Что такое сетевая модель OSI. Уровни модели OSI

В начале 80-х годов ряд международных организаций разработали модель, которая сыграла значительную роль в развитии сетей. Эта модель называется моделью взаимодействия открытых систем (Open System Interconnection). Полное описание этой модели занимает более 1000 страниц текста.

Согласно модели OSI весь процесс взаимодействия систем в сети можно представить как иерархию 7 уровней:

7. Прикладной уровень (Application).

6. Представительский уровень (Presentation)

5. Сеансовый уровень (Sission).

4. Транспортный уровень (Transport). 3. Сетевой уровень (Network). 2. Канальный уровень (Data Link). 1. Физический уровень (Physical).

Перед подачей в сеть данные разбиваются на пакеты, часто называемые кадрами. Пакет (кадр) - это элементарная порция информации, передаваемая между узлами сети как единое целое. Пакет проходит через все уровни, и каждый уровень добавляет к пакету заголовки - некоторую служебную информацию. Когда пакет доходит до физического уровня, он обрастает заголовками всех уровней. Физический уровень передает пакет, вместе с заголовками, по линиям связи машине-адресату.

Когда сообщение по сети поступает на машину-адресат, оно принимается ее физическим уровнем и последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует и обрабатывает заголовок своего уровня, выполняя соответствующие данному уровню функции, а затем удаляет этот заголовок и передает сообщение вышележащему уровню.

Правила взаимодействия в пределах одного уровня называют протоколом взаимодействия. Правила взаимодействия сетевых уровней называют межуровневым интерфейсом. Таким образом, взаимодействие в сети на одном уровне определяется протоколом, а соседние по вертикали уровни взаимодействуют друг с другом через межуровневый интерфейс.

Задача каждого низшего уровня, например N-1, состоит в обеспечении функционирования более высокого уровня N-2.

В модели OSI различают два вида диалога между узлами для передачи информации.

1. Диалог с установлением соединения. При его использовании перед обменом данными отправитель и получатель должны сначала установить соединение. После завершения диалога они должны разорвать это соединение. Телефон - это пример взаимодействия, основанного на установлении соединения.

2. Диалог без предварительного установления соединения (дейтаграммный диалог). В этом случае отправитель передает сообщение, когда оно готово. Опускание письма в почтовый ящик - пример.

1. Физический уровень - имеет дело с передачей битов по физическим каналам связи, такими например, как коаксиальный кабель, витая пара, оптоволоконный кабель и другие. К этому уровню имеют отношение характеристике и физических сред передачи данных, такие как помехозащищенность, волновое сопротивление и др. На этом же уровне определяются характеристики электрических сигналов, передающих информацию: уровни напряжения или тока передаваемого сигнала, тип кодирования скорость передачи сигнала.Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером.

2. Канальный уровень. На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются попеременно несколькими парами, взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами. Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит в начало и конец каждого кадра, для его выделения, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом, и добавляя контрольную сумму. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, то кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки но и исправлять их за счет повторной передачи поврежденных кадров.

3. Сетевой уровень. Сетевой уровень служит для образования единой транспортной системы, объединяющей несколько сетей.

Протоколы канального уровня обеспечивают доставку данных между любыми двумя узлами в сетях с определенной топологией: общая шина, звезда, кольцо. Для доставки сообщений из сети с одной топологией в сеть с другой топологией (из одной локальной сети в другую) используются протоколы сетевого уровня. Сети соединяются между собой специальными устройствами - маршрутизаторами. Чтобы передать сообщение от отправителя, находящегося в одной сети, получателю находящемуся в другой сети, нужно совершить некоторое количество транзитных передач между сетями (хотов), каждый раз, выбирая подходящий маршрут. Таким образом, маршрут - последовательность маршрутизаторов, через которые проходит пакет.

Проблема выбора наилучшего пути называется маршрутизацией - одна из главных задач сетевого уровня. Это проблема усложняется тем, что самый короткий путь не всегда лучший. Критериями при выборе маршрута являются: время, скорость передачи данных, надежность передачи.

Сетевой уровень решает также задачи упрощения адресации в крупных сетях, создание надежных и гибких барьеров на пути нежелательного трафика между сетями.

Трафик - это объем информации, передаваемый по сети.

Адрес получателя на сетевом уровне состоит из старшей части - номера сети и младшей - номера узла в этой сети. Все узлы в одной сети должны иметь одну и туже старшую часть адреса. Поэтому сеть на сетевом уровне - это совокупность узлов, сетевой адрес которых содержит один и тот же номер сети.

4. Транспортный уровень. На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Транспортный уровень обеспечивает верхним уровням - прикладному и сеансовому - передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет 5 классов сервиса, отличающихся качеством предоставляемых услуг.

Выбор класса сервиса зависит от того, насколько надежной является система транспортировки данных в сети, обеспечиваемая уровнями, расположенными ниже транспортного. Например, если качество каналов передачи данных очень высокое и вероятность возникновения ошибок невелика, то разумно воспользоваться одним из облегченных сервисов. Если же транспортные средства нихних уровней изначально очень ненадежны, то целесообразно обратиться к наиболее развитому сервису транспортного сервиса.

5. Сеансовый уровень - обеспечивает управление диалогом: фиксирует какая из сторон является активной в настоящий момент, предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, а не начинать все сначала.

6. Представительный уровень имеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержание. За счет этого уровня информация, передаваемая прикладным уровнем одной системы, всегда понятна прикладному уровню другой системы. На этом уровне преодалеваются различия в представлении данных, кодах символов (например, ASCII и EBCDIC). На этомуровне также может выполняться шифрование и дешифрование данных, для обеспечения секретности передаваемой информации.

7. Прикладной уровень - это просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры и др., а также организуют свою совместную работу.

Модель взаимодействия открытых систем (Open System Interconnection, OSI) или моделью ISO/OSI четко определяет различные уровни взаимодействия систем, дает им стандартные имена и указывает, какую работу должен делать каждый уровень.

В модели OSI взаимодействие делится на семь уровней или слоев. Каждый уровень имеет дело с одним определенным аспектом взаимодействия. Таким образом, проблема взаимодействия разделена на 7 частных проблем , каждая из которых может быть решена независимо от других. Каждый уровень поддерживает интерфейсы с выше- и нижележащими уровнями.

Итак, пусть приложение обращается с запросом к прикладному уровню, например к файловому сервису. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата, в которое помещает служебную информацию (заголовок) и, возможно, передаваемые данные. Затем это сообщение направляется представительному уровню. Представительный уровень добавляет к сообщению свой заголовок и передает результат вниз сеансовому уровню, который в свою очередь добавляет свой заголовок и т.д. Некоторые реализации протоколов предусматривают наличие в сообщении не только заголовка, но и концевика. Наконец, сообщение достигает самого низкого, физического уровня, который действительно передает его по линиям связи.

Когда сообщение по сети поступает на другую машину, оно последовательно перемещается снизу вверх с уровня на уровень. Каждый уровень анализирует, обрабатывает и удаляет заголовок своего уровня , выполняет соответствующие данному уровню функции и передает сообщение вышележащему уровню.

Функции уровней модели ISO/OSI

ФИЗИЧЕСКИЙ УРОВЕНЬ. Этот уровень имеет дело с передачей битов по коаксиальному кабелю, витой паре или оптике.

Характеристики физических сред передачи данных: полоса пропускания, помехозащищенность, волновое сопротивление и другие.

На этом же уровне определяются характеристики электрических сигналов , такие как требования к уровням напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме этого, здесь стандартизуются типы разъемов и назначение каждого контакта . Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

КАНАЛЬНЫЙ УРОВЕНЬ. На физическом уровне просто пересылаются биты. При этом не учитывается, что физическая среда передачи может быть занята. Поэтому одной из задач канального уровня является проверка доступности среды передачи . Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок . Для этого на канальном уровне биты группируются в наборы , называемые кадрами.



Канальный уровень обеспечивает корректность передачи каждого кадра , помещая специальную последовательность бит в начало и конец каждого кадра, чтобы отметить его, а также вычисляет контрольную сумму и добавляет контрольную сумму к кадру. Когда кадр приходит, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка.

Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с совершенно определенной топологией связей - кольцо, звезда или шина.

В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов .

СЕТЕВОЙ УРОВЕНЬ. Этот уровень служит для образования единой транспортной системы , объединяющей несколько сетей с различными принципами передачи информации между конечными узлами.

"Сеть" -совокупность компьютеров, соединенных между собой в соответствии с одной из стандартных типовых топологий и использующих для передачи данных один из протоколов канального уровня, определенный для этой топологии .

Главная задача сетевого уровня – выбор наилучшего маршрута . Зависит от: времени передачи данных по этому маршруту, пропускной способности каналов связи, интенсивности трафика, надежности передачи.

На сетевом уровне определяется два вида протоколов. Первый вид относится к определению правил передачи пакетов с данными конечных узлов от узла к маршрутизатору и между маршрутизаторами. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. К сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией . С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений.

Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.

ТРАНСПОРТНЫЙ УРОВЕНЬ. Работа транспортного уровня заключается в том, чтобы обеспечить приложениям или верхним уровням стека - прикладному и сеансовому - передачу данных с той степенью надежности , которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное - способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

СЕАНСОВЫЙ УРОВЕНЬ. Сеансовый уровень обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, вместо того, чтобы начинать все с начала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется.

УРОВЕНЬ ПРЕДСТАВЛЕНИЯ. Этот уровень обеспечивает гарантию того, что информация, передаваемая прикладным уровнем, будет понятна прикладному уровню в другой системе. При необходимости уровень представления выполняет преобразование форматов данных в некоторый общий формат представления, а на приеме, соответственно, выполняет обратное преобразование. Таким образом, прикладные уровни могут преодолеть, например, синтаксические различия в представлении данных. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных сервисов.

ПРИКЛАДНОЙ УРОВЕНЬ. Прикладной уровень - это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например, с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message) .

Разные уровни протоколов сервера и клиента не взаимодействуют друг с другом напрямую, но они взаимодействуют через физический уровень. Постепенно переходя с верхнего уровня на нижний, данные непрерывно преобразуются, дополняются данными, которые анализируются протоколами соответствующих уровней на сопредельной стороне. Это создает эффект виртуального взаимодействия уровней между собой. Одновременно с данными, которые клиент направляет серверу, передается масса служебной информации (текущий адрес клиента, дата и время запроса, версия операционной системы, права доступа к запрашиваемым данным и т.д.).

На виртуальных соединениях основаны все службы современного Интернета. Пересылка сообщения от сервера к клиенту может проходить через десятки различных компьютеров. Это совсем не означает, что на каждом компьютере сообщение должно пройти через все уровни - ему достаточно «подняться» до сетевого уровня, (определяющего адресацию) при приеме и вновь «опуститься» до физического уровня при передаче. В данном случае служба передачи сообщений основывается на виртуальном соединении сетевого уровня и соответствующих ему протоколах. Интернет - это объединение сетей (Всемирная компьютерная сеть). Интернет можно рассматривать в физическом смысле как миллионы компьютеров, связанных друг с другом всевозможными линиями связи, образуя информационное «пространство», внутри которого осуществляется непрерывное движение потоков информации, которая перемешается между компьютерами, составляющими узлы сети, и какое-то время хранится на их жестких дисках.

Современный Интернет основан на использовании протоколов TCP/IP. TCP/IP - это не один сетевой протокол, а два протокола, лежащих на разных уровнях. Протокол TCP- протокол транспортного уровня. Он управляет тем. как происходит передача информации. Протокол IP - адресный. Он принадлежит сетевому уровню и определяет, куда происходит передача.

Согласно протоколу TCP, отправляемые данные «нарезаются» на небольшие пакеты, после чего каждый пакет маркируется таким образом, чтобы в нем были данные, необходимые для правильной сборки документа на компьютере получателя. Два компьютера, связанные между собой одним физическим соединением, могут поддерживать одновременно несколько ТСР-соединений точно также как два сервера могут одновременно по одной линии связи передавать друг другу в обе стороны множество TCP-пакетов от многочисленных клиентов.

Суть протокола - IP (Internet Protocol) состоит в том, что у каждого участника Всемирной сети должен быть свой уникальный адрес (IP-адрес). Без этого нельзя говорить о точной доставке TCP-пакетов на нужное рабочее место. Этот адрес выражается очень просто - четырьмя байтами, например: 195.38.46.11. Структура IP-адреса организована так, что каждый компьютер, через который проходит какой-либо TCP-пакет, может по этим четырем числам определить, кому из ближайших «соседей» надо переслать пакет, чтобы он оказался «ближе» к получателю. В результате конечного числа перебросок ТСР-пакет достигает адресата. В расчет принимаются условия связи и пропускная способность линии. Решением вопросов, что считать «ближе», а что «дальше», занимаются специальные средства - маршрутизаторы Роль маршрутизатора в сети может выполнять как специализированный компьютер, так и специальная программа, работающая на узловом сервере сети.

Поскольку один байт содержит до 256 различных значений, то теоретически с помощью четырех байтов можно выразить более четырех миллиардов уникальных IP -адресов (256 за вычетом некоторого количества адресов, используемых в качестве служебных). На практике же из-за особенностей адресации к некоторым типам локальных сетей количество возможных адресов составляет порядка двух миллиардов, но и это по современным меркам достаточно большая величина.

В зависимости от конкретных целей и задач клиенты Сети используют те службы, которые им необходимы. Разные службы имеют разные протоколы. Они называются прикладными протоколами. Их соблюдение обеспечивается и поддерживается работой специальных программ. Таким образом, чтобы воспользоваться какой-то из служб Интернета, необходимо установить на компьютере программу, способную работать по протоколу данной службы. Такие программы называют клиентскими или просто клиентами.

Для передачи файлов в Интернете используется специальный прикладной протокол FTP (File Transfer Protocol). Соответственно, чтобы получить из Интернета файл, необходимо:

Иметь на компьютере программу, являющуюся клиентом FTP (FTP-клиент);

Установить связь с сервером, предоставляющим услуги FTP (FTP-сервером).

Другой пример: чтобы воспользоваться электронной почтой, необходимо соблюсти протоколы отправки и получения сообщений. Для этого надо иметь программу (почтовый клиент) и установить связь с почтовым сервером. Так же обстоит дело и с другими службами.

Для единого представления данных в сетях с неоднородными устройствами и программным обеспечением международная организация по стандартам ISO (International Standardization Organization) разработала базовую модель связи открытых систем OSI (Open System Interconnection) . Эта модель описывает правила и процедуры передачи данных в различных сетевых средах при организации сеанса связи. Основными элементами модели являются уровни, прикладные процессы и физические средства соединения. На рис. 1.10 представлена структура базовой модели.

Каждый уровень модели OSI выполняет определенную задачу в процессе передачи данных по сети. Базовая модель является основой для разработки сетевых протоколов. OSI разделяет коммуникационные функции в сети на семь уровней, каждый из которых обслуживает различные части процесса области взаимодействия открытых систем.

Модель OSI описывает только системные средства взаимодействия, не касаясь приложений конечных пользователей. Приложения реализуют свои собственные протоколы взаимодействия, обращаясь к системным средствам.

Рис. 1.10. Модель OSI

Если приложение может взять на себя функции некоторых верхних уровней модели OSI, то для обмена данными оно обращается напрямую к системным средствам, выполняющим функции оставшихся нижних уровней модели OSI.

Взаимодействие уровней модели OSI

Модель OSI можно разделить на две различных модели, как показано на рис. 1.11:

Горизонтальную модель на базе протоколов, обеспечивающую механизм взаимодействия программ и процессов на различных машинах;

Вертикальную модель на основе услуг, обеспечиваемых соседними уровнями друг другу на одной машине.

Каждый уровень компьютера-отправителя взаимодействует с таким же уровнем компьютера-получателя, как будто он связан напрямую. Такая связь называется логической или виртуальной связью. В действительности взаимодействие осуществляется между смежными уровнями одного компьютера.

Итак, информация на компьютере-отправителе должна пройти через все уровни. Затем она передается по физической среде до компьютера-получателя и опять проходит сквозь все слои, пока не доходит до того же уровня, с которого она была послана на компьютере-отправителе.

В горизонтальной модели двум программам требуется общий протокол для обмена данными. В вертикальной модели соседние уровни обмениваются данными с использованием интерфейсов прикладных программ API (Application Programming Interface).

Рис. 1.11. Схема взаимодействия компьютеров в базовой эталонной модели OSI

Перед подачей в сеть данные разбиваются на пакеты. Пакет (packet) – это единица информации, передаваемая между станциями сети.

При отправке данных пакет проходит последовательно через все уровни программного обеспечения. На каждом уровне к пакету добавляется управляющая информация данного уровня (заголовок), которая необходима для успешной передачи данных по сети, как это показано на рис. 1.12, где Заг – заголовок пакета, Кон – конец пакета.

На принимающей стороне пакет проходит через все уровни в обратном порядке. На каждом уровне протокол этого уровня читает информацию пакета, затем удаляет информацию, добавленную к пакету на этом же уровне отправляющей стороной, и передает пакет следующему уровню. Когда пакет дойдет до Прикладного уровня, вся управляющая информация будет удалена из пакета, и данные примут свой первоначальный вид.

Рис. 1.12. Формирование пакета каждого уровня семиуровневой модели

Каждый уровень модели выполняет свою функцию. Чем выше уровень, тем более сложную задачу он решает.

Отдельные уровни модели OSI удобно рассматривать как группы программ, предназначенных для выполнения конкретных функций. Один уровень, к примеру, отвечает за обеспечение преобразования данных из ASCII в EBCDIC и содержит программы, необходимые для выполнения этой задачи.

Каждый уровень обеспечивает сервис для вышестоящего уровня, запрашивая в свою очередь сервис у нижестоящего уровня. Верхние уровни запрашивают сервис почти одинаково: как правило, это требование маршрутизации каких-то данных из одной сети в другую. Практическая реализация принципов адресации данных возложена на нижние уровни. На рис. 1.13 приведено краткое описание функций всех уровней.

Рис. 1.13. Функции уровней модели OSI

Рассматриваемая модель определяет взаимодействие открытых систем разных производителей в одной сети. Поэтому она выполняет для них координирующие действия по:

Взаимодействию прикладных процессов;

Формам представления данных;

Единообразному хранению данных;

Управлению сетевыми ресурсами;

Безопасности данных и защите информации;

Диагностике программ и технических средств.

Прикладной уровень (Application layer)

Прикладной уровень обеспечивает прикладным процессам средства доступа к области взаимодействия, является верхним (седьмым) уровнем и непосредственно примыкает к прикладным процессам.

В действительности прикладной уровень – это набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют свою совместную работу, например с помощью протокола электронной почты. Специальные элементы прикладного сервиса обеспечивают сервис для конкретных прикладных программ, таких как программы пересылки файлов и эмуляции терминалов. Если, например программе необходимо переслать файлы, то обязательно будет использован протокол передачи, доступа и управления файлами FTAM (File Transfer, Access, and Management). В модели OSI прикладная программа, которой нужно выполнить конкретную задачу (например, обновить базу данных на компьютере), посылает конкретные данные в виде Дейтаграммы на прикладной уровень. Одна из основных задач этого уровня – определить, как следует обрабатывать запрос прикладной программы, другими словами, какой вид должен принять данный запрос.

Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message).

Прикладной уровень выполняет следующие функции:

1. Выполнение различных видов работ.

Передача файлов;

Управление заданиями;

Управление системой и т. д;

2. Идентификация пользователей по их паролям, адресам, электронным подписям;

3. Определение функционирующих абонентов и возможности доступа к новым прикладным процессам;

4. Определение достаточности имеющихся ресурсов;

5. Организация запросов на соединение с другими прикладными процессами;

6. Передача заявок представительскому уровню на необходимые методы описания информации;

7. Выбор процедур планируемого диалога процессов;

8. Управление данными, которыми обмениваются прикладные процессы и синхронизация взаимодействия прикладных процессов;

9. Определение качества обслуживания (время доставки блоков данных, допустимой частоты ошибок);

10. Соглашение об исправлении ошибок и определении достоверности данных;

11. Согласование ограничений, накладываемых на синтаксис (наборы символов, структура данных).

Указанные функции определяют виды сервиса, которые прикладной уровень предоставляет прикладным процессам. Кроме этого, прикладной уровень передает прикладным процессам сервис, предоставляемый физическим, канальным, сетевым, транспортным, сеансовым и представительским уровнями.

На прикладном уровне необходимо предоставить в распоряжение пользователей уже переработанную информацию. С этим может справиться системное и пользовательское программное обеспечение.

Прикладной уровень отвечает за доступ приложений в сеть. Задачами этого уровня является перенос файлов, обмен почтовыми сообщениями и управление сетью.

К числу наиболее распространенных протоколов верхних трех уровней относятся:

FTP (File Transfer Protocol) протокол передачи файлов;

TFTP (Trivial File Transfer Protocol) простейший протокол пересылки файлов;

X.400 электронная почта;

Telnet работа с удаленным терминалом;

SMTP (Simple Mail Transfer Protocol) простой протокол почтового обмена;

CMIP (Common Management Information Protocol) общий протокол управления информацией;

SLIP (Serial Line IP) IP для последовательных линий. Протокол последовательной посимвольной передачи данных;

SNMP (Simple Network Management Protocol) простой протокол сетевого управления;

FTAM (File Transfer, Access, and Management) протокол передачи, доступа и управления файлами.

Уровень представления данных (Presentation layer)

Функции данного уровня – представление данных, передаваемых между прикладными процессами, в нужной форме.

Этот уровень обеспечивает то, что информация, передаваемая прикладным уровнем, будет понятна прикладному уровню в другой системе. В случаях необходимости уровень представления в момент передачи информации выполняет преобразование форматов данных в некоторый общий формат представления, а в момент приема, соответственно, выполняет обратное преобразование. Таким образом, прикладные уровни могут преодолеть, например, синтаксические различия в представлении данных. Такая ситуация может возникнуть в ЛВС с неоднотипными компьютерами (IBM PC и Macintosh), которым необходимо обмениваться данными. Так, в полях баз данных информация должна быть представлена в виде букв и цифр, а зачастую и в виде графического изображения. Обрабатывать же эти данные нужно, например, как числа с плавающей запятой.

В основу общего представления данных положена единая для всех уровней модели система ASN.1. Эта система служит для описания структуры файлов, а также позволяет решить проблему шифрования данных. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которым секретность обмена данными обеспечивается сразу для всех прикладных сервисов. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP. Этот уровень обеспечивает преобразование данных (кодирование, компрессия и т.п.) прикладного уровня в поток информации для транспортного уровня.

Представительный уровень выполняет следующие основные функции:

1. Генерация запросов на установление сеансов взаимодействия прикладных процессов.

2. Согласование представления данных между прикладными процессами.

3. Реализация форм представления данных.

4. Представление графического материала (чертежей, рисунков, схем).

5. Засекречивание данных.

6. Передача запросов на прекращение сеансов.

Протоколы уровня представления данных обычно являются составной частью протоколов трех верхних уровней модели.

Сеансовый уровень (Session layer)

Сеансовый уровень – это уровень, определяющий процедуру проведения сеансов между пользователями или прикладными процессами.

Сеансовый уровень обеспечивает управление диалогом для того, чтобы фиксировать, какая из сторон является активной в настоящий момент, а также предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, вместо того чтобы начинать все сначала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется.

Сеансовый уровень управляет передачей информации между прикладными процессами, координирует прием, передачу и выдачу одного сеанса связи. Кроме того, сеансовый уровень содержит дополнительно функции управления паролями, управления диалогом, синхронизации и отмены связи в сеансе передачи после сбоя вследствие ошибок в нижерасположенных уровнях. Функции этого уровня состоят в координации связи между двумя прикладными программами, работающими на разных рабочих станциях. Это происходит в виде хорошо структурированного диалога. В число этих функций входит создание сеанса, управление передачей и приемом пакетов сообщений во время сеанса и завершение сеанса.

На сеансовом уровне определяется, какой будет передача между двумя прикладными процессами:

Полудуплексной (процессы будут передавать и принимать данные по очереди);

Дуплексной (процессы будут передавать данные, и принимать их одновременно).

В полудуплексном режиме сеансовый уровень выдает тому процессу, который начинает передачу, маркер данных. Когда второму процессу приходит время отвечать, маркер данных передается ему. Сеансовый уровень разрешает передачу только той стороне, которая обладает маркером данных.

Сеансовый уровень обеспечивает выполнение следующих функций:

1. Установление и завершение на сеансовом уровне соединения между взаимодействующими системами.

2. Выполнение нормального и срочного обмена данными между прикладными процессами.

3. Управление взаимодействием прикладных процессов.

4. Синхронизация сеансовых соединений.

5. Извещение прикладных процессов об исключительных ситуациях.

6. Установление в прикладном процессе меток, позволяющих после отказа либо ошибки восстановить его выполнение от ближайшей метки.

7. Прерывание в нужных случаях прикладного процесса и его корректное возобновление.

8. Прекращение сеанса без потери данных.

9. Передача особых сообщений о ходе проведения сеанса.

Сеансовый уровень отвечает за организацию сеансов обмена данными между оконечными машинами. Протоколы сеансового уровня обычно являются составной частью протоколов трех верхних уровней модели.

Транспортный уровень (Transport Layer)

Транспортный уровень предназначен для передачи пакетов через коммуникационную сеть. На транспортном уровне пакеты разбиваются на блоки.

На пути от отправителя к получателю пакеты могут быть искажены или утеряны. Хотя некоторые приложения имеют собственные средства обработки ошибок, существуют и такие, которые предпочитают сразу иметь дело с надежным соединением. Работа транспортного уровня заключается в том, чтобы обеспечить приложениям или верхним уровням модели (прикладному и сеансовому) передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.

Транспортный уровень определяет адресацию физических устройств (систем, их частей) в сети. Этот уровень гарантирует доставку блоков информации адресатам и управляет этой доставкой. Его главной задачей является обеспечение эффективных, удобных и надежных форм передачи информации между системами. Когда в процессе обработки находится более одного пакета, транспортный уровень контролирует очередность прохождения пакетов. Если проходит дубликат принятого ранее сообщения, то данный уровень опознает это и игнорирует сообщение.

В функции транспортного уровня входят:

1. Управление передачей по сети и обеспечение целостности блоков данных.

2. Обнаружение ошибок, частичная их ликвидация и сообщение о неисправленных ошибках.

3. Восстановление передачи после отказов и неисправностей.

4. Укрупнение или разделение блоков данных.

5. Предоставление приоритетов при передаче блоков (нормальная или срочная).

6. Подтверждение передачи.

7. Ликвидация блоков при тупиковых ситуациях в сети.

Начиная с транспортного уровня, все вышележащие протоколы реализуются программными средствами, обычно включаемыми в состав сетевой операционной системы.

Наиболее распространенные протоколы транспортного уровня включают в себя:

TCP (Transmission Control Protocol) протокол управления передачей стека TCP/IP;

UDP (User Datagram Protocol) пользовательский протокол дейтаграмм стека TCP/IP;

NCP (NetWare Core Protocol) базовый протокол сетей NetWare;

SPX (Sequenced Packet eXchange) упорядоченный обмен пакетами стека Novell;

TP4 (Transmission Protocol) – протокол передачи класса 4.

Сетевой уровень (Network Layer)

Сетевой уровень обеспечивает прокладку каналов, соединяющих абонентские и административные системы через коммуникационную сеть, выбор маршрута наиболее быстрого и надежного пути.

Сетевой уровень устанавливает связь в вычислительной сети между двумя системами и обеспечивает прокладку виртуальных каналов между ними. Виртуальный или логический канал – это такое функционирование компонентов сети, которое создает взаимодействующим компонентам иллюзию прокладки между ними нужного тракта. Кроме этого, сетевой уровень сообщает транспортному уровню о появляющихся ошибках. Сообщения сетевого уровня принято называть пакетами (packet). В них помещаются фрагменты данных. Сетевой уровень отвечает за их адресацию и доставку.

Прокладка наилучшего пути для передачи данных называется маршрутизацией, и ее решение является главной задачей сетевого уровня. Эта проблема осложняется тем, что самый короткий путь не всегда самый лучший. Часто критерием при выборе маршрута является время передачи данных по этому маршруту; оно зависит от пропускной способности каналов связи и интенсивности трафика, которая может изменяться с течением времени. Некоторые алгоритмы маршрутизации пытаются приспособиться к изменению нагрузки, в то время как другие принимают решения на основе средних показателей за длительное время. Выбор маршрута может осуществляться и по другим критериям, например, надежности передачи.

Протокол канального уровня обеспечивает доставку данных между любыми узлами только в сети с соответствующей типовой топологией. Это очень жесткое ограничение, которое не позволяет строить сети с развитой структурой, например, сети, объединяющие несколько сетей предприятия в единую сеть, или высоконадежные сети, в которых существуют избыточные связи между узлами.

Таким образом, внутри сети доставка данных регулируется канальным уровнем, а вот доставкой данных между сетями занимается сетевой уровень. При организации доставки пакетов на сетевом уровне используется понятие номер сети. В этом случае адрес получателя состоит из номера сети и номера компьютера в этой сети.

Сети соединяются между собой специальными устройствами, называемыми маршрутизаторами. Маршрутизатор – это устройство, которое собирает информацию о топологии межсетевых соединений и на ее основании пересылает пакеты сетевого уровня в сеть назначения. Для того чтобы передать сообщение от отправителя, находящегося в одной сети, получателю, находящемуся в другой сети, нужно совершить некоторое количество транзитных передач (hops) между сетями, каждый раз, выбирая подходящий маршрут. Таким образом, маршрут представляет собой последовательность маршрутизаторов, по которым проходит пакет.

Сетевой уровень отвечает за деление пользователей на группы и маршрутизацию пакетов на основе преобразования MAC-адресов в сетевые адреса. Сетевой уровень обеспечивает также прозрачную передачу пакетов на транспортный уровень.

Сетевой уровень выполняет функции:

1. Создание сетевых соединений и идентификация их портов.

2. Обнаружение и исправление ошибок, возникающих при передаче через коммуникационную сеть.

3. Управление потоками пакетов.

4. Организация (упорядочение) последовательностей пакетов.

5. Маршрутизация и коммутация.

6. Сегментирование и объединение пакетов.

На сетевом уровне определяется два вида протоколов. Первый вид относится к определению правил передачи пакетов с данными конечных узлов от узла к маршрутизатору и между маршрутизаторами. Именно эти протоколы обычно имеют в виду, когда говорят о протоколах сетевого уровня. Однако часто к сетевому уровню относят и другой вид протоколов, называемых протоколами обмена маршрутной информацией. С помощью этих протоколов маршрутизаторы собирают информацию о топологии межсетевых соединений.

Протоколы сетевого уровня реализуются программными модулями операционной системы, а также программными и аппаратными средствами маршрутизаторов.

Наиболее часто на сетевом уровне используются протоколы:

IP (Internet Protocol) протокол Internet, сетевой протокол стека TCP/IP, который предоставляет адресную и маршрутную информацию;

IPX (Internetwork Packet Exchange) протокол межсетевого обмена пакетами, предназначенный для адресации и маршрутизации пакетов в сетях Novell;

X.25 международный стандарт для глобальных коммуникаций с коммутацией пакетов (частично этот протокол реализован на уровне 2);

CLNP (Connection Less Network Protocol) сетевой протокол без организации соединений.

Канальный уровень (Data Link)

Единицей информации канального уровня являются кадры (frame). Кадры – это логически организованная структура, в которую можно помещать данные. Задача канального уровня – передавать кадры от сетевого уровня к физическому уровню.

На физическом уровне просто пересылаются биты. При этом не учитывается, что в некоторых сетях, в которых линии связи используются попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня является проверка доступности среды передачи. Другой задачей канального уровня является реализация механизмов обнаружения и коррекции ошибок.

Канальный уровень обеспечивает корректность передачи каждого кадра, помещая специальную последовательность бит, в начало и конец каждого кадра, чтобы отметить его, а также вычисляет контрольную сумму, суммируя все байты кадра определенным способом и добавляя контрольную сумму к кадру. Когда кадр приходит, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка.

Задача канального уровня – брать пакеты, поступающие с сетевого уровня и готовить их к передаче, укладывая в кадр соответствующего размера. Этот уровень обязан определить, где начинается и где заканчивается блок, а также обнаруживать ошибки передачи.

На этом же уровне определяются правила использования физического уровня узлами сети. Электрическое представление данных в ЛВС (биты данных, методы кодирования данных и маркеры) распознаются на этом и только на этом уровне. Здесь обнаруживаются и исправляются (путем требований повторной передачи данных) ошибки.

Канальный уровень обеспечивает создание, передачу и прием кадров данных. Этот уровень обслуживает запросы сетевого уровня и использует сервис физического уровня для приема и передачи пакетов. Спецификации IEEE 802.Х делят канальный уровень на два подуровня:

LLC (Logical Link Control) управление логическим каналом осуществляет логический контроль связи. Подуровень LLC обеспечивает обслуживание сетевого уровня и связан с передачей и приемом пользовательских сообщений.

MAC (Media Assess Control) контроль доступа к среде. Подуровень MAC регулирует доступ к разделяемой физической среде (передача маркера или обнаружение коллизий или столкновений) и управляет доступом к каналу связи. Подуровень LLC находится выше подуровня МАC.

Канальный уровень определяет доступ к среде и управление передачей посредством процедуры передачи данных по каналу.

При больших размерах передаваемых блоков данных канальный уровень делит их на кадры и передает кадры в виде последовательностей.

При получении кадров уровень формирует из них переданные блоки данных. Размер блока данных зависит от способа передачи, качества канала, по которому он передается.

В локальных сетях протоколы канального уровня используются компьютерами, мостами, коммутаторами и маршрутизаторами. В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов.

Канальный уровень может выполнять следующие виды функций:

1. Организация (установление, управление, расторжение) канальных соединений и идентификация их портов.

2. Организация и передача кадров.

3. Обнаружение и исправление ошибок.

4. Управление потоками данных.

5. Обеспечение прозрачности логических каналов (передачи по ним данных, закодированных любым способом).

Наиболее часто используемые протоколы на канальном уровне включают:

HDLC (High Level Data Link Control) протокол управления каналом передачи данных высокого уровня, для последовательных соединений;

IEEE 802.2 LLC (тип I и тип II) обеспечивают MAC для сред 802.x;

Ethernet сетевая технология по стандарту IEEE 802.3 для сетей, использующая шинную топологию и коллективный доступ с прослушиванием несущей частоты и обнаружением конфликтов;

Token ring сетевая технология по стандарту IEEE 802.5, использующая кольцевую топологию и метод доступа к кольцу с передачей маркера;

FDDI (Fiber Distributed Date Interface Station) сетевая технология по стандарту IEEE 802.6, использующая оптоволоконный носитель;

X.25 международный стандарт для глобальных коммуникаций с коммутацией пакетов;

Frame relay сеть, организованная из технологий Х25 и ISDN.

Физический уровень (Physical Layer)

Физический уровень предназначен для сопряжения с физическими средствами соединения. Физические средства соединения – это совокупность физической среды, аппаратных и программных средств, обеспечивающая передачу сигналов между системами.

Физическая среда – это материальная субстанция, через которую осуществляется передача сигналов. Физическая среда является основой, на которой строятся физические средства соединения. В качестве физической среды широко используются эфир, металлы, оптическое стекло и кварц.

Физический уровень состоит из Подуровня стыковки со средой и Подуровня преобразования передачи.

Первый из них обеспечивает сопряжение потока данных с используемым физическим каналом связи. Второй осуществляет преобразования, связанные с применяемыми протоколами. Физический уровень обеспечивает физический интерфейс с каналом передачи данных, а также описывает процедуры передачи сигналов в канал и получения их из канала. На этом уровне определяются электрические, механические, функциональные и процедурные параметры для физической связи в системах. Физический уровень получает пакеты данных от вышележащего канального уровня и преобразует их в оптические или электрические сигналы, соответствующие 0 и 1 бинарного потока. Эти сигналы посылаются через среду передачи на приемный узел. Механические и электрические/оптические свойства среды передачи определяются на физическом уровне и включают:

Тип кабелей и разъемов;

Разводку контактов в разъемах;

Схему кодирования сигналов для значений 0 и 1.

Физический уровень выполняет следующие функции:

1. Установление и разъединение физических соединений.

2. Передача сигналов в последовательном коде и прием.

3. Прослушивание, в нужных случаях, каналов.

4. Идентификация каналов.

5. Оповещение о появлении неисправностей и отказов.

Оповещение о появлении неисправностей и отказов связано с тем, что на физическом уровне происходит обнаружение определенного класса событий, мешающих нормальной работе сети (столкновение кадров, посланных сразу несколькими системами, обрыв канала, отключение питания, потеря механического контакта и т.д.). Виды сервиса, предоставляемого канальному уровню, определяются протоколами физического уровня. Прослушивание канала необходимо в тех случаях, когда к одному каналу подключается группа систем, но одновременно передавать сигналы разрешается только одной из них. Поэтому прослушивание канала позволяет определить, свободен ли он для передачи. В ряде случаев для более четкого определения структуры физический уровень разбивается на несколько подуровней. Например, физический уровень беспроводной сети делится на три подуровня (рис. 1.14).

Рис. 1.14. Физический уровень беспроводной локальной сети

Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером. Повторители являются единственным типом оборудования, которое работает только на физическом уровне.

Физический уровень может обеспечивать как асинхронную (последовательную) так и синхронную (параллельную) передачу, которая применяется для некоторых мэйнфреймов и мини-компьютеров. На Физическом уровне должна быть определена схема кодирования для представления двоичных значений с целью их передачи по каналу связи. Во многих локальных сетях используется манчестерское кодирование.

Примером протокола физического уровня может служить спецификация 10Base-T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45, максимальную длину физического сегмента 100 метров, манчестерский код для представления данных и другие характеристики среды и электрических сигналов.

К числу наиболее распространенных спецификаций физического уровня относятся:

EIA-RS-232-C, CCITT V.24/V.28 – механические/электрические характеристики несбалансированного последовательного интерфейса;

EIA-RS-422/449, CCITT V.10 – механические, электрические и оптические характеристики сбалансированного последовательного интерфейса;

Ethernet – сетевая технология по стандарту IEEE 802.3 для сетей, использующая шинную топологию и коллективный доступ с прослушиванием несущей и обнаружением конфликтов;

Token ring – сетевая технология по стандарту IEEE 802.5, использующая кольцевую топологию и метод доступа к кольцу с передачей маркера.

Основной задачей, решаемой при создании компьютерных сетей, является обеспечение совместимости оборудования по электрическим и механическим характеристикам и обеспечение совместимости информационного обеспечения (программ и данных) по системе кодирования и формату данных. Решение этой задачи относится к области стандартизации. Одним из примеров решения данной задачи является так называемая модель взаимосвязи открытых систем OSI (Model of Open System Interconnections).

Согласно модели OSI архитектуру компьютерных сетей следует рассматривать на разных уровнях (общее число уровней - до семи). Самый верхний уровень - прикладной. На этом уровне пользователь взаимодействует с вычислительной системой. Caмый нижний уровень - физический. Он обеспечивает обмен сигналами между устройствами. Обмен данными в системах связи происходит путем их перемещения с верхнего уровня на нижний, затем транспортировки и, наконец, обратным воспроизведением на компьютере клиента в результате перемещения с нижнего уровня на верхний.

Уровни модели OSI (в направлении снизу вверх) и их общие функции можно рассмотреть следующим образом:

Рассмотрим, как в модели SI происходит обмен данными между пользователями, находящимися на разных континентах.

1. На прикладном уровне с помощью специальных приложений пользователь создает документ (сообщение, рисунок и т. п.).

2. На уровне представления операционная система его компьютера фиксирует, где находятся созданные данные (в оперативной памяти, в файле на жестком диске и т. п.), и обеспечивает взаимодействие со следующим уровнем.

3. На сеансовом уровне компьютер пользователя взаимодействует с локальной или глобальной сетью. Протоколы этого уровня проверяют права пользователя на «выход в эфир» и передают документ к протоколам транспортного уровня.

4. На транспортном уровне документ преобразуется в ту форму, в которой положено передавать данные в используемой сети. Например, он может нарезаться на небольшие пакеты стандартного размера.

5. Сетевой уровень определяет маршрут движения данных в сети. Так, например если на транспортном уровне данные были «нарезаны» на пакеты, то на сетевом уровне каждый пакет должен получить адрес, по которому он должен быть доставлен независимо от прочих пакетов.

6. Уровень соединения (Канальный уровень) необходим для того, чтобы промодулировать сигналы, циркулирующие на физическом уровне, в соответствии с данными, полученным с сетевого уровня. Например в компьютере эти функции выполняет сетевая карта или модем.

7. Реальная передача данных происходит на физическом уровне. Здесь нет ни документов, ни пакетов, ни даже байтов - только биты, то есть, элементарные единицы представления данных. Восстановление документа из них произойдет постепенно, при переходе с нижнего на верхний уровень на компьютер клиента.


Средства физического уровня лежат за пределами компьютера. В локальных сетях это оборудование самой сети. При удаленной связи с использованием телефонных модемов это линии телефонной связи, коммутационное оборудование телефонных станций и т. п.

На компьютере получателя информации происходит обратный процесс преобразования данных от битовых сигналов до документа.

Разные уровни протоколов сервера и клиента не взаимодействуют друг с другом напрямую, но они взаимодействуют через физический уровень. Постепенно переходя с верхнего уровня на нижний, данные непрерывно преобразуются, «обрастают» дополнительными данными, которые анализируются протоколами соответствующих уровней на сопредельной стороне. Это создает эффект виртуального взаимодействия уровней между собой.

Для иллюстрации сказанного рассмотрим простой пример взаимодействия двух корреспондентов с помощью обычной почты. Если они регулярно отправляют друг другу письма и, соответственно, получают их, то они могут полагать, что между ними существует соединение на пользовательском (прикладном уровне). Однако это не совсем так. Такое соединение можно назвать виртуальным. Оно было бы физическим, если бы каждый из корреспондентов лично относил другому письмо и вручал в собственные руки. В реальной жизни он бросает его в почтовый ящик и ждет ответа.

Сбором писем из общественных почтовых ящиков и доставкой корреспонденции в личные почтовые ящики занимаются местные почтовые службы. Это другой уровень модели связи, лежащий ниже. Для того чтобы наше письмо достигло адресата в другом городе, должна существовать связь между нашей местной почтовой службой и его местной почтовой службой. Однако никакой физической связью эти службы не обладают - поступившую почтовую корреспонденцию они только сортируют и передают на уровень федеральной почтовой службы.

Федеральная почтовая служба в своей работе опирается на службы очередного уровня, например на почтово-багажную службу железнодорожного ведомства. И только рассмотрев работу этой службы, мы найдем, наконец, признаки физического соединения, например железнодорожный путь, связывающий два города.

Важно обратить внимание на то, что в нашем примере образовалось несколько виртуальных соединений между аналогичными службами, находящимися в пунктах отправки и приема. Не вступая в прямой контакт, эти службы взаимодействуют между собой. На каком-то уровне письма укладываются в мешки, мешки пломбируют, к ним прикладывают сопроводительные документы, которые где-то в другом городе изучаются и проверяются на аналогичном уровне.

Ниже в таблице приводится аналогия между уровнями модели OSI и операциями служб пересылки обычной почты.

Управление процессом передачи и обработки данных в сети, требует стандартизации следующих процедур:

· выделения и освобождения ресурсов компьютеров и системы телекоммуникации;

· установления и разъединения соединений;

· маршрутизации, согласования, преобразования и передачи данных;

· контроля правильности передачи;

· исправления ошибок и др.

Указанные задачи решаются с помощью системы протоколов и стандартов, определяющих процедуры взаимодействия элементов сети при установлении связи и передаче данных. Протокол - это набор правил и методов взаимодействия объектов вычислитель­ной сети.
Необходимость стандартизации протоколов важна для понимания сетями друг друга при их взаимодействии.
Протоколы для сетей - то же самое, что язык для людей. Говоря на разных язы­ках, люди могут не понимать друг друга, - также и сети, использующие разные протоколы. От эффективности протоколов, их надежности, простоты зависит то, насколько эффективна и удобна вообще работа человека в сети.
Международной организацией по стандартизации (ISO) разработана система стандартных протоколов, получившая название модели взаимодействия открытых систем (OSI), часто называемая также эталонной семиуровневой логической моделью открытых систем.
Открытая система - система, доступная для взаимодействия с другими система­ми в соответствии с принятыми стандартами.
Эта система протоколов базируется на разделении всех процедур взаимодействия на отдельные мелкие уровни, для каждого из которых легче создать стандартные алгоритмы их по­строения.
Модель OSI представляет собой самые общие рекомендации для построения стан­дартов совместимых сетевых программных продуктов, она же служит базой для производителей при разработке совместимого сетевого оборудования. В настоящее время модель взаимодействия открытых систем является наиболее популярной сетевой архитектурной моделью.
В общем случае сеть должна иметь 7 функциональных уровней

Прикладной уровень (application) - управляет запуском программ пользователя, их выполнением, вводом-выводом данных, управлением терминалами, административным управ­лением сетью. На этом уровне обеспечивается предоставление пользователям раз­личных услуг, связанных с запуском его программ. На этом уровне функционируют технологии, являющиеся как бы надстройкой над передачей данных.
Уровень представления (presentation) - интерпретация и преобразование пере­даваемых в сети данных к виду, удобному для прикладных процессов. На практике многие функции этого уровня задействованы на прикладном уровне, поэтому про­токолы уровня представлений не получили развития и во многих сетях практи­чески не используются.
Сеансовый уровень (session) - организация и проведение сеансов связи между прикладными процессами (инициализация и поддержание сеанса между абонен­тами сети, управление очередностью и режимами передачи данных). Многие функции этого уровня в части установле­ния соединения и поддержания упорядоченного обмена данными на практике реализуются на транспортном уровне, поэтому протоколы сеансового уровня име­ют ограниченное применение.
Транспортный уровень (transport) - управление сегментированием данных и транспорти­ровкой данных от источника к потребителю (т.е. обмен управляющей информацией и установление между абонентами логического канала, обеспечение качества пе­редачи данных). Протоколы транспортного уровня развиты очень широко и интенсивно используются на практике. Большое внимание на этом уровне уделено контролю достоверности передаваемой информации.
Сетевой уровень (network) - управление логическим каналом передачи данных в сети (адресация и маршрутизация данных). Каждый пользователь сети обязательно использует протоколы этого уровня и имеет свой уникальный сетевой адрес, используемый протоколами сетевого уровня. На этом уровне выполняется структуризация данных - разбивка их на пакеты и присвое­ние пакетам сетевых адресов.
Канальный уровень (data-link) - формирование и управление физическим ка­налом передачи данных между объектами сетевого уровня (установление, поддер­жание и разъединение логических каналов), обеспечение “прозрачности” физических соединений, контроля и исправления ошибок передачи.
Физический уровень (physical) - установление, поддержание и расторжение со­единений с физическим каналом сети. Управление выполняется на уров­не битов цифровых (импульсы, их амплитуда, форма) и аналоговых (амплитуда, частота, фаза непрерывного сигнала).

Блоки информации, передаваемые между уровнями, имеют стандартный формат: заголовок (header), служебная информация, данные, концевик. Каждый уровень при передаче блока информации нижестоящему уровню снабжает его своим заго­ловком. Заголовок вышестоящего уровня воспринимается нижестоящим как пе­редаваемые данные.

Средства каждого уровня отрабатывают протокол своего уровня и интерфейсы с со­седними уровнями.
Указанные уровни управления можно по разным признакам объединять в группы:
- уровни 1, 2 и частично 3 реализуются в большей части за счет аппаратных средств; верхние уровни с 4 по 7 и частично 3 обеспечиваются программными средствами;

Уровни 1 и 2 ответственны за физические соединения; уровни 3-6 заняты орга­низацией передачи, передачей и преобразованием информации в понятную для абонентской аппаратуры форму; уровень 7 обеспечивает выполнение приклад­ных программ пользователя.

4. Стек протоколов. Интерфейс. Характеристика стандартных стеков протоколов, применяемых в современных сетях ЭВМ.

При передаче сообщений оба участника сетевого обмена должны принять множество соглашений. Например, они должны согласовать уровни и форму электрических сигналов, способ определения длины сообщений, договориться о методах контроля достоверности и т.п. Другими словами, соглашения должны быть приняты для всех уровней, начиная от самого низкого уровня передачи битов, до самого высокого уровня, детализирующего, как информация должна быть интерпретирована. Такие формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколами .

Иерархически организованная совокупность протоколов, решающих задачу взаимодействия узлов сети называется стеком коммуникационных протоколов .

Протоколы соседних уровней, находящихся в одном узле, взаимодействуют друг с другом также в соответствии с четко определенными правилами и с помощью стандартизованных форматов сообщений. Эти правила принято называть интерфейсом. Интерфейс определяет набор услуг, которые нижележащий уровень предоставляет вышележащему.

Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. В настоящее время в сетях используется большое количество стеков коммуникационных протоколов. Наиболее популярны следующие стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, OSI.

Все эти стеки на нижних уровнях - физическом и канальном, - используют одни и те же хорошо стандартизованные протоколы Ethernet, Token Ring, FDDI и ряд других, которые позволяют задействовать во всех сетях одну и ту же аппаратуру. Зато на верхних уровнях все стеки работают по своим протоколам. Эти протоколы часто не соответствуют рекомендуемому моделью OSI разбиению на уровни. В частности, функции сеансового и представительного уровня, как правило, объединены с прикладным уровнем. Такое несоответствие связано с тем, что модель OSI появилась как результат обобщения уже существующих и реально используемых стеков, а не наоборот.

Стек OSI

В отличие от других стеков протоколов, стек OSI полностью соответствует модели OSI, он включает спецификации протоколов для всех семи уровней взаимодействия, определенных в этой модели. На нижних уровнях стек OSI поддерживает Ethernet, Token Ring, FDDI, протоколы глобальных сетей, X.25 и ISDN, - то есть использует разработанные вне стека протоколы нижних уровней, как и все другие стеки. Протоколы сетевого, транспортного и сеансового уровней стека OSI специфицированы и реализованы различными производителями, но распространены пока мало. Наиболее популярными протоколами стека OSI являются прикладные протоколы. К ним относятся: протокол передачи файлов FTAM, протокол эмуляции терминала VTP, протоколы справочной службы X.500, электронной почты X.400 и ряд других.

Протоколы стека OSI отличаются сложностью и неоднозначностью спецификаций. Эти свойства стали результатом общей политики разработчиков стека, стремившихся учесть в своих протоколах все случаи и все существующие технологии. К этому нужно еще добавить и последствия большого количества политических компромиссов, неизбежных при принятии международных стандартов по такому злободневному вопросу, как построение открытых вычислительных сетей.

Стек TCP/IP

Популярность этой операционной системы привела к широкому распространению протоколов TCP, IP и других протоколов стека. Сегодня этот стек используется для связи компьютеров всемирной информационной сети Internet, а также в огромном количестве корпоративных сетей.

Стек TCP/IP на нижнем уровне поддерживает все популярные стандарты физического и канального уровней: для локальных сетей - это Ethernet, Token Ring, FDDI, для глобальных - протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP, PPP, протоколы территориальных сетей X.25 и ISDN.

Основными протоколами стека, давшими ему название, являются протоколы IP и TCP. Эти протоколы в терминологии модели OSI относятся к сетевому и транспортному уровням, соответственно. IP обеспечивает продвижение пакета по составной сети, а TCP гарантирует надежность его доставки.

За долгие годы использования в сетях различных стран и организаций стек TCP/IP вобрал в себя большое количество протоколов прикладного уровня. К ним относятся такие популярные протоколы, как протокол пересылки файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы службы WWW и многие другие.

Сегодня стек TCP/IP представляет собой один из самых распространенных стеков транспортных протоколов вычислительных сетей.

Стек IPX/SPX (Novell) (Internetwork Packet Exchange (IPX и Sequenced Packet Exchange, SPX),

Этот стек является оригинальным стеком протоколов фирмы Novell, разработанным для сетевой операционной системы NetWare еще в начале 80-х годов Популярность стека IPX/SPX непосредственно связана с операционной системой Novell NetWare, которая долгое время сохраняла мировое лидерство по числу установленных систем.

Многие особенности стека IPX/SPX обусловлены ориентацией ранних версий ОС NetWare на работу в локальных сетях небольших размеров, состоящих из персональных компьютеров со скромными ресурсами. Протоколы стека IPX/SPX до недавнего времени хорошо работали в локальных сетях и не очень - в больших корпоративных сетях, так как они слишком перегружали медленные глобальные связи широковещательными пакетами, которые интенсивно используются несколькими протоколами этого стека. Это обстоятельство, а также тот факт, что стек IPX/SPX является собственностью фирмы Novell, и на его реализацию нужно получать лицензию долгое время ограничивали его поле деятельности только сетями NetWare.

Стек NetBIOS/SMB (IBM и Microsoft)

Этот стек широко применяется в продуктах компаний IBM и Microsoft. На его физическом и канальном уровнях используются все наиболее распространенные протоколы Ethernet, Token Ring, FDDI и другие. На верхних уровнях работают протоколы NetBIOS и SMB.

Протокол NetBIOS выполняет много полезных сетевых функций, которые можно отнести к сетевому, транспортному и сеансовому уровням модели OSI, однако он не обеспечивает возможность маршрутизации пакетов. Это ограничивает применение протокола NetBIOS локальными сетями, не разделенными на подсети, и делает невозможным его использование в составных сетях.

Протокол SMB (Server Message Block) выполняет функции сеансового, представительного и прикладного уровней. На основе SMB реализуется файловая служба, а также службы печати и передачи сообщений между приложениями.


Похожая информация.