Рис. 1.2. Искажение шумами и наводками аналогового сигнала (слева) и циф-рового сигнала (справа).

В случае аналоговых сигналов все это существенно ухуд-шает полезный сигнал, так как все его значения разрешены (рис. 1.2). Поэтому каждое преобразование, каждое промежу-точное хранение, каждая передача по кабелю или эфиру ухуд-шает аналоговый сигнал, иногда вплоть до его полного унич-тожения. Надо еще учесть, что все шумы, помехи и наводки принципиально не поддаются точному расчету, поэтому точноописать поведение любых аналоговых устройств абсолютно не-возможно. К тому же со временем параметры всех аналоговых устройств изменяются из-за старения элементов, поэтому харак-теристики этих устройств не остаются постоянными.

В отличие от аналоговых, цифровые сигналы, имеющие все-го два разрешенных значения, защищены от действия шумов, наводок и помех гораздо лучше. Небольшие отклонения от разрешенных значений никак не искажают цифровой сигнал, так как всегда существуют зоны допустимых отклонений (рис. 1.2). Именно поэтому цифровые сигналы допускают гораздо более сложную и многоступенчатую обработку, гораздо более дли-тельное хранение без потерь и гораздо более качественную передачу, чем аналоговые. К тому же поведение цифровых устройств всегда можно абсолютно точно рассчитать и пред-сказать. Цифровые устройства гораздо меньше подвержены старению, так как небольшое изменение их параметров никак не отражается на их функционировании. Кроме того, цифро-вые устройства проще проектировать и отлаживать. Понятно, что все эти преимущества обеспечивают бурное развитие циф-ровой электроники.

Однако у цифровых сигналов есть и крупный недостаток. Дело в том, что на каждом из своих разрешенных уровней циф-ровой сигнал должен оставаться хотя бы в течение какого-то минимального временного интервала, иначе его невозможно будет распознать. А аналоговый сигнал может принимать любое свое значение бесконечно малое время. Можно сказать и иначе: аналоговый сигнал определен в непрерывном времени (то есть в любой момент времени), а цифровой — в дискретном времени (то есть только в выделенные моменты времени). Поэтому мак-симально достижимое быстродействие аналоговых устройств всегда принципиально больше, чем цифровых устройств. Ана-логовые устройства могут работать с более быстро меняющи-мися сигналами, чем цифровые. Скорость обработки и передачи информации аналоговым устройством всегда может быть сде-лана выше, чем скорость ее обработки и передачи цифровым устройством.

Кроме того, цифровой сигнал передает информацию только двумя уровнями и изменением одного своего уровня на другой, а аналоговый передает информацию еще и каждым текущим значением своего уровня, то есть он более емкий с точки зрения передачи информации. Поэтому для передачи того объема по-лезной информации, который содержится в одном аналоговом сигнале, чаще всего приходится использовать несколько цифро-вых сигналов (обычно от 4 до 16).

К тому же, как уже отмечалось, в природе все сигналы ана-логовые, то есть для преобразования их в цифровые сигналы и для обратного преобразования требуется применение специальной аппаратуры (аналого-цифровых и цифро-аналоговых преоб-разователей). Так что ничто не дается даром, и плата за пре-имущества цифровых устройств может порой оказаться непри-емлемо большой.