Сжатие звука MP3. Методы сжатия информации при работе со звуком

Наиболее известны Audio MPEG, PASC и ATRAC. Все они используют так называемое "кодирование для восприятия" (perceptual coding) при котором из звукового сигнала удаляется информация, малозаметная для слуха. В результате, несмотря на изменение формы и спектра сигнала, его слуховое восприятие практически не меняется, а степень сжатия оправдывает незначительное уменьшение качества. Такое кодирование относится к методам сжатия с потерями (lossy compression), когда из сжатого сигнала уже невозможно точно восстановить исходную волновую форму. Приемы удаления части информации базируются на особенности человеческого слуха, называемой маскированием: при наличии в спектре звука выраженных пиков (преобладающих гармоник) более слабые частотные составляющие в непосредственной близости от них слухом практически не воспринимаются (маскируются). При кодировании весь звуковой поток разбивается на мелкие кадры, каждый из которых преобразуется в спектральное представление и делится на ряд частотных полос. Внутри полос происходит определение и удаление маскируемых звуков, после чего каждый кадр подвергается адаптивному кодированию прямо в спектральной форме. Все эти операции позволяют значительно (в несколько раз) уменьшить объем данных при сохранении качества, приемлемого для большинства слушателей. Каждый из описанных методов кодирования характеризуется скоростью битового потока (bitrate), с которой сжатая информация должна поступать в декодер при восстановлении звукового сигнала. Декодер преобразует серию сжатых мгновенных спектров сигнала в обычную цифровую волновую форму.

Audio MPEG - группа методов сжатия звука, стандартизованная MPEG (Moving Pictures Experts Group - экспертной группой по обработке движущихся изображений). Методы Audio MPEG существуют в виде нескольких типов - MPEG-1, MPEG-2 и т.д.; в настоящее время наиболее распространен тип MPEG-1. Существует три уровня (layers) Audio MPEG-1 для сжатия стереофонических сигналов: 1 - коэффициент сжатия 1:4 при потоке данных 384 кбит/с; 2 - 1:6..1:8 при 256..192 кбит/с; 3 - 1:10..1:12 при 128..112 кбит/с. Минимальная скорость потока данных в каждом уровне определяется в 32 кбит/с; указанные скорости потока позволяют сохранить качество сигнала примерно на уровне компакт-диска. Все три уровня используют входное спектральное преобразование с разбиением кадра на 32 частотные полосы. Наиболее оптимальным в отношении объема данных и качества звука признан уровень 3 со скоростью потока 128 кбит/с и плотностью данных около 1 Мб/мин. При сжатии с более низкими скоростями начинается принудительное ограничение полосы частот до 15-16 кГц, а также возникают фазовые искажения каналов (эффект типа фэйзера или фленжера). Audio MPEG используется в компьютерных звуковых системах, CD-i/DVD, "звуковых" дисках CD-ROM, цифровом радио/телевидении и других системах массовой передачи звука. комплект MPEG-1 предусмотрен для кодирования сигналов, оцифрованных с частотой дискретизации 32, 44.1 и 48 КГц. Как было указано выше, комплект MPEG-1 имеет три уровня (Layer I, II и III). Эти уровни имеют различия в обеспечиваемом коэффициенте сжатия и качестве звучания получаемых потоков. Layer I позволяет сигналы 44.1 КГц / 16 бит хранить без ощутимых потерь качества при скорости потока 384 Кбит/с, что составляет 4-х кратный выигрыш в занимаемом объеме; Layer II обеспечивает такое же качество при 194 Кбит/с, а Layer III - при 128 (или 112). Выигрыш Layer III очевиден, но скорость компрессии при его использовании самая низкая (надо отметить, что при современных скоростях процессоров это ограничение уже не заметно). Фактически, Layer III позволяет сжимать информацию в 10-12 раз без ощутимых потерь в качестве. - Стандарт MPEG-2 был специально разработан для кодирования ТВ сигналов вещательного телевидения. В апреле 1997 этот комплект получил «продолжение» в виде алгоритма MPEG-2 AAC (MPEG-2 Advanced Audio Coding - продвинутое аудио кодирование).

Стандарт MPEG-4 - это особая статья. MPEG-4 не является просто алгоритмом сжатия, хранения и передачи видео или аудио информации. MPEG-4 - это новый способ представления информации, это - объектно-ориентированное представление мультимедиа данных. Стандарт оперирует объектами, организует из них иерархии, классы и прочее, выстраивает сцены и управляет их передачей. Объектами могут служить как обычные аудио или видео потоки, так и синтезированные аудио и графические данные (речь, текст, эффекты, звуки...). Такие сцены описываются на специальном языке.

Стандарт MPEG-7 вообще в корне отличается от всех иных стандартов MPEG. Стандарт разрабатывается не для установления каких-то рамок для передачи данных или типизации и описания данных какого-то конкретно рода. Стандарт предусмотрен как описательный, предназначенный для регламентации характеристик данных любого типа, вплоть до аналоговых. Использование MPEG-7 предполагается в тесной связи с MPEG-4.

Для удобства обращения со сжатыми потоками, все алгоритмы MPEG разработаны таким образом, что позволяют осуществлять декомпрессию (восстановление) и воспроизведение потока одновременно с его получением (download ) - потоковая декомпрессия «на лету» (stream playback ). Эта возможность очень широко используются в интернете, где скорость передачи информации ограничена, а с использованием подобных алгоритмов появляется возможность обрабатывать информацию прямо во время ее получения не дожидаясь окончания передачи.

PASC Precision Adaptive Sub-band Coding - точное адаптивное внутриполосное кодирование) - частный случай Audio MPEG-1 Layer 1 со скоростью потока 384 кбит/с (сжатие 1:4). Применяется в системе DCC.

ATRAC Adaptive TRansform Acoustic Coding - акустическое кодирование адаптивным преобразованием) базируется на стереофоническом звуковом формате с 16-разрядным квантованием и частотой дискретизации 44.1 кГц. ATRAC (Adaptive TRansform Acoustic Coding) разделяет 16-битный 44,1 кГц цифровой аудио сигнал на 52 частотных диапазона (после быстрого преобразования Фурье). Диапазоны с низкими частотами передаются более точно, чем с высокими. Алгоритм использует психо-акустическое кодирование, где применяется эффект маскировки и порог слышимости звука, в результате чего часть информации может быть отброшена и выходящий поток данных имеет размер в 1/5 оригинального. Каждый канал обрабатывается независимо (портативный MD привод Sony MZ-1 использует один чип ATRAC кодера/декодера на канал). Другой алгоритм кодирования, PASC (Precision Adaptive Sub-band Coding - сейчас используется Philips в DCC ) разделяет цифровой сигнал на промежутки равного размера и удаляет часть информации (уменьшая поток до 1/4 оригинального). PASC является алгоритмом MPEG Layer 1 (его можно распаковать проигрывателями MPEG Layer 1 после небольшой предварительной коррекции).
Оба алгоритма выполняют сжатие данных, обеспечивая хранение 16-битного звукового потока. Цель алгоритма - сжать поток для уменьшения занимаемого им пространства на диске. Существует огромного множество алгоритмов сжатия. Некоторые алгоритмы сжимают данные без потерь (они используются, к примеру, в архиваторах), при этом информация после декомпрессии не отличается от оригинала. PASC и ATRAC относятся к алгоритмам с потерей части информации, они не пытаются сохранить каждый бит входящих данных, они просто стараются выделить и сохранить акустически "важные" биты. Поэтому важно найти звуки, которые будут замаскированы человеческой слуховой системой, которые человек не сможет услышать даже при их воспроизведении. Оба алгоритма сжатия звука прекрасно справляются с этой задачей. Какой звуковой поток записывается на минидиск после сжатия ATRAC? Для стерео сигнала - 292162,5 бит/с. ATRAC сжимает 512 входящих 16-битовых семплов (1024 байта) в "звуковые группы" ATRAC (212 байт), в результате получается коэффициент сжатия 4,83:1. - 44100 семплов/с (входящий поток одного канала) - 512 семплов на звуковую группу (получаем 86,133 звуковых групп/с/канал) - 2 канала (получаем 172,266 звуковых групп/с)
- 212 байт/звуковую группу (получаем 36,5 кбайт/с в стерео) - 8 бит/байт (получаем кбит/с) - 292162,5 бит/с ATRAC (используется в MDLP) работает на 132 кбит/с (LP2) и 66 кбит/с (LP4).

Общепризнанные методы сжатия данных, такие, как RLE, статистические и словарные методы, могут быть использованы для компрессии звуковых файлов без потерь, но результат существенно зависит от конкретных аудиоданных. Некоторые звуки будут хорошо сжиматься с помощью RLE, но плохо - статистическими алгоритмами. Другим звукам больше подходит статистическое сжатие, а при словарном подходе, наоборот, может произойти расширение. Приведем краткую характеристику эффективности этих трех методов при сжатии звуковых файлов.

RLE хорошо работает со звуками, которые содержат длинные серии повторяющихся звуковых фрагментов - сэмплов. При 8-битном сэмплировании это может происходить довольно часто. Напомним, что разность электрического напряжения между двумя 8-битовыми сэмплами и составляет около 4 мВ. Несколько секунд однородной музыки, в которой звуковая волна будет меняться менее чем на 4 мВ, породят последовательность из тысяч тождественных сэмплов. При 16-битном сэмплировании, очевидно, длинные повторы встречаются реже, и, следовательно, алгоритм RLE будет менее эффективен.

Статистические методы присваивают коды переменной длины звуковым сэмплам в соответствии с их частотностью. При 8-битном сэмплировании имеется всего 256 различных сэмплов, поэтому в большом звуковом файле сэмплу могут быть распределены равномерно. Такой файл не удастся хорошо сжать методом Хаффмана. При 16-битном сэмплировании допускается более 65000 звуковых фрагментов. В этом случае, возможно, что некоторые сэмплы будут встречаться чаще, а другие - реже. При сильной асимметрии вероятностей хороших результатов можно добиться с помощью арифметического кодирования.

Методы, основанные на словарном подходе, предполагают, что некоторые фразы будут встречаться часто на протяжении всего файла. Это происходит в текстовом файле, в котором отдельные слова или их последовательности повторяются многократно. Звук, однако, является аналоговым сигналом и значения конкретных сгенерированных сэмплов в большой степени зависит от работа АЦП. Например, при 8-битном сэмплировании, волна в 8 мВ становится числовым сэмплом, равным 2, но близкая ей волна, скажем, в 7.6 мВ или 8.5 мВ может стать другим числом. По этой причине, речевые фрагменты, содержащие совпадающие фразы и звучащие для нас одинаково, могут слегка отличаться при их оцифровывании. Тогда они попадут в словарь в виде разных фраз, что не даст ожидаемого сжатия. Таким образом, словарные методы не очень подходят для сжатия звука.

Можно добиться лучших результатов при сжатии звука с потерей части аудиоинформации, развивая методы компрессии, которые учитывают особенности восприятия звука. Они удаляют ту часть данных, которая остается неслышимой для органов слуха. Это похоже на сжатие изображений с отбрасыванием информации, незаметной для глаза. В обоих случаях мы исходим из того факта, что исходная информация (изображение или звук) является аналоговым, то есть, часть информации уже потеряно при квантовании и оцифровывании. Если допустить еще некоторую потерю, сделав это аккуратно, то это не повлияет на качество воспроизведения разжатого звука, который не будет сильно отличаться от оригинала. Мы кратко опишем два подхода, которые называются подавлением пауз и уплотнением.

Идея подавления пауз заключается в рассмотрении малых сэмплов, как если бы их не было (то есть, они равны нулю). Такое обнуление будет порождать серии нулей, поэтому метод подавления пауз, на самом деле, является вариантом RLE, приспособленным к сжатию звука. Этот метод основан на особенности звукового восприятия, которое состоит в терпимости уха человека к отбрасыванию еле слышных звуков. Аудиофайлы, содержащие длинные участки тихого звука будут лучше сжиматься методом подавления пауз, чем файлы, наполненные громкими звуками. Этот метод требует участие пользователя, который будет контролировать параметры, задающие порог громкости для сэмплов. При этом необходимы еще два параметра, они не обязательно контролируются пользователем. Один параметр служит для определения самых коротких последовательностей тихих сэмплов, обычно, это 2 или 3. А второй задает наименьшее число последовательных громких сэмплов, при появлении которых прекращается тишина или пауза. Например, после 15 тихих сэмплов может последовать 2 громких, а затем 13 тихих, что будет определено как одна большая пауза длины 30, а аналогичная последовательность из 15, 3 и 12 сэмплов, станет двумя паузами с коротким звуком между ними.

Уплотнение основано на том свойстве, что ухо лучше различает изменения амплитуды тихих звуков, чем громких. Типичное АЦП звуковых карт компьютеров использует линейное преобразование при переводе напряжения в числовую форму. Если амплитуда была конвертирована в число , то амплитуда будет переведена в число . Метод сжатия на основе уплотнения сначала анализирует каждый сэмпл звукового файла и применяет к нему нелинейную функцию для сокращения числа бит, назначенных этому сэмплу. Например, при 16-битных сэмплах, кодер с уплотнением может применять следующую простую формулу

(6.1)

для сокращения каждого сэмпла. Эта формула нелинейно отображает 16-битные сэмплы в 15-битные числа интервала , причем маленькие (тихие) сэмплы меньше подвергаются искажению, чем большие (громкие). Табл. 6.7 иллюстрирует нелинейность этой функции. На ней показано 8 пар сэмплов, причем в каждой паре разность между сэмплами равна 100. Для первой пары разность между их образами равна 34, а разность между образами последней (громкой) пары равна 65. Преобразованные 15-битные числа могут быть приведены к исходным 16-битным сэмплам с помощью обратной формулы

. (6.2)

Разность

Разность

Табл. 6.7. Отображение 16-битных сэмплов в 15-битные числа.

Сокращение 16-битных сэмплов до 15-битных чисел не дает существенного сжатия. Лучшее сжатие получается, если в формулах (6.1) и (6.2) заменить число 32767 меньшим. Например, если взять число 127, то 16-битные сэмплы будут представлены 8-битными числами, то есть, коэффициент сжатия буде равен 0.5. Однако, декодирование будет менее аккуратным. Сэмпл 60100 будет отображен в число 113, а при декодировании по формуле (6.2) получится сэмпл 60172. А маленький 16-битный сэмпл 1000 будет отображен в 1.35, что после округления даст 1. При декодировании числа 1 получится 742, что сильно отличается от исходного сэмпла. Здесь коэффициент сжатия может быть параметром, непосредственно задаваемым пользователем. Это интересный пример метода сжатия, при котором коэффициент сжатия известен заранее.

На практике нет необходимости обращаться к уравнениям (6.1) и (6.2), поскольку результат отображения можно заранее приготовить в виде таблицы. Тогда и кодирование, и декодирование будут делаться быстро.

Уплотнение не ограничивается уравнениями (6.1) и (6.2). Более изощренные методы, такие как -правило и -правило, широко применяются на практике и входят во многие международные стандарты сжатия.

Некоторые методы сжатия звуковых данных (доп. к Лекции 2)

    Кодирование данных без потерь (lossless coding) - это способ кодирования аудио, который позволяет осуществлять стопроцентное восстановление данных из сжатого потока. К такому способу уплотнения данных прибегают в тех случаях, когда сохранение оригинального качества данных критично. Например, после сведения звука в студии звукозаписи, данные необходимо сохранить в архиве в оригинальном качестве для возможного последующего использования. Существующие сегодня алгоритмы кодирования без потерь (например, Monkeys Audio) позволяют сократить занимаемый данными объем на 20-50%, но при этом обеспечить стопроцентное восстановление оригинальных данных из полученных после сжатия. Подобные кодеры – это своего рода архиваторы данных (как ZIP, RAR и другие), только предназначенные для сжатия именно аудио.

    Кодирование данных с потерями (lossy coding). Цель такого кодирования - любыми способами добиться схожести звучания восстановленного сигнала с оригиналом при как можно меньшем объеме упакованных данных. Это достигается путем использования различных алгоритмов «упрощающих» оригинальный сигнал (выкидывая из него «ненужные» слабослышимые детали), что приводит к тому, что декодированный сигнал фактически перестает быть идентичным оригиналу, а лишь похоже звучит.

Методов сжатия, а также программ, реализующих эти методы, существует много. Наиболее известными являются MPEG-1 Layer I,II,III (последним является всем известный MP3), MPEG-2 AAC (advanced audio coding), Ogg Vorbis, Windows Media Audio (WMA), TwinVQ (VQF), MPEGPlus, TAC, и прочие.

В среднем, коэффициент сжатия, обеспечиваемый такими кодерами, находится в пределах 10-14 (раз).

Некоторые форматы звуковых файлов :

Формат AU . Этот простой и распространенный формат на системах Sun и NeXT (в последнем случае, правда, файл будет иметь расширение SND). Файл состоит из короткого служебного заголовка (минимум 28 байт), за которым непосредственно следуют звуковые данные. Широко используется в Unix-подобных системах и служит базовым для Java-машины.

Формат WAVE (WAV). Стандартный формат файлов для хранения звука в системе Windows. Является специальным типом другого, более общего формата RIFF (Resource Interchange File Format); другой разновидностью RIFF служат видеофайлы AVI. Файл RIFF составлен из блоков, некоторые из которых могут, в свою очередь, содержать другие вложенные блоки; перед каждым блоком данных помещается четырехсимвольный идентификатор и длина. Звуковые файлы WAV, как правило, более просты и имеют только один блок формата и один блок данных. В первом содержится общая информация об оцифрованном звуке (число каналов, частота дискретизации, характер зависимости громкости и т.д.), а во втором - сами числовые данные. Каждый отсчет занимает целое количество байт (например, 2 байта в случае 12-битовых чисел, старшие разряды содержат нули). При стереозаписи числа группируются парами для левого и правого канала соответственно, причем каждая пара образует законченный блок - для нашего примера его длина составит 4 байта. Такая, казалось бы, излишняя структурированность позволяет программному обеспечению оптимизировать процесс передачи данных при воспроизведении, но, как в подобных случаях всегда бывает, выигрыш во времени приводит к существенному увеличению размера файла.

Формат MP3 (MPEG Layer3) . Это один из форматов хранения аудиосигнала, позднее утвержденный как часть стандартов сжатого видео. Природа получения данного формата во многом аналогична уже рассмотренному нами ранее сжатию графических данных по технологии JPEG. Поскольку произвольные звуковые данные обратимыми методами сжимаются недостаточно хорошо, приходится переходить к методам необратимым: иными словами, базируясь на знаниях о свойствах человеческого слуха, звуковая информация “подправляется” так, чтобы возникшие искажения на слух были незаметны, но полученные данные лучше сжимались традиционными способами. Это называется адаптивным кодированием и позволяет экономить на наименее значимых с точки зрения восприятия человека деталях звучания. Приемы, применяемые в MP3, непросты для понимания и опираются на достаточно сложную математику, но зато обеспечивают очень значительный эффект сжатия звуковой информации. Успехи технологии MP3 привели к тому, что ее применяют сейчас и во многих бытовых звуковых устройствах, например, плеерах и сотовых телефонах.

Формат MIDI. Название MIDI есть сокращение от Musical Instrument Digital Interface, т.е. цифровой интерфейс для музыкальных инструментов. Это довольно старый (1983 г.) стандарт, объединяющий разнообразное музыкальное оборудование (синтезаторы, ударные, освещение). MIDI базируется на пакетах данных, каждый из которых соответствует некоторому событию, в частности, нажатию клавиши или установке режима звучания. Любое событие может одновременно управлять несколькими каналами, каждый из которых относится к определенному оборудованию. Несмотря на свое изначальное предназначение, формат файла стал стандартным для музыкальных данных, которые при желании можно проигрывать с помощью звуковой карты компьютера безо всякого внешнего MIDI-оборудования. Главным преимуществом файлов MIDI является их очень небольшой размер, поскольку это не детальная запись звука, а фактически некоторый расширенный электронный эквивалент традиционной нотной записи. Но это же свойство одновременно является и недостатком: поскольку звук не детализирован, то разное оборудование будет воспроизводить его по-разному, что в принципе может даже заметно исказить авторский музыкальный замысел.

Формат MOD. Представляет собой дальнейшее развитие идеологии MIDI-файлов. Известные как “модули программ воспроизведения”, они хранят в себе не только “электронные ноты”, но и образцы оцифрованного звука, которые используются как шаблоны индивидуальных нот. Таким способом достигается однозначность воспроизведения звука. К недостаткам формата следует отнести большие затраты времени при наложении друг на друга шаблонов одновременно звучащих нот.

Формат сжатия звука MP3

Методы сжатия звуковой информации

Сжатие звуковых данных

Сжатие аудиоданных представляет собой процесс уменьшения скорости цифрового потока за счет сокращения статистической и психоакустической избыточности цифрового звукового сигнала.

Сжатие звуковых данных (сжатие аудио) - тип сжатия данных, кодирования, применяемая для уменьшения объема аудиофайлов или для возможности уменьшения полосы пропускания для потокового аудио. Алгоритмы сжатия звуковых файлов реализуются в компьютерных программах, называемых аудиокодеками. Изобретение специальных алгоритмов сжатия звуковых данных мотивировано тем, что общие алгоритмы сжатия неэффективны для работы со звуком и делают невозможным работу в реальном времени.

Как и в общем случае, различают сжатия звука без потерь, что делает возможным восстановление исходных данных без искажений, и сжатие с потерями, при котором такое восстановление невозможно. Алгоритмы сжатия с потерями дают большую степень сжатия, например audio CD может вместить не более часа «несжатой» музыки, при сжатии без потерь CD вместит почти 2 часа музыки, а при сжатии с потерями при среднем битрейте - 7-10 часов.

Сжатие без потерь

Сложность сжатия звука без потерь заключается в том, что записи звука являются чрезвычайно сложными в своей структуре. Одним из методов сжатия является поиск образцов и их повторений, однако этот метод не эффективен для более хаотических данных, которыми являются, например оцифрованный звук или фотографии. Интересно, что если сгенерированная компьютером графика значительно легче поддается сжатию без потерь, то синтезированный звук в этом отношении не имеет преимуществ. Это объясняется тем, что даже сгенерированный компьютером звук обычно имеет очень сложную форму, которая представляет сложную задачу для изобретения алгоритма.

Другая сложность заключается в том, что звучание обычно меняется очень быстро и это также является причиной того, что упорядоченные последовательности байтов появляются очень редко.

Наиболее распространенными форматами сжатия без потерь являются:
Free Lossless Audio Codec (FLAC), Apple Lossless , MPEG-4 ALS , Monkey"s Audio , и TTA .

Сжатие с потерями

Сжатие с потерями имеет чрезвычайно широкое применение. Кроме компьютерных программ, сжатие с потерями используется в потоковом аудио в DVD, цифровом телевидении и радио и потоковому медиа в интернете.

Новацией этого метода сжатия было использование психоакустики для обнаружения компонентов звучания, которые не воспринимаются слухом человека. Примером могут служить или высокие частоты, которые воспринимаются только при достаточной их мощности, или тихие звуки, возникающие одновременно или сразу после громких звуков и поэтому маскируются ними - такие компоненты звучания могут быть переданы менее точно, или и вообще не переданы.

Для осуществления маскировки сигнал из временной последовательности отсчетов амплитуды превращается в последовательность спектров звуков, в которых каждый компонент спектра кодируется отдельно. Для осуществления такого преобразования используются методы быстрого преобразования Фурье, МДКП, квадратурной-зеркальных фильтров или другие. Общий объем информации при таком перекодировании остается неизменным. Сжатие в определенной частотной области может заключаться в том, что замаскированные или нулевые компоненты не запоминаются вообще, или кодируются с меньшим разрешением. Например, частотные компоненты в до 200 Гц и более 14 кГц могут быть закодированы с 4-битной разрядностью, тогда как компоненты в среднем диапазоне - с 16 битной. Результатом такой операции станет кодирования со средней разрядностью 8-бит, однако результат будет значительно лучше, чем при кодировании всего диапазона частот с 8-битной разрядностью.

Однако очевидно, что перекодированные с низким разрешением фрагменты спектра уже не могут быть восстановлены в точности, и, таким образом, теряются безвозвратно.
Главным параметром сжатия с потерями является битрейт, определяющий степень сжатия файла и, соответственно, качество. Различают сжатия с постоянным битрейтом (англ. Constant BitRate - CBR), переменным битрейтом (англ. Variable BitRate - VBR) и усереденим битрейтом (англ. Average BitRate - ABR).

Наиболее распространенными форматами сжатия с потерями являются: AAC, ADPCM, ATRAC, Dolby AC-3, MP2, MP3, Musepack Ogg Vorbis, WMA и другие.

Формат сжатия звука MP3

MPEG-1 Audio Layer 3 Расширение файла: .mp3 Тип MIME: audio/mpeg Тип формата: Audio

MP3 (более точно, англ. MPEG-1/2/2.5 Layer 3 (но не MPEG-3) - третий формат кодирования звуковой дорожки MPEG) - лицензируемый формат файла для хранения аудио-информации.

На данный момент MP3 является самым известным и популярным из распространённых форматов цифрового кодирования звуковой информации с потерями. Он широко используется в файлообменных сетях для оценочной передачи музыкальных произведений. Формат может проигрываться практически в любой популярной операционной системе, на практически любом портативном аудио-плеере, а также поддерживается всеми современными моделями музыкальных центров и DVD-плееров.

В формате MP3 используется алгоритм сжатия с потерями, разработанный для существенного уменьшения размера данных, необходимых для воспроизведения записи и обеспечения качества воспроизведения очень близкого к оригинальному (по мнению большинства слушателей), хотя меломаны говорят об ощутимом различии. При создании MP3 со средним битрейтом 128 кбит/с в результате получается файл, размер которого примерно равен 1/10 от оригинального файла с аудио CD. MP3 файлы могут создаваться с высоким или низким битрейтом, который влияет на качество файла-результата.

Принцип сжатия заключается в снижении точности некоторых частей звукового потока, что практически неразличимо для слуха большинства людей. Данный метод называют кодированием восприятия. При этом на первом этапе строится диаграмма звука в виде последовательности коротких промежутков времени, затем на ней удаляется информация не различимая человеческим ухом, а оставшаяся информация сохраняется в компактном виде. Данный подход похож на метод сжатия, используемый при сжатии картинок в формат JPEG.

MP3 разработан рабочей группой института Фраунгофера (нем. Fraunhofer-Institut f?r Integrierte Schaltungen) под руководством Карлхайнца Бранденбурга и университета Эрланген-Нюрнберг в сотрудничестве с AT&T Bell Labs и Thomson (Джонсон, Штолл, Деери и др.).



Основой разработки MP3 послужил экспериментальный кодек ASPEC (Adaptive Spectral Perceptual Entropy Coding). Первым кодировщиком в формат MP3 стала программа L3Enc, выпущенная летом 1994 года. Спустя один год появился первый программный MP3-плеер - Winplay3.

При разработке алгоритма тесты проводились на вполне конкретных популярных композициях. Основной стала песня Сюзанны Веги «Tom"s Diner». Отсюда возникла шутка, что «MP3 был создан исключительно ради комфортного прослушивания любимой песни Бранденбурга», а Вегу стали называть «мамой MP3».

Описание формата

В этом формате звуки кодируются частотным образом (без дискретных партий); есть поддержка стерео, причём в двух форматах (подробности - ниже). MP3 является форматом сжатия с потерями, то есть часть звуковой информации, которую (согласно психоакустической модели) ухо человека воспринять не может или воспринимается не всеми людьми, из записи удаляется безвозвратно. Степень сжатия можно варьировать, в том числе в пределах одного файла. Интервал возможных значений битрейта составляет 8 - 320 кбит/c. Для сравнения, поток данных с обычного компакт-диска формата Audio-CD равен 1411,2 кбит/c при частоте дискретизации 44100 Гц.

MP3 и «качество Audio-CD»

В прошлом было распространено мнение, что запись с битрейтом 128 кбит/c подходит для музыкальных произведений, предназначенных для прослушивания большинством людей, обеспечивая качество звучания Audio-CD. В действительности всё намного сложнее. Во-первых, качество полученного MP3 зависит не только от битрейта, но и от кодирующей программы (кодека) (стандарт не устанавливает алгоритм кодирования, только описывает способ представления). Во-вторых, помимо превалирующего режима CBR (Constant Bitrate - постоянный битрейт) (в котором, проще говоря, каждая секунда аудио кодируется одинаковым числом бит) существуют режимы ABR (Average Bitrate - усредненный битрейт) и VBR (Variable Bitrate - переменный битрейт). В-третьих, граница 128 кбит/c является условной, так как она была «изобретена» в эпоху становления формата, когда качество воспроизведения звуковых плат и компьютерных колонок как правило было ниже, чем в настоящее время.

Основы принципа аналого-цифрового преобразования, метод конверсии и сжатия звука, существующие форматы хранения звука. Программы для конвертации и обработки звука и аудио-файлов. Применение этих программ в лингвистических исследованиях.

Битрейт - это объем информации в единицу времени. Вообще битрейт - это сколько битов мы тратим на кодирование звука длительностью 1 сек.

Аналого-цифровой преобразователь (АЦП, англ. Analog-to-digital converter, ADC) - устройство, преобразующее входной аналоговый сигнал в дискретный код (цифровой сигнал). Обратное преобразование осуществляется при помощи ЦАП (цифро-аналогового преобразователя, DAC). Как правило, АЦП - электронное устройство, преобразующее напряжение в двоичный цифровой код. Тем не менее, некоторые неэлектронные устройства с цифровым выходом, следует также относить к АЦП, например, некоторые типы преобразователей угол-код. Простейшим одноразрядным двоичным АЦП является компаратор.

Схема преобразования звукового сигнала из аналогового в цифровой:

Дискретизация - это преобразование непрерывных изображений и звука в набор дискретных значений в форме кодов.

Квантование - это процесс выравнивания набора музыкальных нот под сетку.

Сжатие (компрессия ) аудиоданных представляет собой процесс уменьшения скорости цифрового потока за счет сокращения статистической и психоакустической избыточности цифрового звукового сигнала

Основанная идея, на которой основаны все методики сжатия аудио сигнала с потерями, – пренебрежение тонкими деталями звучания оригинала, лежащие вне пределов которые воспринимает человеческое ухо.

Кодек (CoDec) - это сокращение слов «компрессор и декомпрессор». По сути, кодек - это набор файлов, драйверов и библиотек, необходимых для упаковки видео или звукового файла в сжатый формат и воспроизведения сжатого файла.

Форматы:

AAC (англ. Advanced Audio Coding) - формат аудио-файла с меньшей потерей качества при кодировании, чем MP3 при одинаковых размерах. Формат также позволяет сжимать без потери качества исходника (профиль ALAC AAC).

AAC (Advanced Audio Coding) изначально создавался как преемник MP3 с улучшенным качеством кодирования. Формат AAC, официально известный как ISO/IEC 13818-7, вышел в свет в 1997 как новая, седьмая, часть семьи MPEG-2. Существует также формат AAC, известный как MPEG-4 Часть 3.

Apple AIFF - Этот тип файлов является стандартным для систем Apple Macintosh и систем обработки звука, построенных на его основе. Apple AIFF расшифровывается как Audio Interchange File Format - формат файла обмена звуком, он в чем-то схож с WAV. Его особенностью является то, что он позволяет размещать вместе со звуковой волной дополнительную информацию, в частности, самплы WaveTable (примеры звучания инструментов вместе с параметрами синтезатора), что улучшает качество итогового результата. Хотя в настоящее время компьютеры Apple способны воспроизводить файлы практически любых форматов, в том числе и МР3.

FLAC (англ. Free Lossless Audio Codec - свободный аудиокодек без потерь) - популярный свободный кодек для сжатия аудио. В отличие от кодеков с потерями Ogg Vorbis, MP3 и AAC, не удаляет никакой информации из аудиопотока и подходит как для ежедневного прослушивания, так и для архивирования аудиоколлекции. На сегодня формат FLAC поддерживается многими аудиоприложениями.

FLAC является членом семейства кодеков, разрабатываемых Xiph.Org. К слову, в него же входит известный ogg vorbis – один из лучших lossy-алгоритмов сжатия музыки. В качестве контейнера для аудиоданных используется, разумеется, OGG (файлы с расширением.ogg) и ещё один open-source контейнер – Matroska (файлы с расширением.mka).

Сразу стоит отметить полную открытость как формата, так и алгоритма FLAC. Они не патентованы, поэтому могут совершенно безвозмездно использоваться в любых программах. Именно этим обусловлена широкая поддержка FLAC в проигрывателях – любой серьёзный плеер имеет плагин для FLAC. Кроме этого существуют аппаратные mp3-плееры с поддержкой кодека FLAC.

Программа-кодировщик FLAC скомпилирована для большинства используемых платформ, так что проблем с совместимостью на альтернативных Windows операционных системах возникнуть не должно.

FLAC поддерживает теги собственного формата “FlacTags”. Есть возможность кодирования многоканального звука – серьёзное преимущество по сравнению с Monkey’s Audio. Формат поддерживает любые частоты семплирования в диапазоне от 1 Гц (!) до 65,535 Гц. Разрядность аудио от 4-х (!) до 32-х бит.

Считается, что в сравнении с остальными lossless-кодеками FLAC наиболее эффективно расходует ресурсы системы при раскодировании (воспроизведении) аудио. К сожалению, это достигается за счёт значительного повышения времени кодирования (сжатия).

Сайт FLAC регулярно обновляется, выходят новые версии кодека. Вообще, по активности развития FLAC безусловно лидирует. Вполне возможно, что в будущем это сделает его основным форматом. Что ж, посмотрим…

FLAC является оптимальным выбором для хранения музыки в высоком качестве.

MIDI (англ. Musical Instrument Digital Interface - цифровой интерфейс музыкальных инструментов) - стандарт на аппаратуру и программное обеспечение, позволяющее воспроизводить (и записывать) музыку путем выполнения/записи специальных команд, а также формат файлов, содержащих такие команды. Воспроизводящее устройство или программа называется синтезатором (секвенсором) MIDI и фактически является автоматическим музыкальным инструментом.

В отличие от других форматов, хранит не оцифрованный звук, а наборы команд (проигрываемые ноты, ссылки на проигрываемые инструменты, значения изменяемых параметров звука), которые могут воспроизводиться по-разному в зависимости от устройства воспроизведения. Удобство формата MIDI как формата представления данных позволяет реализовывать устройства, производящие автоматическую аранжировку по заданным аккордам, а также приложения 3D-визуализации звука. Кроме того, такие файлы, как правило, имеют на несколько порядков меньший размер, чем оцифрованный звук сравнимого качества.

Monkey’s Audio - популярный формат кодирования цифрового звука без потерь. Распространяется бесплатно вместе с открытым исходным кодом и набором программного обеспечения для кодирования и воспроизведения, а также плагинами к популярным плеерам. Файлы Monkey’s Audio используют следующие расширения: .ape для хранения аудио и.apl для хранения метаданных. Несмотря на открытый исходный код, Monkey"s Audio не является свободным, так как его лицензия накладывает значительные ограничения на использование.

Аудиофайлы, сжатые кодеком Monkey’s Audio, имеют расширение ‘APE’ – как видите, обезьяны присутствуют не только в логотипе или названии (от английского ape - обезьяна, примат).

Средний битрейт в аудиофайле составляет 600-700 кбит/с; сравните с 128 кбит/с в Mp3. Среднее сжатие составляет 40-50 % в зависимости от жанра музыки: если классические или джазовые произведения сжимаются самым лучшим образом, то композиции в стиле trash-metal или что-то подобное «электронно шумовое» покажет наихудший результат. Для кодеков с потерями при приемлемом качестве сжатие составляет около 80 %.

Существуют четыре степени сжатия. Максимальная компрессия может показаться единственно верным решением, даже несмотря на довольно большое время сжатия. Однако нужно учитывать ещё и расход ресурсов системы, воспроизводящей файл, – для максимально сжатого файла он относительно высок.

Формат.APE обеспечивает поддержку тегов для поиска композиций в музыкальной коллекции. Ещё одним плюсом является проверка целостности файла при раскодировании. Поддерживается восстановление оригинального wav-файла из сжатого.APE.

Monkey’s Audio имеет графический фронтэнд под Windows, иначе говоря удобную оконную программу для управления процессом кодирования. Остальные кодеки требуют использования командной строки или фронтэндов сторонних разработчиков. Самое приятное, что фронтэнд Monkey’s Audio можно использовать и с другими кодеками – Rkau, Wavpack, Shorten и даже lossy-кодеками mp3 и ogg vorbis.

Немного о недостатках. Кодек Monkey’s Audio существует только под Windows. Однако на сайте написано, что «версии под Mac и Linux уже разрабатываются». К слову сказать, сам сайт не обновлялся достаточно давно, что не является хорошим признаком. Также отсутствует какая-либо поддержка среди производителей аппаратных плееров.

Отсутствие кросплатформенности кодека для многих является самым серьёзным минусом Monkey’s Audio. Но шаги по исправлению этого недостатка уже делаются. Стоит упомянуть проект JMAC (http://sourceforge.net/projects/jmac/) по переработке исходных кодов Monkey’s Audio под язык Java. Это позволит использовать кодек на любой ОС без необходимости внесения изменений в исходники и перекомпиляции.

MP3 - (формат кодирования звуковой дорожки MPEG) - лицензируемый формат файла для хранения аудио-информации.

Самый популярный формат сжатия на сегодняшний день – это МР3. Формат МР3 (MPEG Layer 3) был разработан, после ряда промежуточных форматов, институтом Фраунхофера в Германии. Вообще то, формат.МР3 основан на обмане человеческого уха. После некоторых исследований выяснилось, что человеческому слуху свойственно адаптироваться к появлению новых звуков, что выражается в повышении порога слышимости. Поэтому одни звуки способны маскировать (то есть, делать субъективно неслышимыми) другие. Вот и в этом формате часть звуков, которые, как считает соответствующая теория, делаются неслышимыми, просто убираются из общего звучания. После чего получившийся «полуфабрикат» кодируется по методу Хоффмана. Обязательно следует учитывать то, что в формате МР3 программы, сжимающие звук из оригинального, не являются стандартизированными, то есть каждый грамотный программист может реализовать свою схему сжатия. А стандартам подчиняются только декодеры, что приводит к тому, что качество воспроизведения формата МР3 далеко не всегда зависит от плеера, проигрывающего этот файл. В связи с разными способностями и пристрастиями реализаторов различных кодеров, одни из них лучше справляются с симфонической музыкой, другие - с роком и металлом, третьи - с рэпом и рэйвом и так далее.

JointStereo, являющийся одной из особенностей МР3, означает, что вместо кодирования стерео как двух независимых каналов производится кодирование т.н. центрального канала и разницы, отличающей его от исходных стереоканалов. Довольно много составляющих звука в стереоканалах одинаковы, и их кодирование в общем канале позволяет высвободить дополнительную полосу для более подробного кодирования разницы, что приводит к некоторому улучшению качества.

Обязательно следует упомянуть и о Variable Bit Rate, или VBR. Это означает, что кодер изменяет степень сжатия «на лету», в зависимости от характера звука. Такой подход приводит к уменьшению итогового размера файла или, при увеличении требований к качеству, при том же размере файла позволяет добиться лучшего звучания.

MP3 Pro - Появившийся в 2001 году кодек MP3 Pro был создан компанией Coding Technologies совместно с Thomson Multimedia. В его основе лежит МР3, и в результате он получился полностью совместимым с MP3 назад и лишь частично вперед. В нем используется технология SBR (Spectral Band Replication), за счет чего кодек обеспечивает хорошее качество на низких битрейтах. Однако качество кодирования на средних и высоких скоростях передачи данных уступает качеству почти всех других кодеков. В итоге MP3 Pro применяется больше для трансляций в интернете и демонстраций фрагментов новых музыкальных композиций.

Аудио стандарт MPEG-4 не требует единственного или малого набора высокоэффективных схем компрессии, а скорее сложный набор для выполнения широкого круга операций от кодирования низкокачественной речи до высококачественного аудио и синтезирования музыки.

Семейство алгоритмов аудио кодирования MPEG-4 охватывает диапазон от кодирования низкокачественной речи (до 2 кБит/с) до высококачественного аудио (от 64 кБит/с на канал и выше).

RAW - Да, это не только формат изображения, в котором пишут фотографии некоторые цифровые камеры. На самом деле, RAW является т.н. «чистой оцифровкой», в которой не содержится заголовка и находится лишь последовательность отсчетов звуковой волны. Обычно оцифровка хранится в 16-разрядном формате.

Shorten – один из первых появившихся lossless-кодеков. Долгое время проект "спал сладким сном". Однако, в 2007 году, он снова начал развиваться.

TTA (True Audio) - Напоследок о самом интересном. TTA разрабатывается командой наших соотечественников. И, надо сказать, результат их работы впечатляет. Обо всём по порядку.

Кодек является ещё довольно молодым, но несмотря на это содержит все необходимые возможности. Не будем в очередной раз перечислять их, отметим лишь, что формату не хватает лишь поддержки трансляции аудио через сеть.

Формат открыт, равно как и исходные коды программы-кодировщика. Существуют скомпилированные версии под Mac и Linux. Проблем с совместимостью при воспроизведении также возникнуть не должно, ибо уже существуют плагины для всех популярных проигрывателей, а также DirectShow фильтры для Windows Media Player. Есть плагин для Adobe Audition, что немаловажно для музыкантов. За последние 4 года даже появилась аппаратная поддержка в плеерах!

WAV - Он является основным аудио форматом для многих и многих систем воспроизведения цифрового звука и используется как стандартный формат звуковых файлов в персональных компьютерах. К тому же, он имеет солидный набор спецификаций, изрядно пополнившийся за последнее время. Его полное название - Microsoft RIFF/WAVE - Resource Interchange File Format/Wave - формат файлов передачи ресурсов/волновая форма, и создан он был инженерами Microsoft и Intel. В свою очередь, WAV расшифровывается как Waveform Audio File Format.

Windows Media Audio (WMA) - лицензируемый формат файла, разработанный компанией Microsoft для хранения и трансляции аудио-информации.

Номинально формат WMA характеризуется хорошей способностью сжатия, что позволяет ему «обходить» формат MP3 и конкурировать по параметрам с форматами Ogg Vorbis и AAC. Но как было показано независимыми тестами, а также при субъективной оценке качество форматов все таки не является однозначно эквивалетным, а преимущество даже перед MP3 однозначным, как это утверждается компанией Microsoft.

Программы:

DVDVideoSoft Free Studio 6.1.1.426

Пакет бесплатных программ обработки мультимедиа. Конвертирование видео, аудио. Поддержка многих медиаформатов, включая форматы мобильных устройств. Возможность записи CD/DVD/BlueRay-дисков. Работы с медиафайлами сервиса YouTube, других сервисов....

Format Factory 3.0.1.1

Универсальный конвертер видео, аудио, графических файлов. Поддержка большого количества мультимедиа форматов, возможность создания DVDRip....

Русский, Украинский

Free MP3 Cutter and Editor 2.6.0.1654

Очень простая, маленькая, удобная программа редактирования звуковых файлов формата mp3, wav. Free MP3 Cutter and Editor удобен как простой редактор звуковых MP3, WAV-файлов. Может использоваться любым, даже неопытным пользователем....

MediaCoder 0.8.20.5380 Full

Программа обработки медиафайлов: сжатие, конвертер видео-, аудио-, извлечение аудио из видео, создание CD/DVDRip. Непростой, но довольно мощный медиаконвертер. Предоставляет полный спектр настроек при обработке, сжатии, конвертации форматов....

MP3 Quality Modifier 2.51

Основная задача программы - пакетное уменьшение размера MP3 файлов путем изменения его битрейта простым и интуитивно понятным способом, так чтобы размер файла значительно уменьшился, а качество звука осталось прежним. Изменять характеристики MP3 файлов можно при помощи предлагаемых настроек или выставить свои собственные расширенные настройки. Доступны настройки частот и звуковых каналов....

Power Sound Editor Free 7.8.1

Бесплатная версия звукового редактора и средства записи. Богатые возможности обработки звука. Простое понятное управление операциями и различными эффектами над аудио данными....

Nero - многофункциональный мультимедийный пакет для работы с CD и DVD дисками, звуком и видео, включающий в себя также утилиту резервного копирования, вёрстки обложек дисков, поддержку виртуальных дисков. Начиная с версии 6.6.0.13, Nero может также записывать диски форматов HD DVD и Blu-ray. Поддерживает технологии нанесения изображений LabelFlash, DiscT@2, LightScribe. Существуют версии для операционных систем Microsoft Windows и Linux (только программа для записи дисков, без дополнительных утилит).

[править]Состав пакета

Nero Burning ROM - мощная программа для высококачественного копирования и прожига дисков CD, DVD и Blu-ray. Кроме этого в Nero Burning ROM содержатся множество полезных инструментов, которые значительно превосходят функции простого копирования. Это единственная программа, которая необходима пользователю для сохранения данных и предоставления к ним доступа.

Среди основных возможностей Nero Burning ROM можно выделить следующие: высококачественный прожиг и копирование дисков; компоновка дисков CD, DVD и Blu-ray простым перетягиванием файлов; разделение больших файлов для их записи на нескольких физических дисках; надежность чтения данных, несмотря на царапины, возраст и изношенность дисков; улучшенный уровень безопасности с использованием паролей и шифрования...

Nero StartSmart - программа-меню для запуска нижеперечисленных приложений.

Nero Express - Nero Burning Rom с упрощённым пользовательским интерфейсом.

Nero BackItUp - утилита для резервного копирования данных.

Nero Cover Designer - редактор обложек для CD и DVD и их прожиг на диски LightScribe / Label Flash.

Nero Wave Editor - редактор звуковых файлов.

Nero SoundTrax - программа для создания собственных аудиодисков.

Nero ImageDrive - приложение для работы с виртуальными компакт-дисками. Отсутствует в версии 9 и выше. Разработка приложения прекращена.

Nero Vision - программа для записи видеодисков CD/DVD и видеозахвата. Начиная с 5-й версии (Nero 8) может записывать HDTV на HD-DVD/Blu-Ray.

[править]Варианты поставки

Nero поставляется во множестве разных вариантов. Самые частые поставки осуществляются в виде OEM пакетов, которые, обычно, прилагают к большинству CD и DVD рекордеров. Так же Nero продаётся в полном варианте, называемом Premium для европейских продавцов и Ultra Edition для американских. По непонятным причинам для Северной Америки в полный пакет Nero 7 (Ultra Edition) не были включены две технологии: LabelFlash и DiscT@2. В Европейской же версии Nero 7 Premium обе они присутствуют в полном объёме. В остальных функциях они полностью идентичны.

[править]Варианты поставки 10-й версии пакета

Начиная с 10-й версии пакета, некоторые компоненты пакета можно покупать отдельно. Варианты сборок:

Nero Multimedia Suite 10 - самый полный пакет, содержащий все компоненты Nero;

Nero Vision Xtra - содержит только программы: Nero Vision Xtra, Nero MediaHub и Nero Control Center;

Nero Burning ROM - содержит только программы: Nero BackItUp и Nero Express.

[править]Дополнительные утилиты

Nero CD-DVD Speed - тестирование CD или DVD привода.

Nero DriveSpeed - утилита для регулирования скорости вращения CD или DVD привода Отсутствует в версии 10 и выше. Разработка приложения прекращена.

Nero InfoTool - приложение для выдачи подробной информации о возможностях CD или DVD привода, также выдает информацию о системе.

[править]Старые версии программы

На официальном сайте можно приобрести диски с обновлением для предыдущих версий Nero по цене в $10.

[править]Название программы

Программа получила своё название в честь императора Нерона (англ. Nero), предавшего Рим огню (по одной из версий). Благодаря игре слов, название программы Nero Burning ROM(E) может переводиться как «Нерон, сжигающий Рим» или как «Nero, прожигающий (CD-)ROM» . В отличие от Нерона, Nero ничего не уничтожает, а «прожиг», или «выжигание» означает процесс записи оптического носителя.

Значок программы содержит исторический казус: на нём изображён горящий Колизей, который Нерон не мог сжечь - он был построен через несколько лет после смерти Нерона при Веспасиане.