Функция нескольких переменных примеры. Частные производные функции трёх переменных

Функции нескольких переменных. Геометрическое изображение функции двух переменных. Линии и поверхности уровня. Предел и непрерывность функции нескольких переменных, их свойства. Частные производные, их свойства и геометрический смысл.

Определение 1.1. Переменная z (с областью изменения Z )называется функцией двух независимых переменных х,у в множестве М , если каждой паре (х,у ) из множества М z из Z.

Определение 1.2. Множество М , в котором заданы переменные х,у, называется областью определения функции , а сами х,у – ее аргументами .

Обозначения: z = f(x,y), z = z(x,y).

Замечание. Так как пару чисел (х,у ) можно считать координатами некоторой точки на плоскости, будем впоследствии использовать термин «точка» для пары аргументов функции двух переменных, а также для упорядоченного набора чисел , являющихся аргументами функции нескольких переменных.

Определение 1.3. . Переменная z (с областью изменения Z )называется функцией нескольких независимых переменных в множестве М , если каждому набору чисел из множества М по некоторому правилу или закону ставится в соответствие одно определенное значение z из Z. Понятия аргументов и области определения вводятся так же, как для функции двух переменных.

Обозначения: z = f , z = z .

Геометрическое изображение функции двух переменных.

Рассмотрим функцию z = f(x,y) , (1.1)

Определенную в некоторой области М на плоскости Оху . Тогда множество точек трехмерного пространства с координатами (x,y,z) , где , является графиком функции двух переменных. Поскольку уравнение (1.1) определяет некоторую поверхность в трехмерном пространстве, она и будет геометрическим изображением рассматриваемой функции.

z = f(x,y)

Примерами могут служить изучаемые в предыдущем семестре уравнения плоскости

z = ax + by + c

и поверхностей второго порядка:

z = x ² + y ² (параболоид вращения),

(конус) и т.д.

Замечание. Для функции трех и более переменных будем пользоваться термином «поверхность в n -мерном пространстве», хотя изобразить подобную поверхность невозможно.

Линии и поверхности уровня.

Для функции двух переменных, заданной уравнением (1.1), можно рассмотреть множество точек (х,у) плоскости Оху , для которых z принимает одно и то же постоянное значение, то есть z = const. Эти точки образуют на плоскости линию, называемую линией уровня .


Найдем линии уровня для поверхности z = 4 – x ² - y ². Их уравнения имеют вид x ² + y ² = 4 – c (c =const) – уравнения концентрических окружностей с центром в начале координат и с радиусами . Например, при с =0 получаем окружность x ² + y ² = 4 .

Для функции трех переменных u = u (x, y, z) уравнение u (x, y, z) = c определяет поверхность в трехмерном пространстве, которую называют поверхностью уровня .

Для функции u = 3x + 5y – 7z –12 поверхностями уровня будет семейство параллельных плоскостей, задаваемых уравнениями 3x + 5y – 7z –12 + с = 0.

Частные производные функции трёх переменных

Продолжаем всеми любимую тему математического анализа – производные. В данной статье мы научимся находить частные производные функции трёх переменных : первые производные и вторые производные. Что необходимо знать и уметь для освоения материала? Не поверите, но, во-первых, нужно уметь находить «обычные» производные функции одной переменной – на высоком или хотя бы среднем уровне. Если с ними совсем туго, то начните с урока Как найти производную? Во-вторых, очень важно прочитать статью и осмыслить-прорешать если не все, то бОльшую часть примеров. Если это уже сделано, то уверенной походкой идём со мной, будет интересно, даже удовольствие получите!

Методы и принципы нахождения частных производных функции трёх переменных на самом деле очень похожи на частные производные функции двух переменных . Функция двух переменных, напоминаю, имеет вид , где «икс» и «игрек» – независимые переменные. Геометрически функция двух переменных обычно представляет собой некоторую поверхность в нашем трёхмерном пространстве.

Функция трёх переменных имеет вид , при этом переменные называются независимыми переменными или аргументами , переменная называется зависимой переменной или функцией . Например: – функция трёх переменных

А теперь немного о фантастических фильмах и инопланетянах. Часто можно услышать о четырехмерном, пятимерном, десятимерном и т.д. пространствах. Чушь или нет?
Ведь функция трёх переменных подразумевает четырехмерное пространство
(и действительно, переменных же три + сама функция). График функции трёх переменных представляет собой так называемую гиперповерхность . Представить её невозможно, поскольку мы живём в трехмерном пространстве (длина/ширина/высота). Чтобы вам со мной не было скучно, предлагаю викторину. Я задам несколько вопросов, а желающие могут попробовать на них ответить:

– Существует ли в мире четвертое, пятое и т.д. измерения в смысле обывательского понимания пространства (длина/ширина/высота)?

– Можно ли построить четырехмерное, пятимерное и т.д. пространство в широком понимании этого слова? То есть, привести пример такого пространства в нашей жизни.

– Возможно ли путешествие в прошлое?

– Возможно ли путешествие в будущее?

– Существуют ли инопланетяне?

На любой вопрос можно выбрать один из четырёх ответов:
Да / Нет (наукой это запрещено) / Наукой это не запрещено / Не знаю

Кто правильно ответит на все вопросы, тот, скорее всего, обладает некоторой вещью;-)

Ответы на вопросы я постепенно буду выдавать по ходу урока, не пропускайте примеры!

Собственно, полетели. И сразу хорошая новость: для функции трёх переменных справедливы правила дифференцирования и таблица производных . Именно поэтому вам необходимо хорошо управляться с «обычными» производными функций одной переменной. Отличий совсем немного!

Пример 1

Решение : Нетрудно догадаться –для функции трёх переменных существуют три частных производных первого порядка, которые обозначаются следующим образом:

Или – частная производная по «икс»;
или – частная производная по «игрек»;
или – частная производная по «зет».

В ходу больше обозначение со штрихом, но составители сборников, методичек в условиях задач очень любят использовать как раз громоздкие обозначения – так что не теряйтесь! Возможно, не все знают, как правильно читать вслух эти «страшные дроби». Пример: следует читать следующим образом: «дэ у по дэ икс».

Начнём с производной по «икс»: . Когда мы находим частную производную по , то переменные и считаются константами (постоянными числами) . А производная любой константы, о, благодать, равна нулю:

Сразу обратите внимание на подстрочный индекс – никто вам не запрещает помечать, что являются константами. Так даже удобнее, начинающим рекомендую использовать именно такую запись, меньше риск запутаться.

(1) Используем свойства линейности производной, в частности, выносим все константы за знак производной. Обратите внимание, что во втором слагаемом константу выносить не нужно: так как «игрек» является константой, то – тоже константа. В слагаемом за знак производной вынесена «обычная» константа 8 и константа «зет».

(2) Находим простейшие производные, не забывая при этом, что – константы. Далее причесываем ответ.

Частная производная . Когда мы находим частную производную по «игрек», то переменные и считаются константами :

(1) Используем свойства линейности. И снова заметьте, что слагаемые , являются константами, а значит, за знак производной выносить ничего не нужно.

(2) Находим производные, не забывая, что константы. Далее упрощаем ответ.

И, наконец, частная производная . Когда мы находим частную производную по «зет», то переменные и считаются константами :

Общее правило очевидно и незатейливо: Когда мы находим частную производную по какой-либо независимой переменной, то две другие независимые переменные считаются константами.

При оформлении данных задач следует быть предельно внимательным, в частности, нельзя терять подстрочные индексы (которые указывают, по какой переменной проводится дифференцирование). Потеря индекса будет ГРУБЫМ НЕДОЧЁТОМ. Хммм…. забавно, если после такого устрашения я их сам где-нибудь пропущу)

Пример 2

Найти частные производные первого порядка функции трёх переменных

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Рассмотренные два примера достаточно просты и, решив несколько подобных задачек, даже чайник приноровится расправляться с ними устно.

Для разгрузки вернемся к первому вопросу викторины: Существует ли в мире четвертое, пятое и т.д. измерения в смысле обывательского понимания пространства (длина/ширина/высота)?

Верный ответ: Наукой это не запрещено . Вся фундаментальная математическая аксиоматика, теоремы, математический аппарат прекрасно и непротиворечиво работают в пространстве любой размерности. Не исключено, что где-нибудь во Вселенной существуют неподвластные нашему разуму гиперповерхности, например, четырёхмерная гиперповерхность, которая задается функцией трех переменных . А может быть гиперповерхности рядом с нами или даже мы находимся прямо в них, просто наше зрение, другие органы чувств, сознание способны на восприятие и осмысление только трёх измерений.

Вернемся к примерам. Да, если кто сильно загрузился викториной, ответы на следующие вопросы лучше прочитать после того, как научитесь находить частные производные функции трёх переменных, а то я вам по ходу статьи вынесу весь мозг =)

Помимо простейших Примеров 1,2 на практике встречаются задания, которые можно назвать небольшой головоломкой. Такие примеры, к моей досаде, выпали из поля зрения, когда я создавал урок Частные производные функции двух переменных . Навёрстываем упущенное:

Пример 3


Решение : вроде бы тут «всё просто», но первое впечатление обманчиво. При нахождении частных производных многие будут гадать на кофейной гуще и ошибаться.

Разберём пример последовательно, чётко и понятно.

Начнём с частной производной по «икс». Когда мы находим частную производную по «икс», то переменные считаются константами. Следовательно, показатель нашей функции – тоже константа. Для чайников рекомендую следующий приём решения: на черновике поменяйте константу на конкретное положительное целое число, например, на «пятерку». В результате получится функция одной переменной:
или ещё можно записать так:

Это степенная функция со сложным основанием (синусом). По :

Теперь вспоминаем, что , таким образом:

На чистовике, конечно, решение следует оформить так:

Находим частную производную по «игрек», считаются константами. Если «икс» константа, то – тоже константа. На черновике проделываем тот же трюк: заменим, например, на 3, «зет» – заменим той же «пятёркой». В результате снова получается функция одной переменной:

Это показательная функция со сложным показателем. По правилу дифференцирования сложной функции :

Теперь вспоминаем нашу замену:

Таким образом:

На чистовике, понятно, оформление должно выглядеть, благообразно:

И зеркальный случай с частной производной по «зет» ( – константы):

При определенном опыте проведенный анализ можно проводить мысленно.

Выполняем вторую часть задания – составим дифференциал первого порядка. Это очень просто, по аналогии с функцией двух переменных, дифференциал первого порядка записывается по формуле:

В данном случае:

И делов то. Отмечу, что в практических задачах полный дифференциал 1-го порядка функции трёх переменных требуют составить значительно реже, чем для функции двух переменных.

Забавный пример для самостоятельного решения:

Пример 4

Найти частные производные первого порядка функции трёх переменных и составить полный дифференциал первого порядка

Полное решение и ответ в конце урока. Если возникнут затруднения, используйте рассмотренный «чайниковский» алгоритм, он гарантированно должен помочь. И ещё полезный советне спешите . Такие примеры быстро не решаю даже я.

Отвлекаемся и разбираем второй вопрос: Можно ли построить четырехмерное, пятимерное и т.д. пространство в широком понимании этого слова? То есть, привести пример такого пространства в нашей жизни.

Верный ответ: Да . Причём, очень легко. Например, добавляем к длине/ширине/высоте четвёртое измерение – время. Популярное четырехмерное пространство-время и всем известная теория относительности, аккуратно скомпилированная Эйнштейном по материалам трудов Лобачевского, Пуанкаре, Лоренца и Минковского. Тоже не все знают. За что у него Нобелевская премия? В научном мире был нешуточный скандал, и Нобелевский комитет сформулировал заслугу троечника Эйнштейна примерно следующим образом: «За общий вклад в развитие физики». Дальнейшее, что называется, раскрутка и пиар.

К рассмотренному четырехмерному пространству легко добавить пятое измерение, например: атмосферное давление. И так далее, так далее, так далее, сколько зададите измерений в своей модели – столько и будет. В широком смысле слова мы живём в многомерном пространстве.

Разберём еще пару типовых задач:

Пример 5


Решение : Задание в такой формулировке часто встречается на практике и предполагает выполнение следующих двух действий:
– нужно найти частные производные первого порядка;
– нужно вычислить значения частных производных 1-го порядка в точке .

Решаем:

(1) Перед нами сложная функция, и на первом шаге следует взять производную от арктангенса. При этом мы, по сути, невозмутимо используем табличную формулу производной арктангенса . По правилу дифференцирования сложной функции результат необходимо домножить на производную внутренней функции (вложения): .

(2) Используем свойства линейности.

(3) И берём оставшиеся производные, не забывая, что – константы.

По условию задания необходимо найти значение найденной частной производной в точке . Подставим координаты точки в найденную производную:

Преимуществом данного задания является тот факт, что другие частные производные находятся по очень похожей схеме:

Как видите, шаблон решения практически такой же.

Вычислим значение найденной частной производной в точке :

И, наконец, производная по «зет»:

Готово. Решение можно было оформить и по другому: сначала найти все три частные производные, а потом вычислить их значения в точке . Но, мне кажется, приведенный способ удобнее – только нашли частную производную, и сразу, не отходя от кассы, вычислили её значение в точке.

Интересно отметить, что геометрически точка – вполне реальная точка нашего трехмерного пространства. Значения же функции , производных – уже четвертое измерение, и где оно геометрически находится, никто не знает. Как говорится, по Вселенной никто с рулеткой не ползал, не проверял.

Коль скоро снова философская тема пошла, рассмотрим третий вопрос: Возможно ли путешествие в прошлое?

Верный ответ: Нет . Путешествие в прошлое противоречит второму закону термодинамики о необратимости физических процессов (энтропии). Так что не ныряйте, пожалуйста, в бассейн без воды, событие можно открутить назад только в видеозаписи =) Народная мудрость не зря придумала противоположный житейский закон: «Семь раз отмерь, один раз отрежь». Хотя, на самом деле грустная штука, время однонаправлено и необратимо, никто из нас завтра не помолодеет. А различные фантастические фильмы вроде «Терминатора» с научной точки зрения – полная чушь. Абсурд и с точки зрения философии – когда Следствие, вернувшись в прошлое, может уничтожить собственную же Причину.

Пример 6

Найти частные производные первого порядка в точке

Пример 7

Найти частные производные первого порядка в точке

Это два несложных примера для самостоятельного решения. Полное решение и ответ в конце урока.

Но вы не расстраивайтесь из-за второго закона термодинамики, сейчас я всех приободрю более сложными примерами:

Пример 8

Найти частные производные первого порядка функции трёх переменных

Решение : Найдем частные производные первого порядка:

(1) Начиная находить производную, следует придерживаться того же подхода, что и для функции одной переменной. Используем свойства линейности, в данном случае выносим за знак производной константы .

(2) Под знаком производной у нас находится произведение двух функций, каждая из которых зависит от нашей «живой» переменной «икс». Поэтому необходимо использовать правило дифференцирования произведения .

(3) С производной сложностей никаких, а вот производная является производной сложной функции: сначала необходимо найти, по сути, табличный логарифм и домножить его на производную от вложения.

(4) Думаю, все уже освоились с простейшими примерами вроде – тут у нас «живой» только , производная которого равна

Практически зеркален случай с производной по «игрек», его я запишу короче и без комментариев:

Интереснее с производной по «зет», хотя, всё равно почти то же самое:

(1) Выносим константы за знак производной.

(2) Здесь опять произведение двух функций, каждая из которых зависит от «живой» переменной «зет». В принципе, можно использовать формулу производной частного, но проще таки пойти другим путём – найти производную от произведения.

(3) Производная – это табличная производная. Во втором слагаемом – уже знакомая производная сложной функции.

Пример 9

Найти частные производные первого порядка функции трёх переменных

Это пример для самостоятельного решения. Подумайте, как рациональнее находить ту или иную частную производную. Полное решение и ответ в конце урока.

Перед тем как перейти к заключительным примерам урока и рассмотреть частные производные второго порядка функции трёх переменных, всех еще раз взбодрю четвертым вопросом:

Возможно ли путешествие в будущее?

Верный ответ: Наукой это не запрещено . Парадоксально, но не существует математического, физического, химического или другого естественнонаучного закона, который бы запрещал путешествие в будущее! Кажется чушью? Но практически у каждого в жизни бывало предчувствие (причём, не подкрепленное никакими логическими доводами), что произойдет то или иное событие. И оно происходило! Откуда пришла информация? Из будущего? Таким образом, фантастические фильмы о путешествии в будущее, да и, к слову, предсказания всевозможных гадалок, экстрасенсов нельзя назвать таким уж бредом. По крайне мере, наука этого не опровергла. Всё возможно! Так, когда я учился в школе, то компакт диски и плоские мониторы из фильмов казались мне невероятной фантастикой.

Известная комедия «Иван Васильевич меняет профессию» – выдумка наполовину (как максимум). Никакой научный закон не запрещал Ивану Грозному оказаться в будущем, но невозможно, чтобы два перца оказались в прошлом и исполняли обязанности царя.

Частные производные второго порядка функции трёх переменных

Общий принцип нахождения частных производных второго порядка функции трёх переменных аналогичен принципу нахождения частных производных 2-го порядка функции двух переменных. Поэтому, если вы хорошо проработали урок Частные производные функции двух переменных , то будет всё очень просто.

Для того чтобы найти частные производные второго порядка, сначала необходимо найти частные производные первого порядка или в другой записи: .

Частных производных второго порядка девять штук.

Первая группа – это вторые производные по тем же переменным:
или – вторая производная по «икс»;
или – вторая производная по «игрек»;
или – вторая производная по «зет».

Вторая группа – это смешанные частные производные 2-го порядка, их шесть:
или – смешанная производная «икс по игрек»;
или – смешанная производная «игрек по икс»;
или – смешанная производная «икс по зет»;
или – смешанная производная «зет по икс»;
или – смешанная производная «игрек по зет»;
или – смешанная производная «зет по игрек».

При изучении многих закономерностей в естествознании и экономике приходится встречаться с функциями от двух (и более) независимых переменных.

Определение (для функции двух переменных). Пусть X , Y и Z - множества. Если каждой паре (x , y ) элементов из множеств соответственно X и Y в силу некоторого закона f ставится в соответствие один и только один элемент z из множества Z , то говорят, что задана функция двух переменных z = f (x , y ) .

В общем случае область определения функции двух переменных геометрически может быть представлена некоторым множеством точек (x ; y ) плоскости xOy .

Основные определения, относящиеся к функциям нескольких переменных, являются обобщением соответствующих определений для функции одной переменной .

Множество D называется областью определения функции z , а множество E множеством её значений . Переменные x и y по отношению к функции z называются её аргументами. Переменная z называется зависимой переменной.

Частным значениям аргументов

соответствует частное значение функции

Область определения функции нескольких переменных

Если функция нескольких переменных (например, двух переменных) задана формулой z = f (x , y ) , то областью её определения является множество всех таких точек плоскости x0y , для которых выражение f (x , y ) имеет смысл и принимает действительные значения . Общие правила для области определения функции нескольких переменных выводятся из общих правил для области определения функции одной переменной . Отличие в том, что для функции двух переменных областью определения является некоторое множество точек плоскости, а не прямой, как для функции одной переменной. Для функции трёх переменных областью определения является соответствующее множество точек трёхмерного пространства, а для функции n переменных - соответствующее множество точек абстрактного n -мерного пространства.

Область определения функции двух переменных с корнем n -й степени

В случае, когда функция двух переменных задана формулой и n - натуральное число :

если n - чётное число, то областью определения функции является множество точек плоскости, соответствующих всем значениями подкоренного выражения, которые больше или равны нулю, то есть

если n - нечётное число, то областью определения функции является множество любых значений , то есть вся плоскость x0y .

Область определения степенной функции двух переменных с целым показателем степени

:

если a - положительное, то областью определения функции является вся плоскость x0y ;

если a - отрицательное, то областью определения функции является множество значений , отличных от нуля: .

Область определения степенной функции двух переменных с дробным показателем степени

В случае, когда функция задана формулой :

если - положительное, то областью определения функции является множество тех точек плоскости, в которых принимает значения большие или равное нулю: ;

если - отрицательное, то областью определения функции является множество тех точек плоскости, в которых принимает значения, большие нуля: .

Область определения логарифмической функции двух переменных

Логарифмическая функция двух переменных определена при условии, если её аргумент положителен, то есть, областью её определения является множество тех точек плоскости, в которых принимает значения, большие нуля: .

Область определения тригонометрических функций двух переменных

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y

Область определения функции - вся плоскость x0y , кроме пар чисел, для которых принимает значения .

Область определения обратных тригонометрических функций двух переменных

Область определения функции .

Область определения функции - множество таких точек плоскости, для которых .

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y .

Область определения дроби как функции двух переменных

Если функция задана формулой , то областью определения функции являются все точки плоскости, в которых .

Область определения линейной функции двух переменных

Если функция задана формулой вида z = ax + by + c , то область определения функции - вся плоскость x0y .

Пример 1.

Решение. По правилам для области определения составляем двойное неравенство

Умножаем всё неравенство на и получаем

Полученное выражение и задаёт область определения данной функции двух переменных.

Пример 2. Найти область определения функции двух переменных .

До сих пор нами рассматривалась простейшая функциональная модель, в которой функция зависит от единственного аргумента . Но при изучении различных явлений окружающего мира мы часто сталкиваемся с одновременным изменением более чем двух величин, и многие процессы можно эффективно формализовать функцией нескольких переменных , где – аргументы или независимые переменные . Начнём разработку темы с наиболее распространенной на практике функции двух переменных .

Функцией двух переменных называется закон , по которому каждой паре значений независимых переменных (аргументов) из области определения соответствует значение зависимой переменной (функции).

Данную функцию обозначают следующим образом:

Либо , или же другой стандартной буквой:

Поскольку упорядоченная пара значений «икс» и «игрек» определяет точку на плоскости , то функцию также записывают через , где – точка плоскости с координатами . Такое обозначение широко используется в некоторых практических заданиях.

Геометрический смысл функции двух переменных очень прост. Если функции одной переменной соответствует определённая линия на плоскости (например, – всем знакомая школьная парабола), то график функции двух переменных располагается в трёхмерном пространстве. На практике чаще всего приходится иметь дело с поверхностью , но иногда график функции может представлять собой, например, пространственную прямую (ые) либо даже единственную точку.

С элементарным примером поверхности мы хорошо знакомы ещё из курса аналитической геометрии – это плоскость . Предполагая что , уравнение легко переписать в функциональном виде:

Важнейший атрибут функции 2 переменных – это уже озвученная область определения .

Областью определения функции двух переменных называется множество всех пар , для которых существует значение .

Графически область определения представляет собой всю плоскость либо её часть . Так, областью определения функции является вся координатная плоскость – по той причине, что для любой точки существует значение .

Но такой праздный расклад бывает, конечно же, не всегда:

Как двух переменных?

Рассматривая различные понятия функции нескольких переменных, полезно проводить аналогии с соответствующими понятиями функции одной переменной. В частности, при выяснении области определения мы обращали особое внимание на те функции, в которых есть дроби, корни чётной степени, логарифмы и т. д. Здесь всё точно так же!

Задача на нахождение области определения функции двух переменных практически со 100%-ной вероятностью встретится вам в тематической работе, поэтому я разберу приличное количество примеров:

Пример 1

Найти область определения функции

Решение : так как знаменатель не может обращаться в ноль, то:

Ответ : вся координатная плоскость кроме точек, принадлежащих прямой

Да-да, ответ лучше записать именно в таком стиле. Область определения функции двух переменных редко обозначают каким-либо символом, гораздо чаще используют словесное описание и/или чертёж .

Если бы по условию требовалось выполнить чертёж, то следовало бы изобразить координатную плоскость и пунктиром провести прямую . Пунктир сигнализирует о том, что линия не входит в область определения.

Как мы увидим чуть позже, в более трудных примерах без чертежа и вовсе не обойтись.

Пример 2

Найти область определения функции

Решение : подкоренное выражение должно быть неотрицательным:

Ответ : полуплоскость

Графическое изображение здесь тоже примитивно: чертим декартову систему координат, сплошной линией проводим прямую и штрихуем верхнюю полуплоскость . Сплошная линия указывает на тот факт, что она входит в область определения.

Внимание! Если вам ХОТЬ ЧТО-ТО не понятно по второму примеру, пожалуйста, подробно изучите/повторите урок Линейные неравенства – без него придётся очень туго!

Миниатюра для самостоятельного решения:

Пример 3

Найти область определения функции

Двухстрочное решение и ответ в конце урока.

Продолжаем разминаться:

Пример 4

И изобразить её на чертеже

Решение : легко понять, что такая формулировка задачи требует выполнения чертёжа (даже если область определения очень проста). Но сначала аналитика: подкоренное выражением должно быть неотрицательным: и, учитывая, что знаменатель не может обращаться в ноль, неравенство становится строгим:

Как определить область, которую задаёт неравенство ? Рекомендую тот же алгоритм действий, что и при решении линейных неравенств .

Сначала чертим линию , которую задаёт соответствующее равенство . Уравнение определяет окружность с центром в начале координат радиуса , которая делит координатную плоскость на две части – «внутренность» и «внешность» круга. Так как неравенство у нас строгое , то сама окружность заведомо не войдёт в область определения и поэтому её нужно провести пунктиром .

Теперь берём произвольную точку плоскости, не принадлежащую окружности , и подставляем её координаты в неравенство . Проще всего, конечно же, выбрать начало координат :

Получено неверное неравенство , таким образом, точка не удовлетворяет неравенству . Более того, данному неравенству не удовлетворяет и любая точка, лежащая внутри круга, и, стало быть, искомая область определения – внешняя его часть. Область определения традиционно штрихуется:

Желающие могут взять любую точку, принадлежащую заштрихованной области и убедиться, что её координаты удовлетворяют неравенству . Кстати, противоположное неравенство задаёт круг с центром в начале координат, радиуса .

Ответ : внешняя часть круга

Вернёмся к геометрическому смыслу задачи: вот мы нашли область определения и заштриховали её, что это значит? Это значит, что в каждой точке заштрихованной области существует значение «зет» и графически функция представляет собой следующую поверхность :

На схематическом чертеже хорошо видно, что данная поверхность местами расположена над плоскостью (ближний и дальний от нас октанты) , местами – под плоскостью (левый и правый относительно нас октанты) . Также поверхность проходит через оси . Но поведение функции как таковое нам сейчас не очень интересно – важно, что всё это происходит исключительно в области определения . Если мы возьмём любую точку , принадлежащую кругу – то никакой поверхности там не будет (т.к. не существует «зет») , о чём и говорит круглый пробел в середине рисунка.

Пожалуйста, хорошо осмыслите разобранный пример, поскольку в нём я подробнейшим образом разъяснил саму суть задачи.

Следующее задание для самостоятельного решения:

Пример 5


Краткое решение и чертёж в конце урока. Вообще, в рассматриваемой теме среди линий 2-го порядка наиболее популярна именно окружность, но, как вариант, в задачу могут «затолкать» эллипс , гиперболу или параболу .

Идём на повышение:

Пример 6

Найти область определения функции

Решение : подкоренное выражение должно быть неотрицательным: и знаменатель не может равняться нулю: . Таким образом, область определения задаётся системой .

С первым условием разбираемся по стандартной схеме рассмотренной на уроке Линейные неравенства : чертим прямую и определяем полуплоскость, которая соответствует неравенству . Поскольку неравенство нестрогое , то сама прямая также будет являться решением.

Со вторым условием системы тоже всё просто: уравнение задаёт ось ординат, и коль скоро , то её следует исключить из области определения.

Выполним чертёж, не забывая, что сплошная линия обозначает её вхождение в область определения, а пунктир – исключение из этой области:

Следует отметить, что здесь мы уже фактически вынуждены сделать чертёж. И такая ситуация типична – во многих задачах словесное описание области затруднено, а даже если и опишите, то, скорее всего, вас плохо поймут и заставят изобразить область.

Ответ : область определения:

К слову, такой ответ без чертежа действительно смотрится сыровато.

Ещё раз повторим геометрический смысл полученного результата: в заштрихованной области существует график функции , который представляет собой поверхность трёхмерного пространства . Эта поверхность может располагаться выше/ниже плоскости , может пересекать плоскость – в данном случае нам всё это параллельно. Важен сам факт существования поверхности, и важно правильно отыскать область, в которой она существует.

Пример 7

Найти область определения функции

Это пример для самостоятельного решения. Примерный образец чистового оформления задачи в конце урока.

Не редкость, когда вроде бы простые на вид функции вызывают далеко не скороспелое решение:

Пример 8

Найти область определения функции

Решение : используя формулу разности квадратов , разложим подкоренное выражение на множители: .

Произведение двух множителей неотрицательно , когда оба множителя неотрицательны: ИЛИ когда оба неположительны: . Это типовая фишка. Таким образом, нужно решить две системы линейных неравенств и ОБЪЕДИНИТЬ полученные области. В похожей ситуации вместо стандартного алгоритма гораздо быстрее работает метод научного, а точнее, практического тыка =)

Чертим прямые , которые разбивают координатную плоскость на 4 «уголка». Берём какую-нибудь точку, принадлежащую верхнему «уголку», например, точку и подставляем её координаты в уравнения 1-й системы: . Получены верные неравенства, а значит, решением системы является весь верхний «уголок». Штрихуем.

Теперь берём точку , принадлежащую правому «уголку». Осталась 2-я система, в которую мы и подставляем координаты этой точки: . Второе неравенство неверно, следовательно, и весь правый «уголок» не является решением системы .

Аналогичная история с левым «уголком», который тоже не войдёт в область определения.

И, наконец, подставляем во 2-ю систему координаты подопытной точки нижнего «уголка»: . Оба неравенства верны, а значит, решением системы является и весь нижний «уголок», который тоже следует заштриховать.

В реальности так подробно расписывать, естественно, не надо – все закомментированные действия легко выполняются устно!

Ответ : область определения представляет собой объединение решений систем .

Как вы догадываетесь, без чертежа такой ответ вряд ли пройдёт, и это обстоятельство вынуждает взять в руки линейку с карандашом, хоть того и не требовало условие.

А это ваш орешек:

Пример 9

Найти область определения функции

Хороший студент всегда скучает по логарифмам:

Пример 10

Найти область определения функции

Решение : аргумент логарифма строго положителен, поэтому область определения задаётся системой .

Неравенство указывает на правую полуплоскость и исключает ось .

Со вторым условием ситуация более затейлива, но тоже прозрачна. Вспоминаем синусоиду . В качестве аргумента выступает «игрек», но это не должно смущать – игрек, так игрек, зю, так зю. Где синус больше нуля? Синус больше нуля, например, на интервале . Поскольку функция периодична, то таких интервалов бесконечно много и в свёрнутом виде решение неравенства запишется следующим образом:
, где – произвольное целое число.

Бесконечное количество промежутков, понятно, не изобразить, поэтому ограничимся интервалом и его соседями:

Выполним чертёж, не забывая, что согласно первому условию, наше поле деятельности ограничивается строго правой полуплоскостью:

мда …какой-то чертёж-призрак получился… доброе приведение высшей математики…

Ответ :

Следующий логарифм ваш:

Пример 11

Найти область определения функции

В ходе решения придётся построить параболу , которая поделит плоскость на 2 части – «внутренность», находящуюся между ветвями, и внешнюю часть. Методика нахождения нужной части неоднократно фигурировала в статье Линейные неравенства и предыдущих примерах этого урока.

Решение, чертёж и ответ в конце урока.

Заключительные орешки параграфа посвящены «аркам»:

Пример 12

Найти область определения функции

Решение : аргумент арксинуса должен находиться в следующих пределах:

Дальше есть две технические возможности: более подготовленные читатели по аналогии с последними примерами урока Область определения функции одной переменной могут «ворочать» двойное неравенство и оставить в середине «игрек». Чайникам же рекомендую преобразовать «паровозик» в равносильную систему неравенств :

Система решается как обычно – строим прямые и находим нужные полуплоскости. В результате:

Обратите внимание, что здесь границы входят в область определения и прямые проводятся сплошными линиями. За этим всегда нужно тщательно следить, чтобы не допустить грубой ошибки.

Ответ : область определения представляет собой решение системы

Пример 13

Найти область определения функции

В образце решения используется продвинутая техника – преобразуется двойное неравенство.

На практике также иногда встречаются задачи на нахождение области определения функции трёх переменных . Областью определения функции трёх переменных может являться всё трёхмерное пространство, либо его часть. В первом случае функция определена для любой точки пространства, во втором – только для тех точек , которые принадлежат некоторому пространственному объекту, чаще всего – телу . Это может быть прямоугольный параллелепипед, эллипсоид , «внутренность» параболического цилиндра и т.д. Задача отыскания области определения функции трёх переменных обычно состоит в нахождении этого тела и выполнении трёхмерного чертежа. Однако такие примеры довольно редкИ (нашёл у себя всего пару штук) , и поэтому я ограничусь лишь этим обзорным абзацем.

Линии уровня

Для лучшего понимания этого термина будем сравнивать ось с высотой : чем больше значение «зет» – тем больше высота, чем меньше значение «зет» – тем высота меньше. Также высота может быть и отрицательной.

Функция в своей области определения представляет собой пространственный график, для определённости и бОльшей наглядности будем считать, что это тривиальная поверхность. Что такое линии уровня ? Образно говоря, линии уровня – это горизонтальные «срезы» поверхности на различных высотах. Данные «срезы» или правильнее сказать, сечения проводятся плоскостями , после чего проецируются на плоскость .

Определение : линией уровня функции называется линия на плоскости , в каждой точке которой функция сохраняет постоянное значение: .

Таким образом, линии уровня помогают выяснить, как выглядит та или иная поверхность – причём помогают без построения трёхмерного чертежа! Рассмотрим конкретную задачу:

Пример 14

Найти и построить несколько линий уровня графика функции

Решение : исследуем форму данной поверхности с помощью линий уровня. Для удобства развернём запись «задом наперёд»:

Очевидно, что в данном случае «зет» (высота) заведомо не может принимать отрицательные значения (так как сумма квадратов неотрицательна) . Таким образом, поверхность располагается в верхнем полупространстве (над плоскостью ).

Поскольку в условии не сказано, на каких конкретно высотах нужно «срезать» линии уровня, то мы вольнЫ выбрать несколько значений «зет» на своё усмотрение.

Исследуем поверхность на нулевой высоте, для этого поставим значение в равенство :

Решением данного уравнения является точка . То есть, при линия уровня представляет собой точку .

Поднимаемся на единичную высоту и «рассекаем» нашу поверхность плоскостью (подставляем в уравнение поверхности) :

Таким образом, для высоты линия уровня представляет собой окружность с центром в точке единичного радиуса .

Напоминаю, что все «срезы» проецируются на плоскость , и поэтому у точек я записываю две, а не три координаты!

Теперь берём, например, плоскость и «разрезаем ей» исследуемую поверхность (подставляем в уравнение поверхности) :

Таким образом, для высоты линия уровня представляет собой окружность с центром в точке радиуса .

И, давайте построим ещё одну линию уровня, скажем, для :

окружность с центром в точке радиуса 3 .

Линии уровня, как я уже акцентировал внимание, располагаются на плоскости , но каждая линия подписывается – какой высоте она соответствует:

Нетрудно понять, что другие линии уровня рассматриваемой поверхности тоже представляют собой окружности, при этом, чем выше мы поднимаемся вверх (увеличиваем значение «зет») – тем больше становится радиус. Таким образом, сама поверхность представляет собой бесконечную чашу с яйцевидным дном, вершина которой расположена на плоскости . Эта «чаша» вместе с осью «выходит прямо на вас» из экрана монитора, то есть вы смотрите в её дно =) И это неспроста! Только я так убойно наливаю на посошок =) =)

Ответ : линии уровня данной поверхности представляют собой концентрические окружности вида

Примечание : при получается вырожденная окружность нулевого радиуса (точка)

Само понятие линии уровня пришло из картографии. Перефразируя устоявшийся математический оборот, можно сказать, что линия уровня – это географическое место точек одинаковой высоты . Рассмотрим некую гору с линиями уровня 1000, 3000 и 5000 метров:

На рисунке хорошо видно, что левый верхний склон горы гораздо круче правого нижнего склона. Таким образом, линии уровня позволяют отразить рельеф местности на «плоской» карте. Кстати, здесь приобретают вполне конкретный смысл и отрицательные значения высоты – ведь некоторые участки поверхности Земли располагаются ниже нулевой отметки уровня мирового океана.