Кабель для локальной сети. Преимущества использования ЛВС

Кабели, используемые для выстраивания инфраструктуры компьютерных сетей, выпускаются в широком спектре разновидностей. В числе самых популярных — коаксиальный, витая пара, а также оптоволокно. Какова специфика каждого из них? Каковы особенности монтажа самого распространенного - витой пары?

Типы кабелей: коаксиальный

В числе самых исторически ранних типов кабелей, используемых в сетевых подключениях, — коаксиальный. По толщине ему примерно соответствует питания для компьютера, рассчитанный на работу с розеткой на 220 В.

Структура коаксиальной конструкции такова: в самой середине — металлический проводник, окутан он толстой, чаще всего пластиковой изоляцией. Поверх нее — оплетка из меди или алюминия. Наружный слой — изолирующая оболочка.

Соединение сетевого кабеля рассматриваемого типа может осуществляться посредством:

BNC-коннектора;

BNC-терминатора;

BNC-T-коннектора;

BNC-баррел-коннектора.

Рассмотрим их специфику подробнее.

BNC-коннектор предполагает размещение на концах кабеля, используется для соединения с T- либо баррел-коннекторами. BNC-терминатор используется как изолирующий барьер, препятствующий движению сигнала по кабелю. Корректное функционирование сети без этого элемента в ряде случаев неосуществимо. кабель коаксиального типа предполагает использование двух терминаторов, один из которых требует заземления. BNC-T-коннектор задействуется для соединения ПК с основной магистралью. В его структуре присутствует три слота. Первый подключается к разъему компьютера, с помощью двух других осуществляется соединение разных концов магистрали. Еще один тип разъема для коаксиального кабеля — BNC-баррел. Он используется для того, чтобы соединить разные концы магистрали, либо для увеличения радиуса компьютерной сети.

В числе полезных особенностей коаксиальных конструкций — нет проблем с решением вопроса о том, как соединить два сетевых кабеля данного типа. Достаточно обеспечить надежный контакт проводящих жил, разумеется, при соблюдении технологии сопряжения изоляции и экранной сетки. Вместе с тем коаксиальный кабель довольно чувствителен к электромагнитным помехам. Поэтому в практике выстраивания компьютерных сетей он сейчас используется достаточно редко. Однако он незаменим в части организации инфраструктуры по передаче телевизионных сигналов — от тарелок или кабельных провайдеров.

Витая пара

Самые, вероятно, распространенные сегодня сетевые кабели для компьютера получили название «витая пара». Почему именно такое наименование? Дело в том, что в структуре кабеля данного типа присутствуют попарные проводники. Они изготовлены из меди. Стандартный кабель рассматриваемого вида включает 8 жил (всего, таким образом, 4 пары), но есть и образцы с четырьмя проводниками. Так называемая распиновка сетевого кабеля данного типа (соотнесение каждой жилы с той или иной функцией) предполагает использование изоляции определенного цвета на каждом проводнике.

Внешняя изоляция витой пары изготавливается из ПВХ, которая обеспечивает достаточную защиту проводящих элементов от электромагнитных помех. Есть рассматриваемого типа — FTP и STP. В первом выполняющая соответствующую функцию фольга располагается поверх всех жил, во втором — на каждом из проводников. Есть неэкранированная модификация витой пары - UTP. Как правило, кабели с фольгой дороже. Но их имеет смысл применять, только если есть необходимость в качественной передаче данных на относительно большое расстояние. Для домашних сетей вполне подходит неэкранированный вариант витой пары.

Выделяют несколько классов соответствующего типа конструкций, каждый из них обозначается как CAT с цифрой от 1 до 7. Чем выше соответствующий показатель, тем качественнее материалы, обеспечивающие передачу сигнала. Современные сетевые кабели для компьютера для обмена данными по протоколу Ethernet в домашних сетях предполагают соответствие элементов классу CAT5. В соединениях, где задействуется витая пара, используются разъемы, которые корректно будет классифицировать как 8P8C, но есть и неофициальное их наименование — RJ-45. Можно отметить, что кабели, соответствующие хотя бы классам CAT5 и CAT6, могут передавать данные на скоростях, приближенных к максимальным для рассматриваемого типа конструкций — до 1 Гбит/сек.

Оптоволокно

Возможно, самые современные и быстрые сетевые кабели для компьютера — оптоволоконные. В их структуре присутствуют светопроводящие элементы из стекла, которые защищены прочной пластиковой изоляцией. В числе ключевых преимуществ, которыми обладают данные сетевые кабели для компьютера, — высокая защищенность от помех. Также через оптоволокно можно передавать данные на расстояние порядка 100 км. Соединение кабелей рассматриваемого типа с устройствами может осуществляться посредством различного типа разъемов. В числе наиболее распространенных — SC, FC, F-3000.

Как выглядит данный высокотехнологичный сетевой кабель для компьютера? Фото оптоволоконной конструкции ниже.

Интенсивность практического применения оптоволокна ограничена достаточно высокой стоимостью оборудования, необходимого для передачи данных через него. Однако в последнее время многие российские провайдеры активно используют данный сетевой кабель для интернета. Как считают IT-эксперты, с расчетом на то, что соответствующие инвестиции окупятся в будущем.

Эволюция кабельной инфраструктуры

На примере трех отмеченных типов кабелей мы можем проследить некоторую эволюцию в аспекте выстраивания инфраструктуры компьютерных сетей. Так, изначально при передаче данных посредством стандарта Ethernet задействовались именно коаксиальные конструкции. При этом предельное расстояние, на которое мог быть отправлен сигнал от одного устройства к другому, не превышало 500 метров. Максимальная по коаксиальному кабелю составляла порядка 10 Мбит/сек. Использование витой пары позволило значительно повысить динамику обмена файлами в компьютерных сетях — до 1 Гбит/сек. Также появилась возможность передавать данные в дуплексном режиме (одно устройство могло как получать сигналы, так и отправлять их). С появлением оптоволокна IT-индустрия получила возможность передавать файлы со скоростью 30-40 Гбит/сек и более. Во многом благодаря данной технологии компьютерные сети успешно связывают страны и континенты.

Безусловно, при работе с ПК применяются многие другие виды кабелей, используемых при монтаже компьютерных сетей. Теоретически в подобных целях можно использовать, к примеру, USB-кабель, правда это будет не очень эффективно, в частности, в силу того, что в рамках стандарта USB данные можно передавать на небольшое расстояние - порядка 20 м.

Как подключить витую пару

Витая пара, как мы отметили выше, — сегодня самый распространенный при конструировании компьютерных сетей тип кабеля. Однако для ее практического использования характерны некоторые нюансы. В частности, они отражают такой аспект, как распиновка сетевого кабеля, о которой мы сказали выше. Важно знать, как правильно располагать жилы на участке их соприкосновения с разъемом RJ-45. Процедура, с помощью которой витая пара соединяется с соответствующим элементом, именуется обжимом, так как в ходе ее проведения задействуются особый инструмент, предполагающий силовое воздействие на конструкцию.

Нюансы обжима

В процессе этой процедуры разъемы надежно фиксируются на концах витой пары. Количество контактов в них соответствует числу жил — в обоих случаях таких элементов по 8 штук. Есть несколько схем, в рамках которых может осуществляться обжим витой пары.

Далее мы рассмотрим соответствующую специфику. Но для начала человеку, осуществляющему работу с кабелем, необходимо правильно взять разъемы в руки. Их следует держать так, чтобы металлические контакты располагались сверху.

Пластиковая защелка должна быть направлена в сторону того, кто осуществляет обжим. Слева в этом случае будет 1-й контакт, справа — 8-й. Нумерация — исключительно важный нюанс работы с витой парой. Итак, какие схемы обжима используются специалистами по сетевой инфраструктуре?

Во-первых, есть схема сетевого кабеля, получившая название EIA/TIA-568A. Она предполагает расположение жил соотносительно с металлическими контактами разъема в следующем порядке:

Для 1 контакта: бело-зеленая;

Для 2-го: зеленая;

Для 3-го: бело-оранжевая;

Для 4-го: синяя;

Для 5-го: бело-синяя;

Для 6-го: оранжевая;

Для 7-го: бело-коричневая;

Для 8-го: коричневая.

Есть и другая схема — EIA/TIA-568B. Она предполагает расположение жил в следующем порядке:

Для 1 контакта: бело-оранжевая;

Для 2-го: оранжевая;

Для 3-го: бело-зеленая;

Для 4-го: синяя;

Для 5-го: бело-синяя;

Для 6-го: зеленая;

Для 7-го: бело-коричневая;

Для 8-го: коричневая.

Как соединить сетевой кабель с разъемом, вы теперь знаете. Но полезно изучить специфику, касающуюся различных схем подключения витой пары к тем или иным устройствам.

Обжим и тип соединения

Так, при соединении ПК с маршрутизатором или коммутатором следует применять прямой метод подключения. Если есть необходимость организовать обмен файлов между двумя компьютерами без использования маршрутизатора, то можно задействовать перекрестный метод подключения. Разница между отмеченными схемами небольшая. При прямом методе подключения кабель нужно обжимать по одинаковой распиновке. При перекрестном один конец — по схеме 568A, другой — по 568B.

Высокотехнологичная экономия

Витая пара характеризуется одной интересной особенностью. При прямой схеме подключения устройство можно использовать не 4 пары проводников, а 2. То есть с помощью одного кабеля допустимо соединять с сетью 2 компьютера одновременно. Тем самым можно сэкономить на кабеле или осуществить подключение, если это очень надо сделать, а под рукой лишних метров витой пары нет. Правда, в этом случае предельная скорость обмена данными будет не 1 Гбит/сек, а в 10 раз меньше. Но для организации работы домашней в большинстве ситуаций приемлемо.

Как в этом случае распределить жилы? Соотносительно с контактами на разъемах для подключения :

1 контакт: бело-оранжевая жила;

2-й: оранжевая;

3-й: бело-зеленая;

6-й: зеленая.

То есть 4, 5, 7 и 8 жилы не используются при такой схеме. В свою очередь, на разъемах для подключения второго компьютера:

1 контакт: бело-коричневая жила;

2-й: коричневая;

3-й: бело-синяя;

6-й: синяя.

Можно отметить, что при реализации перекрестной схемы подключения необходимо всегда использовать все 8 проводников в витой паре. Также, если пользователю необходимо реализовать передачу данных между устройствами на скорости 1 Гбит/сек, распиновку необходимо будет осуществить по особой схеме. Рассмотрим ее особенности.

Перекрестное соединение на гигабитной скорости

Первый разъем кабеля следует обжать в соответствии со схемой 568B. Второй предполагает следующее сопоставление жил и контактов на разъеме:

1 контакт: бело-зеленая жила;

2-й: зеленая;

3-й: бело-оранжевая;

4-й: бело-коричневая;

5-й: коричневая;

6-й: оранжевая;

7-й: синяя;

8-й: бело-синяя.

Схема довольно похожа на 568A, но в ней изменено положение синей и коричневой пар проводников.

Соблюдение отмеченных правил соотнесения цвета жил и контактов на разъеме 8P8C — важнейший фактор обеспечения функциональности сетевой инфраструктуры. Человеку, проектирующему ее, необходимо быть внимательным при монтаже соответствующих элементов. Бывает, что компьютер не видит сетевой кабель — это часто связано как раз с некорректным обжимом витой пары.

Как правильно обжимать кабель

Рассмотрим некоторые технические нюансы. Основное приспособление, которое в данном случае задействуется, — кримпер. Он похож на клещи, но при этом адаптирован для работы именно с компьютерными кабелями соответствующего типа.

Конструкция кримпера предполагает наличие специальных ножей, предназначенных для обрезания конструкции. Также иногда кримперы оснащены небольшим приспособлением для зачистки изоляции витой пары. В центральной части инструмента — специальные гнезда, адаптированные к толщине кабельной конструкции.

Оптимальный алгоритм действий человека, обжимающего витую пару, может быть следующим.

  • Прежде всего необходимо отрезать участок кабеля подходящей длины — потребуются, таким образом, его точные измерения.
  • После этого следует снять внешнюю изоляцию — примерно на участке в 3 см на конце кабеля. Главное при этом - не повредить нечаянно изоляцию жил.
  • Затем нужно расположить проводники соотносительно с рассмотренными выше схемами подключения к разъему. После ровно обрезать концы жил, так, чтобы длина каждой из них за пределами внешнего слоя изоляции была около 12 мм.
  • Далее нужно надеть разъем на кабель так, чтобы жилы остались в том порядке, который соответствует схеме подключения, и каждая из них вошла в нужный канал. Следует двигать жилы до тех пор, пока не почувствуется сопротивление пластиковой стенки разъема.
  • После соответствующего размещения жил внутри коннектора оболочка из ПВХ должна располагаться внутри корпуса разъема. Если так сделать не получается, возможно, следует вытащить жилы и немного укоротить их.

Как только все элементы конструкции будут расположены корректно, можно обжимать кабель, вставив разъем в специальное гнездо на кримпере и плавно нажав на рукоятку инструмента до упора.

Любая инженерная коммуникация, в том числе и компьютерная сеть, состоит из различных компонентов и кабель локальной сети – один из основных, от которого напрямую зависит скорость прохождения сигнала и его сохранность от помех, затуханий, потерь пакетов данных.

Сейчас появились новые бескабельные технологии передачи данных, как Wi-Fi и Bluetooth, передающие пакеты данных через радиоволновые сигналы, однако эти технологии далеко не совершенны и имеют ограниченный радиус действия. Кроме того, скорость передачи данных меньше, часто-густо возникают помехи при передаче данных, посему большой популярностью пользуется локальная сеть через кабель как более надежная и скоростная.

Однако, кабель кабелю рознь: бывает кабель двухжильный и многожильный, витой и прямой, с цельной жилой или многожильный, с защитой от помех и без нее и т. д., и т. п. И от всех этих нюансов зависит скорость, надежность, длина пролегания кабеля без усилителя сигнала. На сегодняшний день можно выделить такие виды кабелей для локальных компьютерных сетей:

  • коаксиальный сетевой кабель;
  • сетевой кабель витая пара;
  • оптоволоконный сетевой кабель.

Все эти виды кабелей для локальных сетей имеют совершенно разную структуру и технологические параметры, но объединяет их то, что происходит с их применением, и это уже отдельная статья. Отдельным мастер-классом также является то, как присоединить кабель к штекеру в локальной компьютерной сети своими руками. Ну а далее мы рассмотрим все эти виды кабелей, их параметры, а также преимущества и недостатки.

Коаксиальный сетевой кабель

Наиболее старый вид кабеля, который практически не используется в современных компьютерных сетях — Коаксиальный сетевой кабель. Его вымирание обусловлено дороговизной и малой скоростью передачи данных, все же если Вы решили проложить сеть из коаксиального кабеля, то наиболее удачной будет реализация ее топологией «шина». Также удачным выбором будет топология «звезда» и «пассивная звезда».

Состоит коаксиальный сетевой кабель из двух жил: центральная жила – цельная медная (в очень редком стандарте многожильная и/или выполненная из сплавов, медная с серебряным напылением), которая представлена сердцевиной кабеля, окутана в толстую изоляцию – диэлектрик, он представляет собой вспененный полиэтилен.

По этой изоляции идет плетение так называемого «внешнего» проводника, который состоит из меди, ее сплава или же алюминия. Он же именуется как экран. При этом могут быть разновидности кабеля с двойным экраном, когда одно плетение разделяется от другого дополнительным тонким слоем изоляции.

Защитная оболочка внешнего проводника выполнена в основном из полиэтилена или поливинилхлорида, устойчивых к ультрафиолету, но бывают дорогостоящие кабеля с тефлоновой оболочкой.

Виды коаксиальный кабель имеет разнообразные и их очень много, но конкретно коаксиальный кабель для локальной сети различается по двум стандартам передачи пакетных данных:

  • 10BASE-5 (категорий RG-11 и RG-8);
  • 10BASE-2 (категорий RG-58/U, 58A/U).

Стандарт 10BASE-5 реализуется с применением кабеля «толстый Ethernet», имеющий общее сечение равное 12мм и толстую цельную проводниковую жилу, 11-я категория имеет сопротивление 75 Ом, 8-я – 50. Кабеля данного стандарта могли передавать данные со скоростью 10 Мбит/сек на расстоянии впредь до 500 м.

Стандарт 10BASE-2 реализуется с применением кабеля «тонкий Ethernet», диаметром до 6 мм, с сопротивлением в 50 Ом. Его категория RG-58/U имеет монолитный (цельный) медный центральный проводник, 58A/U представлен с многожильным центральным проводником. Длина передачи данных кабелей этих категорий составляет в пределах 185 м при максимальной скорости передачи данных впредь до 10 Мбит/сек.

Преимущества коаксиального кабеля заключаются в его эффективном экранировании, что позволяет проводить его на дальние расстояния и исключает помехи, а также высокой прочности, которая уменьшает риск механического повреждения кабеля. Кроме того, коаксиальный кабель легко монтировать, присоединять штекеры, двойники и другие детали можно обыкновенными ручными инструментами своими руками.

Недостатки коаксиального кабеля заключаются в низкой пропускной способности при использовании в локальных компьютерных сетях, на фоне этого весомым недостатком является высокая стоимость самого кабеля и штекеров/двойников/переходников и других составных. Плюс сетевые платы для этого вида кабелей уже практически не выпускаются, коммутаторы и концентраторы для них считаются устаревшими.

Сетевой кабель витая пара

Современный и наиболее часто используемый при проведении локальных компьютерных сетей — кабель с витыми парами. Применяется как в домашних, так и в административных локальных сетях с топологией «звезда» и имеет отличное соотношение цена/качество. То есть, сетевой кабель для локальной сети этого вида имеет сравнительно высокую скорость передачи данных по отношению к коаксиальному кабелю, при этом стоимость их не велика.

Состоит сетевой кабель витая пара для локальных сетей из четырех пар проводниковых монолитных медных жил сечением каждой в 0,4-0,6 мм. Толщина жилы такого кабеля составляет 0,51 мм с учетом толщины изоляции проводника – 0,2 мм. Материалом для изоляции служит в бюджетных вариантах кабеля поливинилхлорид (обозначение – PVX), в более дорогих кабелях применяется полипропилен и полиэтилен (обозначения – PP и PE) и самые высококачественные кабеля витой пары выполняются с изоляцией из вспененного полиэтилена или тефлона.

По степени защиты от помех бывает неэкранированный кабель и кабель с витой парой экранированный. Экранирование может быть выполнено из проволочных плетений, из алюминиевой фольги/алюминизированной пленки как отдельных пар, так и всего пучка вместе.

Существуют кабеля с такими типами экранирования:

  • незащищенный вообще никаким экраном кабель витой пары (UTP);
  • незащищенный общим экраном с экранированием пар фольгой (U/STP);
  • с фольгированным общим экраном без экранирования отдельных пар (FTP);
  • с проволочным экраном каждой пары и общим проволочным экраном (STP);
  • с фольгированным экраном каждой пары и общим плетеным экраном (S/FTP);
  • с двойным общим экраном из проволочного оплетения и фольги (SF/UTP).

При этом во всех обозначениях присутствует «TP» — это указывает на вид кабеля – twisted pair (с англ. — витая пара). Те буквы, которые идут впереди, собственно и указывают на наличие/отсутствие экранирования, тип экранирования, а также и материал, из которого выполнено экранирование. Так, буква U (Unshielded) указывает на отсутствие экранной защиты, F (Foiled) – обозначает наличие общей фольгированной общей экранной изоляции всего пучка пар, S (Shielded) – экран в виде проволочного оплетения каждой отдельной пары и (Screening) — экран в виде оплеток всего пучка витых пар.

В зависимости от длины и скорости передачи сигнала существуют различные категории витой пары (всего их 7), при этом предназначенный кабель для локальных компьютерных сетей начинается со второй категории, но на сегодняшний день применяют кабель с 5E категории начиная.

Основным отличием категорий кабелей витых пар ранее являлось количеством жил, но начиная с третей категории и до седьмой включительно, все кабеля имеют по четыре пары (8 жил). Так, основным отличием стало количество витков на единицу длины сечение жилы и сопротивление, что является решающим фактором на длину и скорость передачи данных.

Современные кабеля витой пары применяются в следующих стандартах технологий передачи пакетных данных:

  • 100BASE-TX Ethernet ;
  • 1000BASE-T Ethernet ;
  • 10GBASE-T Ethernet;
  • 40GbE, 100GbE.

Стандарт 100BASE-TX реализовывался с применением кабеля CAT. 5 (витая пара 5 категории), который был способен передать 100 Мбит/сек по двум парам и 1 Гбит – по четырем.

Стандарт 1000BASE-T на сегодняшний день самый распространенный, применяется во многих локальных компьютерных сетях. Для таких сетей применяется самой ходовой категории кабель — CAT. 5e, отличием которой от предыдущей является чуть большая пропускная способность высокочастотных сигналов и наличие модификаций с двумя (100 Мбит/сек) и четырьмя (1 Гбит) парами.

Стандарт 10GBASE-T , на котором построены сети Fast Ethernet и Gigabit Ethernet, реализован с применением кабеля CAT. 6, который способен передать данные на скорости 10Гбит/сек с расстоянием 55 м. Gigabit Ethernet также могут быть реализованы на кабеле CAT. 6a и CAT. 7, что увеличивает длину передачи данных до 100м. При этом седьмая категория всегда имеет полное экранирование.

Стандарт 40GbE и 100GbE – самые современные и высокоскоростные технологии пакетной передачи данных, которые предназначены для сети Gigabit Ethernet с кабелем CAT. 7a. При скорости передачи данных 40 Гбит/сек длина передачи – 50 м, при 100 Гбит/сек – 15 м.

Оптоволоконный сетевой кабель

Все существующие на сегодня виды кабелей для локальных сетей уступают по всем характеристикам оптоволоконному сетевому кабелю. Однако, его стоимость и сложность в монтаже не дают ему широкого распространения, он в основном служит для соединения локальных сетей на дальних расстояниях.

Представляет собой оптоволоконный сетевой кабель проводник света. Свет передается в таком кабеле по стекольным или пластиковым жилам, отражаясь от внутренних стенок. Существует оптоволоконные виды кабелей компьютерных сетей, которые различают по диаметру сердцевины стекольного волокна, соответственно и по способу передачи световых сигналов:

  • одномодовые;
  • многомодовые.

Одномодовые оптоволоконные кабеля имеют диаметр сердцевины стекольного волокна, равный 7-10 микрон. В связи с таким тонким диаметром, волокно предназначено для прохождения одномодового излучения.

Многомодовые оптоволоконные кабеля имеют стекольные волокна с сердцевиной, диаметр которой по европейскому стандарту равен 50 микрон, 62,5 микрон – по японскому и североамериканскому стандартам. Соответственно, по таким сердцевинам проходят несколько мод под разным углом преломления.

Преимущества оптоволоконного кабеля состоят в том, что скорость передачи даны просто феноменальная – теоретически, не существует на сегодняшний день такого сетевого оборудования, которое могло бы поддержать такую скорость передачи данных, на которую способен оптоволоконный кабель. Кроме того, помехи для такого кабеля вовсе не страшны.

Недостатки оптоволоконного кабеля весьма весомы: высокая стоимость кабеля и вспомогательных, монтажных и сетевых элементов для него. Кроме того, монтаж такого кабеля требует специальных инструментов и квалификации мастера-кабельщика. Таким образом, выбор кабеля для локальной сети не целесообразно делать в пользу оптоволокна, соответственно, не будем рассматривать все его характеристики.

Может быть, кто-то сочтет этот материал несвоевременным — действительно, в то время как «весь цивилизованный мир» переходит на Gigabit Ethernet, мы вдруг выпускаем материал, посвященный 100-мегабитовым сетям на витой паре. Однако не будем спешить с выводами. Цивилизованный мир — это, конечно, хорошо, однако если посмотреть на ЛВС в компьютеризованном офисе «среднестатистической» отечественной компании, то сразу понимаешь одно: «Ученье — свет, а неученых — …».

Каждому специалисту, ответственному за локальную сеть (или, в частном случае, за ее создание «с нуля»), неоднократно приходится отвечать на непростой вопрос: справляется (справится) ли она с возложенными на нее задачами? Будет ли соответствовать новым задачам, которые мы когда-нибудь захотим на нее возложить? Как застраховать себя от необходимости дорогостоящей модификации сети хотя бы на несколько лет? Каким образом обеспечить возможность ее модернизации «малой кровью»? Когда все работает как часы, труд сетевого администратора как надсмотрщика и регулировщика трафика между пользователями — необременителен и довольно прост. Но с появлением проблем именно он часто оказывается сидящим на горячих углях…

В этом материале мы попытались встать на позицию человека, имеющего представление о том, что такое «компьютерное железо», но в сетях разбирающегося, мягко говоря, поверхностно. Ведь далеко не каждый сетевой администратор начинает свою деятельность после окончания соответствующего факультета вуза, прохождения сертификационных курсов и последующей полугодичной стажировки под началом «старших товарищей, умных и чутких». У нас в стране, увы, до сих пор самая популярная IT-профессия — «компьютерщик»: «Да, у нас есть программист… Да, картриджи в принтере он тоже меняет… Да, ОС и ПО при необходимости установит. Что говорите? Не «программист»? Знаете, по правде сказать, я их всех так называю…». И когда количество находящихся в офисе компьютеров становится больше трех, именно перед такими «молодыми специалистами» (как кстати пришелся тут термин из советских времен!) дирекция компании зачастую ставит задачу: «Сделать сеть. Быстро. Дешево. И надежно!». И оказываются они в положении котенка, попавшего не то что в омут, а в самую середину водоворота… ЛВС: что же это такое?

Для начала полезно ознакомиться с «каноническим» определением. Итак, локальная вычислительная сеть — это распределенная система, построенная на базе локальной сети связи и предназначенная для обеспечения физической связности всех компонентов системы, расположенных на расстоянии, не превышающем максимальное для данной технологии. По сути, ЛВС реализует технологию комплексирования и коллективного использования вычислительных ресурсов. Главные преимущества таких распределенных систем состоят в следующем: высокая производительность обработки данных, повышенная модульность и расширяемость, надежность, живучесть, постоянная готовность и низкая стоимость. Также подобное определение нельзя считать полным без ориентации на простоту реконфигурации и минимизацию затрат на дальнейшую модернизацию.

«По верхам»

В реальности типичная «среднестатистическая малая ЛВС» состоит из трех условных классов устройств:

  • компьютеров с установленными в них сетевыми адаптерами;
  • «кабельного хозяйства», к которому мы отнесем собственно сетевые кабели, патчи, патч-панели и (опционально) шкафы или стойки;
  • активного сетевого оборудования, которое также может быть размещено в шкафах или стойках, в том числе в тех же, что и патч-панели (как правило, это коммутаторы и/или концентраторы).

Опять-таки, в самом простом случае все компьютеры в сети просто подключены к одному концентратору или коммутатору (напрямую или через патч-панель — нас пока не интересует). В более сложном случае несколько концентраторов или коммутаторов соединены между собой через разъем Uplink (так называемое «каскадирование»). В еще более сложном — несколько концентраторов (коммутаторов) образуют сегменты сети, «сводимые воедино» еще одним, выделенным коммутатором (а вот тут уже «или концентратором» можно не добавлять — грамотный сетевой администратор, как правило, в данном качестве их использовать избегает). На этом список самых простых и распространенных вариантов построения ЛВС мы пока что закончим.

К слову — специалистам-сетевикам кажется уместным напомнить, что в данном материале нам приходится идти на многие упрощения в связи с его ориентацией на самый широкий круг читателей. Конечно, следование канонам и четкость определений — это неплохо, но все же не хочется ставить потенциального начинающего сетевого администратора в положение героя Марка Твена, который как-то сказал: «До тех пор пока мне на уроке геометрии не объяснили, что круг — это совокупность точек, находящихся на одинаковом расстоянии от центра, — я хорошо знал, что такое круг!».

Сеть «на коленке»

На заре «сетевой эры» нередко при построении отечественных ЛВС допускались отклонения от стандартов на кабельные сети. Зачастую причиной тому была бедность (оптоволоконная кабельная система и оборудование хоть и существенно подешевели, но не сравнялись по стоимости с «медными» решениями), иногда небрежность, а в большинстве случаев — элементарная техническая неграмотность. И если с первой причиной (недостаток денег) все же иногда приходится мириться, то две следующие вполне возможно устранить, так как обусловлены они исключительно «человеческим фактором».

Впрочем, как ни странно, сети, построенные с нарушением стандартов, до поры до времени… работали! Однако только до поры. К примеру, пока не приходилось заменять какое-нибудь сетевое устройство (сетевой адаптер, концентратор и пр.). И вот тут, после замены, всю сеть вдруг начинало непредсказуемым образом «лихорадить»… При этом она могла работать нормально со всеми приложениями, кроме одного, и попытка администратора «прижать его к стене» стоила и времени, и, особенно, нервов. А виновато было не приложение и не сетевая карта, а вся сеть. Вернее — те, кто выбирал оборудование, монтировал кабель и сдавал систему в эксплуатацию, не задумываясь (или не подозревая?) о стандартах. Еще более серьезные проблемы возникали при попытках перевода построенной «с отклонениями» сети с Ethernet на Fast Ethernet. Ведь при высоких скоростях ЛВС становится намного требовательнее к качеству кабельной системы, и те допущения, которые «прощались» на 10 Mbps, часто повергают 100-мегабитовую сеть просто «в состояние ступора».

А если все же «по уму»?

Таким образом, прежде всего стоит раз и навсегда запомнить, что проектирование и инсталляция любой ЛВС подразумевают прежде всего четкое следование соответствующим стандартам и рекомендациям, что и обеспечивает ее нормальное функционирование не в «некоторых», а во всех предусмотренных этими стандартами случаях.

  • Современные проводные ЛВС реализуются на базе витых пар и оптоволоконных кабелей.
  • Топология определяет общую структуру взаимосвязей между элементами и характеризует сложность интерфейса.
  • Методы доступа к физической среде подразделяются на случайный и детерминированный и зависят от топологии сети.

Для начала — немного истории. Сложилось так, что для организации взаимодействия узлов в локальных сетях, построенных на базе классических технологий (Ethernet, Token Ring, FDDI), разработанных еще 15–20 лет назад, применяются разделяемые между группой компьютеров каналы связи (общая шина, кольцо), доступ к которым предоставляется по специальному алгоритму (как правило — метод случайного доступа или метод с передачей маркера доступа по кольцу), т. е. основанные на принципе использования разделяемых сред либо поддерживающие его.

Напротив, современные стандарты и технологии локальных сетей настаивают на частичном или полном отказе от использования разделяемой среды передачи данных и переходе на применение индивидуальных каналов связи компьютера с коммуникационными устройствами сети. То есть так же, как это делается в привычных нам телефонных сетях, где каждый телефонный аппарат соединен с коммутатором на АТС индивидуальной линией. Технологиями, ориентированными на применение индивидуальных линий связи, являются Fast- и Gigabit Ethernet, 100VG-AnyLAN, ATM и коммутирующие (switching) модификации уже упомянутых классических технологий. Заметим, что некоторые из них, например l00VG-AnyLAN, так и остались в сознании отечественных «сетестроителей» не более чем звучной экзотикой.

Fast Ethernet как развитие классической Ethernet

Основы наиболее популярной на данный момент технологии построения локальных вычислительных сетей — Ethernet — были разработаны специалистами Palo Alto Research Center (PARC) корпорации Xerox в середине 1970-х гг. К промышленной реализации ее спецификации были подготовлены членами консорциума DIX (DEC, Intel, Xerox) и приняты за основу при разработке стандарта IEEE 802.3 в 1980 г. Обратите внимание на даты! По сути, можно констатировать, что изменилось с тех времен не так уж и много…

10-мегабитовая Ethernet устраивала большинство пользователей на протяжении около 15 лет. Однако в начале 90-х г. стала ощущаться ее недостаточная пропускная способность, и следующим существенным шагом развития классической технологии Ethernet стала Fast Ethernet. В 1992 г. группа производителей сетевого оборудования, включая таких лидеров, как SynOptics, 3Com и ряд других, образовали объединение Fast Ethernet Alliance для разработки стандарта на новую технологию, которая бы подытожила и обобщила достижения отдельных компаний в области Ethernet-совместимого высокоскоростного стандарта. Одновременно были начаты работы в институте IEEE по стандартизации новой технологии. Переломав кучу копий, в мае 1995 г. комитет IEEE принял спецификацию Fast Ethernet в качестве стандарта 802.3u (добавив в базовый документ 802.3 главы с 21 по 30). Это и сыграло решающую роль в дальнейшей судьбе технологии, так как обеспечивало преемственность и согласованность сетей 10Base-T и 100Base-T.

От 10- к 100Base-T
Отличия на физическом и канальном уровне стека протоколов модели OSI

Из рисунка (в терминах и категориях семиуровневой модели OSI) видно, что отличия Fast Ethernet от Ethernet сосредоточены на физическом уровне. Стандарт 100Base-T (802.3u) установил три различные спецификации для физического уровня для поддержки следующих типов кабельных систем:

  • 100Base-TX для двухпарного кабеля на неэкранированной витой паре UTP Cat. 5 или экранированной витой паре STP Type 1;
  • 100Base-T4 для четырехпарного кабеля на неэкранированной витой паре UTP Cat. 3, 4 или 5;
  • 100Base-FX для многомодового оптоволоконного кабеля.

Физические интерфейсы стандарта Fast Ethernet IEEE 802.3u и их основные характеристики

* ОмВ — одномодовое оптоволокно, МмВ — многомодовое оптоволокно.

** Расстояние может быть достигнуто только при дуплексном режиме связи.

*** В нашей стране распространения не получил ввиду принципиальной невозможности поддержки дуплексного режима передачи.

Полнодуплексный режим

Новым в этом стандарте (для узлов сети, поддерживающих спецификации FX и TX) также стала рекомендация относительно обеспечения возможности полнодуплексной работы (full-duplex mode) при соединении сетевого адаптера с коммутатором или же при непосредственном соединении коммутаторов между собой. Специфика работы заключается в том, что каждый узел одновременно передает и принимает кадры данных по каналам Tx и Rx. Скорость обмена до 200 Mbps. На сегодня многие производители декларируют выпуск как сетевых адаптеров, так и коммутаторов с поддержкой этого режима. Однако, увы — из-за разного понимания механизмов его реализации, в частности способов управления потоком кадров, эти продукты не всегда корректно работают друг с другом. Кстати, для тех, кто привык читать статьи «по диагонали»: обратите внимание на то, при каком способе соединения каких устройств между собой становится возможной работа сетевых карт в полнодуплексном режиме. Подсказка: концентраторы (хабы) — в этом списке отсутствуют. И не зря.

Концентраторы и коммутаторы

Наиболее «близкая» нам сеть Fast Ethernet, построенная на основе концентратора (на жаргоне сетевиков — «хаб», от английского hub) и объединяющая несколько десятков пользователей, часто оказывается «недееспособной» в том смысле, что скорость передачи данных в ней будет неприемлемо низкой, а некоторым клиентам может быть вообще отказано в доступе к сетевым ресурсам. Это происходит вследствие роста числа коллизий (см. глоссарий) и увеличения времени ожидания доступа. Ведь концентратор — это обычный усилитель (приемопередатчик-повторитель) электрического сигнала, иногда даже производители по старинке маркируют его как «(Fast) Ethernet repeater». Получив сетевой пакет от одного порта (т. е. от компьютера, который подключен к данному порту), он транслирует его на все остальные порты одновременно (принцип можно грубо определить как «я передал всем, значит, до того, кому надо, тоже дойдет»).

Коммутатор (он же в простонародии «свитч», от англ. switch) — более интеллектуальное устройство: он имеет свой процессор, внутреннюю высокопроизводительную шину и буферную память. Если концентратор просто передает пакеты от одного порта ко всем остальным, то коммутатор выполняет целенаправленную пересылку пакетов между двумя портами на основе MAC-адреса получателя. Это позволяет увеличить производительность сети, так как сводит к минимуму возможность возникновения коллизий, позволяет обслуживать пересылку пакетов между несколькими портами одновременно и т. д.

Заметив, что в последнее время стоимость коммутаторов для сетей Fast Ethernet постепенно приближается к стоимости концентраторов времен начала прошлого года, кратко подытожим преимущества сетей, построенных с их использованием:

  • Увеличивается производительность сети путем ее деления на адресно (логически) связанные между собой сегменты.
  • Исключается возможность перехвата паролей и прочей передаваемой/принимаемой информации третьей стороной (напомним, что в случае использования концентратора любой пакет транслируется на все подключенные к нему компьютеры).

Если и можно назвать какую-либо (кроме консервативности владельца сети) причину, ограничивающую широкое распространение коммутаторов, то это все же их более высокая стоимость, чем у хабов. Хотя справедливости ради стоит заметить, что скоро у нас, похоже, не будет выбора: все большее количество производителей сетевого оборудования просто-напросто отказываются от концентраторов, предпочитая выпускать новые, более дешевые модели коммутаторов или снижать цены на уже производимые.

Gigabit в конце туннеля?

Конечно, на дворе 2002 год, и даже в нашей стране все больше корпоративных заказчиков уже серьезно присматриваются к Gigabit Ethernet в качестве базового стандарта для своих сетей. Но все-таки в плане массовости именно технология Fast Ethernet (предмет нашего сегодняшнего внимания) продолжает удерживать лидирующие позиции. Более того, отечественные эксперты пророчат долгую жизнь даже «стареньким» сетям Ethernet (10 Mbps), прогнозируя постепенную их модернизацию до 100 Mbps «старшего брата», скоростными возможностями которого типичная офисная сеть будет вполне удовлетворена, наверное, еще не один год. Разумеется, если не планируется проведение телеконференций с десятками участников. Однако по этому поводу у нас в процессе подготовки материала даже родилась одна техническая «шуточка»: стоимость оборудования, которое позволит загрузить сеть на основе Gigabit Ethernet работой, зачастую даже превышает стоимость развертывания этой самой сети. Кроме того, стоит заметить, что проектирование, инсталляция и развертывание сети Gigabit Ethernet — это вряд ли именно то, с чего нужно начинать «практические опыты обустройства ЛВС».

Из истории Ethernet (для интересующихся)

Мало кто знает, что появление Ethernet неразрывно связано с такими краеугольными камнями современной компьютерной индустрии, как Fabless и Core Logic. Эти два понятия трудно перевести на русский, сохранив лаконизм английского языка.

В те времена, когда существовало заблуждение, что дизайн контроллеров (по сути — Core Logic) — удел полупроводниковой индустрии, не без помощи героя нашего рассказа — Гордона Кемпбелла (Gordon A. Campbell) — материализовалась идея самостоятельной разработки, размещенной на мощностях сторонних производителей. С тех пор «безлошадность» (читай — Fabless) в компьютерном мире не считается грехом, а почитается достоянием острого ума.

Для взаимного понимания разработчиков и производителей с благословения Гордона Кемпбелла возник и развился язык описания внутренней структуры чипа — VHDL (Very High Definition Language). Да и само понятие чипа по праву занимает почетное место в чуть ли не бесконечном списке гениальных инициатив мистера Кемпбелла.

Кроме вышеперечисленных, заслуги Гордона Кемпбелла в кратком изложении выглядят так:

  • идея перепрограммируемых контроллеров, таких, как EEPROM;
  • идея и реализация PC-on-chip;
  • организационные работы по становлению Palm Corp.;
  • разработка первого IBM-совместимого видеоконтроллера;
  • основополагающие работы в области 3D-графики;
  • участие в основании компании 3Dfx Interactive.

Настало время назвать компанию, «причастную» к успехам Мистера Кемпбелла — им, к слову, и организованную: Chips & Technologies Inc. В тесном сотрудничестве с Novell более десяти лет назад родился продукт, надолго определивший структуру современных сетевых технологий, — Novell Eagle. Сегодня аббревиатура NE2000 известна всем, кто связан с сетевыми технологиями.

Novell разрабатывала программную модель драйверной поддержки Ethernet, а Chips & Technologies взялась за программирование полупроводниковой логики. Производство было поручено National Semiconductor. Так появился чипсет, состоящий из трех составляющих:

  • DP8990 (Network Interface Controller, NIC) — интерфейс для подключения к локальной шине персонального компьютера;
  • DP8991 (Serial Network Interface, SNI) — сериализация данных с использованием манчестерского кодирования и механизм обслуживания коллизий;
  • DP8992 (Coaxial Transceiver Interface, CTI) — прием и передача данных по коаксиальному кабелю.

Интересный факт: вездесущий Кемпбелл для производства комплектующих Ethernet, в том числе и контроллеров 8992, основал собственную компанию SEEQ Technology.

Позже технология Chipernet (так предварительно именовалась Ethernet) была дополнена возможностями передачи данных по неэкранированной витой паре проводников — UTP (Unshielded Twisted Pair). Важно подчеркнуть, что Ethernet задумывалась как недорогая и эффективная альтернатива в ряду прочих сетевых решений. Поэтому совершенно логично выглядит и расширение возможностей с помощью витой пары.

Одним из лидеров по производству недорогих сетевых контроллеров, использующих Ethernet, стала «Западная Цифровая корпорация», более известная как Western Digital. Это происходило в то время, когда жесткие диски еще не стали «коронным номером» WDC (впоследствии из-за смены интересов разработка сетевых технологий была продана компании SMC). С тех пор знаменитая троица — SMC, 3Com, Intel — правит миром давно уже не NE2000-совместимых сетевых адаптеров.

В мире совместимых с NE2000 устройств акценты расставили три другие компании — Realtek (60% рынка всех сетевых контроллеров), VIA Tehnologies, Winbond Electronics. Последний больше знаком потребителям по торговой марке Compex. Практика

Три источника, три составные части…

По темпам совершенствования своих характеристик, например, увеличению верхней граничной частоты тракта передачи и пропускной способности, кабельные системы практически не уступают современным процессорам с их растущими тактовыми частотами. Уже один этот факт дает основание утверждать, что данное направление относится к числу наиболее динамично развивающихся на рынке информационных технологий. Как и в любой другой области с высокими темпами развития, на этом рынке существуют свои проблемы технического, организационного и маркетингового плана, а в процессе классификации элементов структурированной кабельной системы (СКС), в которую «вписывается» современная компьютерная сеть, сталкиваются различные, часто непримиримые подходы и школы.

Но на сколько бы основных групп и классов «отцы сетестроения» не делили бы компоненты современной сети, для распространения сигналов в ней, помимо устройств доступа, отвечающих за физический интерфейс, требуются как минимум еще две немаловажные детали, участвующие в образовании физической среды передачи, — кабели (мы сознательно ограничимся рассмотрением подсистемы рабочего места и горизонтальной подсистемы «на меди») и разъемы для их соединения. Эти компоненты современной СКС многократно описаны, но необходимость небольшого «попурри» на эту тему обусловлена тем фактом, что, например, невзирая на общее снижение цен на достаточно качественные медные кабели Cat.5e, пользователям зачастую навязывается широкий ассортимент откровенно «базарной» продукции (пригодной разве что для создания домашней сетевой структуры). В более серьезном случае это становится одним из источников постоянной головной боли обслуживающего персонала сетей, которому в большинстве своем приходится обходиться (увы!) без дорогостоящих профессиональных сетевых анализаторов, позволяющих определить почти все неполадки в сети одним нажатием кнопки.

Для применения в качестве базового UTP определен одножильный 4-парный кабель с диаметром проводника 0,51 мм (24 AWG). По другим канонам допускается также использование одножильного кабеля с диаметром проводника 0,64 мм (22 AWG). Для многожильного патч-корда (UTP, те же 100 Ом) актуальна задача обеспечения длительного срока службы, несмотря на частые неминуемые изгибы в процессе эксплуатации. Тут же отметим, что несмотря на определенную «лояльность» стандартов в отношении многожильных кабелей для кроссовых шнуров и подключающих (пользовательских) кабелей (для них стандарт допускает на 20--50% большее затухание в зависимости от того, какому стандарту следуют — американскому или международному), во всем остальном они должны отвечать минимальным требованиям к рабочим характеристикам кабеля горизонтальной системы.

Должна присутствовать маркировка рабочих характеристик для обозначения соответствующей категории. Эти метки не должны заменять собой метки класса безопасности. В качестве примера приведем маркировку, нанесенную на кабель нашей тестовой системы.

Маркировка кабеля

* NVP (Nominal Velocity of Propagation) — номинальная скорость распространения — коэффициент укорочения волны в кабеле. Он показывает, во сколько раз скорость распространения сигнала по витым парам меньше скорости света в вакууме.

О цветовом кодировании и правильности терминирования

При таком порядке подключения пар, указано в таблице, обеспечиваются гарантированные производителем величина и знак распределения задержек распространения сигнала.

Варианты обжима разъемов RJ-45



Стандарты терминирования соединителей
Варианты «A» и «B»

Последнее объясняется просто — с целью уменьшения перекрестных наводок между парами и исключения возможных резонансных явлений при неполном согласовании с нагрузкой неиспользуемых пар (а в некоторых сетевых адаптерах мы обнаружили в гнезде только четыре контакта вместо восьми) проводники свиваются попарно с разным шагом (количеством скруток на единицу длины). По этой же причине желательно также учитывать, что соединение между гнездом и штекером коннектора осуществляется через восемь близко расположенных параллельных контактов, что обусловливает емкостную связь между ними. Степень этого влияния также зависит от способа подключения контактов к соответствующим парам кабеля (см. рисунок). В варианте 568 А пара 2 разъединена парой 1, в последовательности 568 В — пара 3 парой 1.

Стандарт RJ45 (можно встретить название соединителя 8Р8С) пришел в мир компьютерных сетей из телефонии. Он предусматривает несимметричное разъемное соединение. Модульные соединители семейства RJ выпускаются в двух вариантах, ориентированных на кабели с различным типом жилы. Забегая немного вперед, укажем на то, что у гибких коммутационных шнуров (плоских модульных двух-, четырех-, шести- или восьмижильных Cat.3 и четырех витых пар Сат.5) жила состоит из нескольких проволок. Поэтому для изготовления таких кабелей необходимо использовать соединитель с контактом, врезающимся в тело жилы. У монтажного кабеля жила выполнена из монолитного медного проводника, поэтому для монтажа этих кабелей используются соединители с разрезным контактом. Соответственно, если соединитель не предназначен для данного типа кабеля, то и добиться качественного контакта не удастся.

Существует несколько вариантов взаимного расположения проводников относительно контактов коннектора. Для подсоединения всех четырех пар проводников (напомним, что Fast Ethernet использует для работы две пары, четыре вам понадобятся при переходе на гигабитовую сеть) распространены TIA-T568A, TIA-T568B (см. таблицу).

Подключение пар к контактам с несоблюдением стандартов может привести к так называемому разделению пар, т. е. к ситуации, когда соединитель подключается таким образом, что пара состоит из проводов от двух разных скрученных пар. Такая конфигурация иногда позволяет сетевым устройствам обмениваться данными, но часто становится источником трудно диагностируемой проблемы — она подвержена не только избыточным переходным помехам, но и менее устойчива к внешним, в том числе периодически появляющимся в силу специфики расположения кабеля. Результат — ошибки при передаче данных. Такие разделенные пары позволяют выявить кабельные тестеры.

В общем, если опустить ранее сделанные замечания, допускается использовать оба указанных варианта. Однако приведем цитату для тех, кто пытается воспринимать таблицу вариантов как рекомендацию для изготовления crossover-кабелей: «…при условии, что оба конца терминированы по одному и тому же варианту разводки».


Коммутационные шнуры: «прямой» и Crossover

Основные правила прокладки кабеля

Некоторые правила монтажа кабельных UTP-систем, в справедливости которых мы убедились на собственном опыте.

  • Во избежание растяжения сила натяжения для 4-парных кабелей не должна превышать 110 Н (усилие примерно в 12 кг). Как правило, усилие свыше 250 Н приводит к необратимым изменениям параметров UTP-кабеля.
  • Радиусы изгиба установленных кабелей не должны быть менее четырех (некоторые производители настаивают на восьми) диаметров для кабелей UTP горизонтальной системы. Допустимый изгиб в ходе монтажа не менее 3--4 диаметров.
  • Следует избегать излишней нагрузки на кабели, обычно вызываемой их перекручиванием (образование «барашков») во время протяжки или монтажа, чрезмерным натяжением на подвесных участках трасс, туго затянутыми узкими кабельными хомутами (или «пристреленными» скобами).
  • Кабели горизонтальной системы должны использоваться в сочетании с коммутационным оборудованием и патч-кордами (или перемычками) той же или более высокой категории рабочих характеристик.
  • И, пожалуй, главное, о чем следует помнить на протяжении всех инсталляционных работ, — качество собранной кабельной системы в целом определяется по компоненту линии с наихудшими рабочими характеристиками.

Распределительные панели и абонентские розетки

Патч-панель служит для удобной и быстрой коммутации между собой различных портов и оборудования. С ее помощью можно моментально отконфигурировать рабочие порты для передачи данных, звука и видео. Горизонтальные кабели проходят от розеток на рабочих местах к патч-панелям коммутационного узла, где они представлены как порты пользователей. Соответствующие порты пользователей затем могут быть коммутированы с портами LAN, видеопортами и портами телефонной станции. Однако в условиях малой сети патч-панель приобретает совершенно другой смысл, служа в основном даже не столько средством упорядочивания сетевого хозяйства и быстрой реконфигурации, сколько способом избавить себя от дополнительных проблем при последующей модернизации сети и ее расширении. Понятно, что если, к примеру, купленный изначально концентратор рассчитан на 8 портов, а компьютеров в офисе стало 12 — то это «морока». Как минимум придется покупать еще один концентратор и каскадировать их, как максимум — приобретать коммутатор на 16 или даже 24 порта. Однако если изначально для коммутации была использована достаточно «вместительная» патч-панель (на те же 16 или 24 порта) — то удастся избежать мороки гораздо большей — перекраивания кабельного хозяйства. Патч-панели различаются между собой количеством портов, стандартами, способом коммутации. По количеству портов наиболее распространены 12-, 24- и 48-портовые. Обычно они имеют монтажную ширину 19" (формфактор большинства стандартных шкафов), в них предусматривается место для маркировки каналов.

Следующий и наиболее часто видимый с точки зрения клиента элемент кабельной системы — абонентская розетка. Конструкция модуля минимизирует действия монтажника при подключении к кабелю, позволяет сохранить необходимый радиус изгиба кабеля, не требует применения каких-либо инструментов при размещении модуля в коробке. Контакты розетки могут быть дополнительно прикрыты специальной шторкой, предотвращающей попадание внутрь пыли.

Монтажные шкафы предназначены для размещения в них коммутационного и активного оборудования. Шкафы могут комплектоваться системой охлаждения и вентиляции, стеклянными и металлическими дверями, подвижным плинтусом на четырех колесах с тормозами, замками на двери. Вдоль боковых стенок шкафов обычно имеется достаточно места для укладки пучков проводов и вентиляции. Впрочем, для малых сетей монтажный шкаф все-таки является скорее элементом шика, чем реальной необходимостью. Хотя если есть деньги и желание «сделать красиво»…

Какой инструмент может понадобиться

Для работы с кабелем UTP-типа создана целая гамма достаточно удобного комбинированного инструмента, выполняющего резку кабеля, нормированную кольцевую подрезку для снятия верхней изоляции и зачистку отдельных жил (если это требуется для данного типа оборудования, ведь современные способы монтажа, основанные на технологии врезного контакта, не требуют зачистки).

Не затрагивая специализированный инструмент и оснастку, рекомендуемые для терминирования жил кабеля на коммутационные и распределительные панели (с ними можно познакомиться на сайтах их производителей), мы решили остановиться на инструменте, предназначенном для «повседневных» работ, — обжима вилки на кабеле RJ-45. Его многочисленные варианты различаются как по диапазону выполняемых функций и типов обжимаемых разъемов, так и (достаточно существенно) по срокам службы и цене.

Для мелкого ремонта можно попытаться использовать экономичный пластмассовый инструмент. Однако он пригоден лишь для минимального объема эпизодически выполняемых монтажных работ, и, как показывает практика, для модернизации сети объемом в сотню портов его ресурса может хватить не более чем на полгода-год.

Металлический профессиональный инструмент обеспечивает движение пуансонов строго перпендикулярно к поверхности разъема, что благоприятно сказывается на качестве работы. Как правило, такие инструменты имеют многошарнирный механизм с «трещоткой» для снижения и нормирования прикладываемого к рукояткам усилия. В состав универсальных комплектов, позволяющих обжимать различные типы соединителей, могут входить сменные и дополнительные, расширяющие функциональность матрицы и пуансоны.

Промежуточную по качеству и параметрам позицию занимают простые одношарнирные металлические приспособления, достаточно широко представленные на отечественном рынке. Они имеют упрощенную механическую схему и ограниченный (но все же в 3--10 раз больший, чем у пластмассового) срок службы по причине быстрого износа пуансона. Универсальность подобных инструментов обеспечивается не сменными комплектами, а наличием нескольких поверхностей на их рабочих органах (2 в 1 и 3 в 1).

К слову о тестировании и мониторинге…

Мы не сомневаемся, что в элементарной одноранговой сети из пяти машин вряд ли возникнет задача ежедневного углубленного статистического анализа и еженедельного превентивного тестирования. Однако проводимый в ходе работы над статьей неформальный блиц-опрос в отношении мониторинга, диагностики и тестирования участников разделил владельцев и администраторов сетей на несколько групп, позволив нам сформулировать две крайние точки зрения отнюдь не технического и не финансового плана:

  1. Интерес к проведению анализа и аудита сети прямо пропорционален количеству обслуживаемых рабочих станций и вне зависимости от топологии и выполняемых задач асимптотически приближается к нулю (вплоть до полного безразличия), если число клиентов не превышает 15--20. В этом случае чаще всего основными применяемыми на протяжении всей жизни сети «инструментами» являются примитивный кабельный тестер и виртуозное владение утилитами типа ping и tracert. Правда, некоторые респонденты этой группы признают необходимость измерения количественных показателей кабельной системы на момент сдачи в эксплуатацию.
  2. Другая крайность — когда большая и богатая компания идет на покупку дорогостоящих средств управления, диагностирования и тестирования сети, но в своей работе ее сетевые администраторы их практически не используют либо используют некоторые наиболее простые из заложенных в них возможностей по причине того, что у них либо «нет времени», либо «у нас и так все работает», и вообще они не понимают, «зачем им это надо», либо на их аппаратной платформе или в существующей конфигурации данные инструменты периодически «виснут», «не все показывают» или «врут». Не хотелось, но придется добавить — зачастую такая ситуация оказывается обусловленной тем, что возможности имеющихся инструментов… просто-напросто превосходят квалификацию тех, кто ими пользуется.

При этом часто понятия диагностики и тестирования сети отождествляются, что на самом деле в корне неверно. Но под диагностикой принято понимать измерение характеристик и мониторинг показателей работы сети в процессе ее эксплуатации, без остановки работы пользователей. Диагностикой сети является, в частности, измерение числа ошибок передачи данных, степени загрузки (утилизации) ее ресурсов или времени реакции прикладного ПО. То есть та работа, которую, на наш взгляд, администратор сети должен выполнять ежедневно.

Тестирование — это процесс активного воздействия на сеть с целью проверки ее работоспособности и определения потенциальных возможностей по передаче сетевого трафика. Как правило, оно проводится с целью проверить состояние кабельной системы (соответствие качества требованиям стандартов), выяснить максимальную пропускную способность или оценить время реакции прикладного ПО при изменении параметров настройки сетевого оборудования или физической сетевой конфигурации. Такие измерения обычно рекомендуется делать, отключив либо заменив работающих в сети пользователей на агентов теста, что, как правило, в реальной жизни приводит к довольно продолжительному блокированию «нормальной работы офиса». К тому же продолжительность процедуры зависит от того, производятся при этом первичные измерения и анализ параметров или сравнение некоторых требуемых параметров с первичными результатами эталонных (паспортных, сертификационных) тестов. Однако в любом случае чаще всего это приводит к тому, что как сама процедура, так и ее исполнители становятся «малопопулярными» и среди рядовых работников, и среди руководящего звена.

Хоть это и выходит за технические рамки, хочется также отметить, что проведение диагностики или тестирования сети часто напрямую зависит от… степени опытности сетевого администратора. «Молодые и зеленые», как правило, диагностируют и тестируют сеть часто и с удовольствием — ибо при этом не столько исправляют или предотвращают проблемы, сколько занимаются самообучением. Впоследствии, когда все эти «игры» (как и любые другие) приедаются, приступить к процессу диагностирования администратора сети могут заставить только действительно серьезные неполадки в ее работе. Ну и, наконец, с появлением по-настоящему серьезного опыта сетевой администратор опять «возвращается» к диагностике и тестированию, но уже не столько в силу юношеского задора и любопытства, сколько в силу понимания необходимости время от времени проводить эту процедуру в качестве профилактики.

Глоссарий

Сетевой адаптер (сетевая карта) — карта расширения, устанавливаемая в рабочую станцию, сервер или другое устройство сети, позволяющая обмениваться данными в сетевой среде. Операционная система через соответствующий драйвер управляет работой сетевого адаптера. Объем задействованных при этом ресурсов адаптера и центрального процессора системы может изменяться от реализации к реализации. На сетевых картах обычно имеется микросхема (либо гнездо для ее установки) «перешиваемой» памяти для удаленной загрузки (Remote Boot), которая может быть использована для создания бездисковых станций.

Коллизия (collision) — искажение передаваемых данных в сети Ethernet, которое появляется при попытке одновременной передачи несколькими сетевыми устройствами. Коллизии — обычные ситуации, возникающие в процессе нормальной работы сетей Ethernet или Fast Ethernet, но неожиданный рост их числа может свидетельствовать о появлении проблем с каким-либо сетевым устройством, особенно когда это не связано с увеличением трафика сети в целом. В общем случае вероятность столкновения пакетов увеличивается при добавлении в домен новых устройств и удлинении сегментов (увеличении физических размеров сети).

Коллизионный домен (конкурирующий домен) — совокупность устройств, соперничающих между собой за право доступа к среде передачи. Задержка распространения сигнала между любыми двумя станциями, которые принадлежат данной области, не должна превышать установленного значения (часто называемого диаметром коллизионного домена и выражаемого в единицах времени). При подключении устройства к коммутатору число коллизионных устройств в домене, соответственно, всегда сокращается до двух.

Горизонтальный кабель предназначен для использования в горизонтальной подсистеме на участке от коммутационного оборудования (например, в кроссовой этажа) до информационных розеток (на рабочих местах).

Кабель для коммутационных (кроссовых) и оконечных (пользовательских) шнуров обычно также состоит из четырех витых пар и по конструкции очень похож на «обычный» UTP-кабель, используемый в горизонтальной подсистеме. Основные отличия между ними заключаются в том, что для придания устойчивости к многократным изгибам и продления срока эксплуатации проводники выполняются многожильными, а изоляция может иметь несколько бoльшую по сравнению с горизонтальным кабелем толщину (около 0,25 мм). Внешняя изоляционная оболочка изготавливается из материала с повышенной гибкостью. На нее должны наноситься такие же маркирующие и идентифицирующие надписи и метки длины.

Утилизация канала связи сети (network utilization) — процент времени, в течение которого канал связи передает сигналы, или иначе — доля пропускной способности канала связи, занимаемой кадрами, коллизиями и помехами. Параметр «Утилизация канала связи» характеризует степень загруженности сети и эффективность использования ее потенциальных возможностей.

Коммутатор (Switch) — многопортовое устройство канального уровня, устанавливающее на время пересылки пакета адресное соединение между отправителем и получателем на основании построенной и сохраненной в нем коммутационной таблицы MAC-адресов. Проще говоря, коммутатор эмулирует соединение принимающего и передающего устройств между собой «напрямую». Однако не следует забывать, что некоторые (чаще всего — примитивные неуправляемые) коммутаторы при перегрузке в сети, т. е. когда проходящий через них трафик превышает их возможности, могут фактически на время «превращаться» в концентраторы.

Автосогласование (Auto Negotiation) — процесс, инициируемый сетевыми устройствами, имеющий целью автоматически настроить соединение для достижения максимальной в данной среде общей скорости. Приоритеты следующие: 100Base-ТХ — полнодуплексная, 100Base-ТХ — полудуплексная, 10Base-T — полнодуплексная и 10Base-T — полудуплексная. Автосогласование определяется стандартом IEEE 802.3 для Ethernet и выполняется за несколько миллисекунд.

Полудуплекс (Half Duplex) — режим, при котором связь осуществляется в двух направлениях, но в каждый момент времени данные могут передаваться лишь в одном из них. В сети (сегменте) на базе концентраторов все устройства могут работать только в полудуплексном режиме, в отличие от сети на базе коммутаторов, которые могут осуществлять передачу как в полнодуплексном, так и в полудуплексном режиме.

Полный дуплекс (Full Duplex) — двунаправленная передача данных. Способность устройства или линии связи передавать данные одновременно в обоих направлениях по одному каналу, потенциально удваивая пропускную способность.

Скорость физического соединения (Wire Speed) — для Ethernet и Fast Ethernet эта величина обычно приводится как максимальное количество пакетов, которое может быть передано через данное соединение. Скорость физического соединения в сетях Ethernet составляет 14 880, а в сетях Fast Ethernet — 148 809 пакетов в секунду.

MAC-адрес (MAC address — Media Access Control address) — уникальный серийный номер, назначаемый каждому сетевому устройству для идентификации его в сети и управления доступом к среде. Для сетевых устройств адреса устанавливаются во время изготовления (специфицируются IEEE), хотя обычно могут быть изменены с помощью соответствующей программы. Именно благодаря тому, что каждая сетевая карта имеет уникальный MAC-адрес, она может эксклюзивно забирать предназначенные ей пакеты из сети. Если MAC-адрес не является уникальным, то не существует способа провести различие между двумя станциями. MAC-адреса имеют длину 6 байт и обычно записываются шестнадцатеричным числом, первые три байта адреса определяют производителя.

Тестирование

Тестовый стенд

Поскольку такое крупномасштабное тестирование сетевого оборудования для нашей лаборатории внове (да и, к слову, в других компьютерных масс-медиа эта тема затрагивается, прямо скажем, чрезвычайно редко), мы пошли, если так можно выразиться, «по пути наименьшего сопротивления», переложив максимум работы на плечи хорошо себя зарекомендовавших отечественных поставщиков готовых решений и системных интеграторов. Так, гипотетические «офисные компьютеры» в нашей «референсной ЛВС» представляют собой серийные модели ПК Bravo от компании K-Trade, сервер является действительно сервером, специально подобранным путем проведения консультаций с сотрудниками киевского офиса Intel и системного интегратора — компании Ulys Systems, а кабельное хозяйство (коммутационные шнуры с обжатыми разъемами, патч-корды, патч-панель и пр.) было предоставлено в готовом для развертывания виде компанией ProNet.

Для тестирования использовались ПК Bravo с процессором AMD Duron 1100 MHz, 256 MB PC133 SDRAM, материнской платой AOpen AK73A (VIA Apollo KT133A), 40 GB HDD (Maxtor D540X), видеокартой PowerColor GeForce2 MX400 (32 MB) и ОС Windows 2000 Pro (SP3).

Сервером выступала система Dell PowerEdge 2500 (процессор Pentium III 1.26 GHz c возможностью установки второго CPU; чипсет ServerWorks HE-SL; 512 MB PC133 ECC SDRAM; контроллер Adaptec AIC-7899 Dual channel Ultra3 (Ultra160)/LVD SCSI; двухканальный SCSI RAID-контроллер с кэш-буфером 128 MB; три SCSI-винчестера (10000 об/мин), объединенных в массив RAID 5; интегрированный Ethernet-контроллер Intel PRO/100+ Server; интегрированная видеоподсистема на базе ATI-Rage XL 8 MB SDRAM; OC Windows 2000 Server). Подобная конфигурация сервера позволила нам уйти от главной проблемы — влияния быстродействия наиболее «нагруженной» дисковой подсистемы на результаты тестирования (ведь в процессе проведения многих тестов все четыре ПК работали с сервером одновременно). Наличие же достаточно высокопроизводительного процессора и сравнительно большого объема памяти на ПК подстраховывали от влияния нежелательных побочных факторов со стороны «рабочих станций». Управление сервером и ПК осуществлялось с единой консоли оператора, функционирующей через KVM-switch Raritan (предоставленный фирмой «Юстар»).


А вот так все это выглядело в собранном виде

Для проведения тестов сетевых адаптеров был собран стенд, позволяющий имитировать работу устройств в пределах одного коллизионного домена. Он построен с использованием оборудования для структурированных кабельных систем фирмы Molex Premise Networks уровня горизонтальной подсистемы ЛВС и включает в себя четыре фрагмента кабеля Molex PN PowerCat.5E UTP длиной 2 × 15 м и 2 × 75 м, подсоединенных к врезным контактам 24-портовой патч-панели Molex Cat.5E.


Схема стенда

Кабели жгутовались и без коробов подвешивались на крюки в стене. Как уже говорилось, в электропроводных системах приходится учитывать не только затухание, но и наводки. В нашем случае, благодаря тому что кабельные фрагменты при их монтаже оказались сложенными вдвое, наводимые низкочастотные помехи от люминесцентных ламп, пролегающих в непосредственной близости от силовых, сигнальных кабелей и т. п., как мы и предполагали, уменьшились (синфазность воздействующей на жгут кабелей помехи).

В процессе создания сегмента было принято решение отказаться от стандартных абонентских розеток. Для имитации их влияния мы раcкроссировали на патч-панели короткие (и, по причинам, уже объясненным выше, крайне «вредные») отрезки того же кабеля длиной 8--10 см.

Таким образом, вместо требуемой для полноты эксперимента одной пары разъемных контактов мы получили возможность подсоединить еще две, включив их в разрыв цепи от концентратора до машины дополнительным коммутационным шнуром. В Тестовой лаборатории обычно не принято доверять даже известным брэндам без соответствующего инструментального подтверждения, поэтому сразу после инсталляции была не только проверена правильность подключения и распределения кабельных жил, но и измерены количественные параметры каждого из отрезков с помощью портативного анализатора OMNIScanner II от Fluke Network.


Fluke OMNIScanner II собственной персоной


Показатели 75-метрового сегмента


Показатели 15-метровых сегментов


Показатели короткого «гнутого» отрезка

Методика

Так как на всех четырех ПК поочередно устанавливались одинаковые сетевые карты, нас, естественно, интересовало создание по возможности разных условий для их функционирования. В конечном итоге мы остановились на той конфигурации, которую можно видеть на схеме стенда — два «длинных» сегмента по 75 и 90 метров, одно «идеальное подключение» (коммуникационный кабель от компьютера напрямую включен в концентратор) и одно короткое «неудобное» соединение через небольшой отрезок перегнутого кабеля. Забегая вперед, отметим, что наши предположения во многом подтвердились — некоторые модели сетевых карт действительно вели себя по-разному в зависимости от длины сегмента, на которой им приходилось работать. Сервер был «отнесен» от концентратора на 15 метров, что вполне соответствует максимальному из реально встречающихся вариантов (в рамках разумного).

Быть может, некоторые удивятся тому, что мы выбрали в качестве устройства, объединяющего абонентов сети, именно концентратор, а не коммутатор. Ответ довольно прост: дело в том, что для создания нагрузки собственно на предмет тестов, т. е. на сетевые карты, коммутатор в сети из четырех клиентов и одного сервера просто-напросто непригоден. Фактически мы специально усложнили задачу, увеличив количество коллизий в сети до того максимального уровня, который вообще реально было получить, с целью выявить слабые места в работе сетевых контроллеров. В случае же использования коммутатора все тесты фактически превратились бы… в исследование производительности его самого. Несколько слов о концентраторе. Как ни странно, мы остановили свой выбор на довольно простой и дешевой модели LG, сделанной на базе чипов Realtek. Произошло это по двум причинам: во-первых, компании уровня Intel, 3Com или Cisco сейчас практически отказались от выпуска концентраторов, а во-вторых, проведенные в рабочем порядке тесты с использованием других моделей (3Com Office Connect и CompuShack 5DT Desktop) показали, что никакого влияния на результаты тестов замена именно этого устройства в нашем случае не оказывала.

Тесты включали в себя исследование производительности с помощью популярного (насколько вообще можно говорить о популярности подобного ПО) пакета eTestingLabs NetBench 7.02 (модифицированный скрипт NIC_nb702, в котором были оставлены размеры пакетов 512, 4K, 16K и 64K), измерения загрузки CPU штатной утилитой Windows 2000 Performance Monitor во время копирования файла объемом 512 MB с одного из клиентов на сервер, а также измерения скорости «встречного» копирования двух файлов объемом 1 GB между двумя клиентами, соединенными crossover-кабелем (проверка корректности и результативности функционирования полнодуплексного режима).

Характеристики адаптеров Fast Ethernet

Производитель Модель LED индикаторы Wake-On-LAN IC Boot ROM Сетевой чип Ориент. цена, $ Гарантия, лет
3Com 3C905CX-TX-M 10-100/Link/Activity Разъем/кабель в комплекте Предустановлена 3Com 920-ST06 43 5
Home Connect 3C450 10-100/Link/Activity Не поддерживается Не поддерживается 3Com/Lucent 40-04834 22 1
Allied Telesyn AT-2500TX 10-100/Activity Поддерживается Кроватка Realtek RTL8139C 13 1
ASUS PCI-L3C920 Link/Activity Не поддерживается Кроватка 3Com 920-ST03 32 1
CompuShack Fastline II PCI UTP DEC-Chip Link-FDX/Coll/SPD-100/Act Разъем/кабель в комплекте Кроватка Intel (DEC) 21143-PD 33,6 3
Fastline PCI UTP Realtek-Chip Link/Activity Разъем/кабель в комплекте Кроватка Realtek RTL8139C 11,2 3
D-Link DFE-528TX Link/Activity Не поддерживается Не поддерживается D-Link DL10038C 13,6 Пожизн.
DFE-550TX Link/100/FDX Разъем/кабель в комплекте Кроватка D-Link DL10050B 22,3 Пожизн.
Intel InBusiness 10/100 Link/Activity/100Tx Не поддерживается Не поддерживается Intel GD82559 25 1
Pro/100 M Desktop Adapter Link/Activity/100Tx Не поддерживается Предустановлена Intel 82551QM 29 Пожизн.
Pro/100 S Desktop Adapter Link/Activity/100Tx Разъем/кабель в комплекте Предустановлена Intel 82550EY 31 Пожизн.
Lantech FastLink/TX 10/100/FDX/Activity Разъем/кабель в комплекте Кроватка Intel (DEC) 21143-PD 27 2
FastNet/TX Link/Activity/FDX Не поддерживается Кроватка Realtek RTL8139D 6,5 2
LG LNIC-10/100Aw Link/Activity Разъем/кабель в комплекте Кроватка Realtek RTL8139D 6,2 1
Planet ENW-9504 10-100/Activity Не поддерживается Не поддерживается Realtek RTL8139D 9,5 3
SMC EtherPower II 10/100 Link/FDX/Tx/Rx Разъем/кабель в комплекте Кроватка SMC 83С172ABQF 42 5
Surecom EP-320X-R Link/Activity Не поддерживается Кроватка Realtek RTL8139C 9 2
EP-320X-S Link/Activity Не поддерживается Кроватка Myson MTD803A 8 2

Результаты тестов

Для начала объясним, почему несмотря на тестирование сетевых карт в диаграммах можно видеть лишь наименования чипов. Дело в том, что несмотря на вполне «честное» с нашей стороны поведение, выражавшееся в использовании не «generic»-драйверов от производителей чипов, а последних доступных версий от производителей карт — никакой разницы в быстродействии между картами, сделанными на базе одних и тех же микросхем, мы не обнаружили.


Типичная «одночиповая» сетевая карта

Результаты тестов в NetBench приводятся в ограниченном объеме по одной причине — во всех остальных случаях они были попросту… совершенно одинаковыми. Лишь тест с размером пакета 16K выявил некоторые особенности в функционировании нашей тестовой сети, а именно разница в результатах, продемонстрированных сетевыми картами, нас и интересовала более всего. Зато данный подтест с лихвой окупил наши ожидания — средняя пропускная способность каждого из четырех клиентов отличалась иногда в несколько раз! Собрав воедино все «отличившиеся» чипы и попытавшись найти какую-то зависимость, мы обратили внимание на то, что наиболее показательные результаты принадлежат сетевым контроллерам Intel и 3Com, и это сразу навело нас на одну очевидную мысль…

Как одна, так и другая компания не удосуживается простым копированием давно всем известной «образцово-показательной схемы классического сетевого чипа»:

Дополнительно они используют так называемые «адаптивные технологии», позволяющие регулировать объем передаваемой в сети информации и величину задержки с тем, чтобы максимально полно использовать возможности конкретного окружения и достигать наибольшей общей пропускной способности сети. Похоже, в нашем случае карты, расположенные на «неудобных» (или, корректности ради, оговоримся — сочтенных неудобными согласно заложенному алгоритму анализа) сегментах, «добровольно уступали» часть полосы своим собратьям, находящимся в лучших условиях. Следует заметить, что выигрыша в общем объеме передаваемых данных это все же не принесло — если сложить все значения пропускной способности по каждому из клиентов, их сумма будет примерно такой же, как в случае с более «прямолинейными» картами. В целом же мы пока воздержимся от оценки этой особенности некоторых сетевых чипов на уровне «хорошо/плохо», ибо в зависимости от конкретных условий функционирования сети и решаемых в ней задач она легко может изменяться в каждом конкретном случае на диаметрально противоположную.

Чипы

3Com 920-ST06/03 . «Умный» чип, явно поддерживающий технологии адаптации к условиям конкретного кабельного окружения (про «неоднозначность» такого подхода уже достаточно было сказано выше). Демонстрирует самую низкую загрузку центрального процессора и достойную поддержку режима полнодуплексной связи. Классический пример хорошего, но недешевого решения.


3Com 3C905CX-TX-M


ASUS PCI-L3C920

3Com/Lucent 40-04834 . Также очень невысокая нагрузка на процессор и достойная поддержка полнодуплексного режима, но несколько более «умеренный» интеллект — что, впрочем, иногда может быть и полезным. Зато и стоимость такого решения ниже в два раза, чем у более нового.


3Com Home Connect 3C450

D-Link DL10050B . А вот это уже классический пример простого, но добротного чипа — никаких попыток учета особенностей конкретной линии, но в то же время полноценный дуплекс и самая низкая среди «брэндов второго уровня» нагрузка на CPU. Условно этот чип с учетом цены карты на его основе можно назвать упрощенным аналогом 3Com/Lucent 40-04834, равным ему практически во всем, но не обладающим адаптационными свойствами и с более высокой нагрузкой на CPU.


D-Link DFE-550TX

Intel (DEC) 21143-PD . Весьма неоднозначный чип, впрочем — при его возрасте… Некие «зачаточные» адаптационные свойства, но неожиданно высокая загрузка процессора и полный провал в тесте на поддержку режима Full Duplex. Стоит при этом упомянуть одну особенность, которую мы заметили при проведении тестов: карта от CompuShack по крайней мере смогла закончить тест на «встречное копирование», хоть и с худшим результатом, а вот Lantech FastLink/TX в середине теста начала просто… регулярно «терять» сеть! Словом, с одной стороны, в системах на основе концентраторов, где поддержка полнодуплексного режима не требуется, карты на 21143-PD вполне могут применяться, с другой же — вряд ли это решение можно назвать оптимальным.


CompuShack Fastline II PCI UTP DEC-Chip


Lantech FastLink/TX

Intel 82550EY . Еще один вариант «сверхинтеллектуального» устройства, отличившийся нелюбовью к длинным сегментам. Поддержка full duplex на высоте, загрузка CPU весьма невысока. По совокупности свойств — ближайший конкурент 3Com 920-ST06/03, но с гораздо более демократичной ценой. Что интересно — уже был однажды случай, когда одна из независимых западных тестовых лабораторий провела сравнительное исследование производительности сетевых чипов Intel и 3Com, после чего обе компании, по-своему трактуя одни и те же цифры… объявили, что по результатам этих тестов их чип лучше, чем у конкурента!


Intel Pro/100S Desktop Adapter
(PCB у Pro/100 M и InBusiness 10/100 аналогична)

Intel 82551QM (карта Intel Pro/100 M). Все сказанное выше об Intel 82550EY может быть повторено и в данном случае, но с одной оговоркой — этот чип «не полюбил» уже другой сегмент нашей тестовой сети. Честно говоря, пока что мы решили просто привести это как факт, как говорится, «as is», поскольку поведение и предпочтения чипов, поддерживающих адаптационные технологии, вполне заслуживают отдельного исследования.

Intel GD82559 (карта InBusiness 10/100). Этому самому дешевому сетевому решению от Intel явно чуть-чуть «убавили сообразительность», впрочем, сохранив все другие положительные свойства чипов этой компании. И даже нагрузка на CPU упала, а поддержка полнодуплексного режима наоборот — лучшая среди всех участников! Вполне удачное решение для «рядовой» машины, как нам кажется.

Myson MTD803A . По дешевизне продукты на базе этого чипа явно конкурируют с основанными на базе микросхем Realtek — и, в общем-то, довольно успешно. Самая низкая среди дешевых чипов нагрузка на процессор, одинаковое с RTL8139C качество поддержки полнодуплексного режима. Однако в последнем чип Myson все же уступает новой версии Realtek — RTL8139D.


Surecom EP-320X-S

Realtek RTL8139C / D-Link DL10038C . Мы объединили эти чипы вместе, так как хоть формально они и разные, но проявили себя совершенно одинаково. При первом же взгляде на результаты тестов на загрузку CPU и поддержку Full Duplex, мы, не сговариваясь, произнесли одно и то же: «Realtek себе не изменил». Вспомнив классиков советской литературы Ильфа и Петрова, можно, перефразировав их изречение, сказать, что «полный дуплекс у этого чипа… какой-то неполный». Впрочем — работают ведь… И стоят недорого.


Allied Telesyn AT-2500TX


CompuShack Fastline PCI UTP Realtek-Chip


D-Link DFE-528TX


Surecom EP-320X-R

Realtek RTL8139D . Вкратце можно просто констатировать, что с точки зрения результатов тестов этот чип является тем же RTL8139C, которому немного «подлечили» поддержку полнодуплексного режима, причем инженерам Realtek не хватило совсем немного, чтобы «дотянуться» до плотной когорты более именитых конкурентов. Однако высокая загрузка центрального процессора — вечная «болячка» чипов этой компании, осталась без изменений.


Lantech FastNet/TX


LG LNIC-10/100Aw


Planet ENW-9504

SMC 83С172ABQF (карта SMC EtherPower II 10/100). Низкая загрузка CPU, высокая скорость полнодуплексного режима, но с увеличением длины сегмента наблюдается некоторое снижение скорости. В целом — добротный и довольно старый сетевой чип без особых претензий, честно выполняющий свою работу. Вот только цену за подобного класса решение хотелось бы видеть немного другой…


SMC EtherPower II 10/100

Заключение

Что ж, надеемся, что этот материал придется по душе «начинающим администраторам и просто интересующимся» — мы постарались органично совместить в нем как теоретические аспекты, так и практические советы, да и результаты тестирования наиболее распространенных на рынке сетевых контроллеров десктопного уровня не будут лишними для «юноши, размышляющего делать сеть из чего». В целом же стоит заметить, что, безусловно, за кадром осталось не то что «не меньше», а даже во много раз больше, чем можно найти в этом материале. Неудивительно — про то, как правильно спроектировать и настроить сеть, пишутся толстые книжки и монографии, а у нас в распоряжении был лишь десяток с небольшим страниц еженедельника. Поэтому не стоит, наверное, рассматривать данную статью как универсальное самодостаточное пособие или, Боже упаси, учебник. Той информации, которая в ней имеется, пожалуй, может хватить только для того, чтобы понять несколько простых истин: во-первых — «не боги горшки обжигают», и кое-что вполне реально научиться делать самостоятельно, во-вторых — перед тем, как это «кое-что» делать, желательно все же получить хотя бы базовый набор знаний о предмете, ну и в-третьих — даже получив этот базовый набор, останавливаться на достигнутом явно не стоит. Невозможно «знать, что такое ЛВС», ее можно только изучать. Сколько? Да хоть всю жизнь!

Продукты предоставлены компаниями:
3Com — «Ингресс», «НИС»
Allied Telesyn — «ИКС-Мегатрейд», ELKO Kiev
ASUS — «Технопарк»
Compu-Shack — N-Tema, Service ASN
D-Link — «Версия»
Intel — K-Trade
Lantech — Compass, N-Tema
LG — DataLux, K-Trade
Planet — MTI, «Энглер-Украина»
SMC — «Ингресс»
Surecom — IT-Link

Коммутация локальных вычислительных сетей и внедрение Fast Ethernet (Практическоеруководство)

Введение

Коммутация локальных вычислительных сетей (ЛВС) и технологии Fast Ethernet были разработаны в ответ на потребность в повышении эффективности функционирования сетей Ethernet. Путем повышения пропускной способности эти технологии могут устранять “узкие места” в сети и поддерживать приложения, требующие большой скорости передачи данных. Привлекательность этих решений состоит в том, что вам не нужно выбирать то или другое. Они являются взаимодополняющими, так что эффективность функционирования сети чаще всего можно повысить путем использования обеих технологий.

Данное руководство было подготовлено, для того чтобы помочь Вам решить, когда и как внедрить технологии коммутации и Fast Ethernet для достижения максимального эффекта. Оно делится на две части.

Коммутация локальных вычислительных сетей и технология Fast Ethernet

Часть 1 бегло знакомит с различиями между коммутацией ЛВС и технологией Fast Ethernet. Она заканчивается выводами по обеим технологиям.

Решение общих проблем эффективности функционирования

Коммутация локальных вычислительных сетей и технологии Fast Ethernet

Как выбрать нужную технологию

Если ваша сеть Ethernet нуждается в большей пропускной способности, вы можете добиться этого путем добавления 10-портового коммутатора Ethernet или концентратора Fast Ethernet. Каждое из этих устройств обеспечивает суммарную пропускную способность 100 Мбит/с, но разными путями. Поясним это с помощью следующей аналогии.

Предположим, что каждый пакет в сети Ethernet доставляется посыльным на велосипеде. Предположим, что максимальная скорость велосипеда составляет 10 миль в час и имеется однополосная велосипедная дорожка, которую должны делить между собой все посыльные. Пока транспортный поток невелик, каждый велосипед может поддерживать максимальную скорость 10 миль в час. Однако, когда транспортный поток увеличивается, велосипеды вынуждены снижать скорость. Один способ повысить скорость доставки сообщений - расширить велосипедную дорожку. Если мы обеспечим в итоге десять полос движения, то с максимальной скоростью смогут ехать десять велосипедов, каждый по своей полосе. Добавление полос движения на велосипедной дорожке подобно сегментации сети, т.е. добавлению коммутатора Ethernet. Сегментация и коммутация обеспечивают дополнительные полосы для увеличения транспортного потока. Однако, если транспортный поток продолжает увеличиваться, то и этих полос может не хватить и велосипедисты снова будут вынуждены снижать скорость.

Другой способ - дать каждому посыльному более быстроходное транспортное средство. Например, автомобили, максимальная скорость которых составляет 100 миль в час. Это аналогично внедрению в сеть высокоскоростной технологии Fast Ethernet. Подобно Ethernet, Fast Ethernet обеспечивает только одну полосу для транспортного потока. Когда транспортный поток невелик, сообщение может доставляться автомобилем в десять раз быстрее, чем велосипедом. Действительно, каждый посыльный на автомобиле может доставить десять сообщений за то время, которое затрачивает посыльный на велосипеде для доставки одного сообщения.

Транспортный поток резко снижается, поскольку для доставки того же количества сообщений требуется меньше автомобилей.

Подобно тому, как велосипед никогда не сможет достичь скорости автомобиля, Ethernet никогда не сможет достичь скорости Fast Ethernet, независимо от того, сколько добавлено полос, или коммутаторов. Делая выбор между двумя технологиями, вы должны определить, удовлетворяет ли скорость, с которой Ваша сеть передает пакеты, условия незначительного трафика. Если скорость в порядке, потребности Вашей сети в повышении пропускной способности обеспечит коммутация. Если, однако, вам нужно меньшее время ответа или вы опасаетесь, что можете выйти за рамки коммутируемого решения 10 Мбит/с, выбирайте Fast Ethernet. Эта высокоскоростная технология необходима для серверов и рабочих станций, выполняющих критичные к скорости передачи приложения.

Ниже следует краткое изложение обеих технологий.

Коммутация ЛВС - что это такое и как она работает?

Коммутаторы представляют собой высокоскоростные многопортовые мосты, способные полностью пропустить 10 Мбит/с при Ethernet или 100 Мбит/с при Fast Ethernet - через каждый порт. Подобно мостам, коммутаторы принимают интеллектуальные решения о том, куда направить сетевой трафик, исходя из адреса назначения пакета. В результате коммутаторы могут значительно снизить ненужный трафик.

Коммутация не требует изменений в инфраструктуре Ethernet. Коммутатор может быть добавлен к существующей сети Ethernet без изменения сетевой кабельной системы, адаптеров, драйверов или любых других программных средств.

Коммутаторы ЛВС микросегментируют сеть

Коммутаторы ЛВС микросегментируют сеть - делят ее на меньшие сегменты (collision domains), а затем соединяют эти сегменты, давая им возможность связаться друг с другом. Путем сокращения числа узлов в сегменте микросегментация сокращает число коллизий и увеличивает доступную пропускную способность в расчете на один узел. А путем соединения сегментов через коммутаторы формируется единая ЛВС с потенциальной пропускной способностью, во много раз превышающей пропускную способность первоначальной односегментной ЛВС.

Каждый порт коммутатора фактически является входом в отдельный сегмент ЛВС. Этот сегмент может совместно использоваться многими станциями, присоединенными к концентратору, или может быть выделен для одного устройства - сервера или рабочей станции.

Коммутаторы ЛВС поддерживают параллельный трафик

В разделяемой (shared) сети Ethernet трафик, как правило, происходит только между пользователем и сервером, а одновременно может иметь место только один такой “диалог”. Добавление коммутатора в сеть обеспечивает несколько одновременных диалогов. Однако допускается только один диалог на сегмент.

Коммутаторы ЛВС фильтруют сетевой трафик

Коммутаторы могут также сокращать ненужный сетевой трафик. Они “заучивают” МАС - адреса устройств и сохраняют их в таблице. Используя эту таблицу, коммутаторы принимают интеллектуальные решения о том, куда передать трафик, исходя из адреса назначения каждого пакета. Путем фильтрации пакетов, адрес назначения которых находится в том же самом сегменте, что и адрес источника, коммутаторы могут ограничить сетевой трафик соответствующим сегментом.Остальные пакеты передаются в другой сегмент.

Коммутаторы ЛВС могут поддерживать полнодуплексный режим

Помимо этого, некоторые коммутаторы поддерживают дуплексный режим. Этот режим также поддерживается некоторыми сетевыми адаптерами, но не концентраторами. Соединение устройств, способных работать в дуплексном режиме, исключает коллизии и эффективно удваивает пропускную способность этого сегмента.

Fast Ethernet - его отличия от Ethernet

Fast Ethernet - результат развития технологии Ethernet. Базируясь на том же протоколе CSMA/CD (коллективный доступ с опросом канала и обнаружением коллизий), устройства Fast Ethernet работают со скоростью, в 10 раз превышающей скорость Ethernet. 100 Мбит/с. Fast Ethernet обеспечивает достаточную пропускную способность для таких приложений как системы автоматизированного проектирования и производства (CAD/CAM), графика и обработка изображений, мультимедиа. Fast Ethernet совместим с 10 Мбит/с Ethernet, так что интеграцию Fast Ethernet в вашу ЛВС удобнее осуществить с помощью коммутатора, а не маршрутизатора.

Маршрутизаторы являются дорогостоящим решением и их производительность ниже, чем у коммутаторов.

Сходства

Подобно Ethernet, Fast Ethernet представляет собой технологию коллективного пользования, основанную на конкуренции. Fast Ethernet использует такие же приложения и такие же инструментальные программные средства для управления и диагностики неисправностей. Это дает Вам возможность защитить свои капиталовложения в оборудование и обучение сотрудников ЛВС.

Различия

Для Fast Ethernet вам потребуются сетевые адаптеры и концентраторы, специально разработанные для 100 Мбит/с ЛВС. Однако, некоторые из новейших сетевых адаптеров могут работать как в сети Ethernet, так и в Fast Ethernet. К другим различиям относятся сетевая кабельная система, число повторителей и ограничения на длину кабеля.

Среда передачи данных

В Fast Ethernet используется только кабель - витая пара и волоконно-оптические кабели; коаксиальный кабель не поддерживается. Подобно наличию спецификаций кабелей Ethernet - 10BASE-T для кабеля с витыми парами, 10BASE2 для тонкого коаксиального кабеля, 10BASE5 для толстого коаксиального кабеля, 10BASE-F для волоконно-оптического кабеля, - существуют спецификации и для каждого типа кабеля Fast Ethernet. Они перечислены в таблице:

Как и в Ethernet, все типы кабелей Fast Ethernet могут присутствовать в одной и той же сети. Если у Вас имеются четыре пары категории 3, мы рекомендуем Вам использовать спецификацию 100BASE-T4. Это значительно дешевле, чем повторно прокладывать кабель от настольной системы к технологическому шкафу. Для самого технологического шкафа, в котором относительно легко заменить кабель, идеальным вариантом является 100BASE-TX, поскольку он обеспечивает дуплексные соединения коммутатора с коммутатором и коммутатора с адаптером.

Кроме того, хотя разъемы для 100BASE-TX Fast Ethernet такие же, как и для 10BASE-T Ethernet, следует использовать кабель категории 5. Для 100BASE-T4 требуются четыре пары кабеля категории 3, 4 или 5. Три из них нужны для передачи или приема пакетов, в то время как четвертая пара предназначена для прослушивания канала. Поскольку невозможно выделить пары для передачи или приема данных, 100BASE-T4 не может обеспечивать дуплексный режим. Разъемы для обеих этих спецификаций представлены ниже.

Число повторителей

Концентраторы расширяют радиус действия сети путем ретрансляции сигнала. Их называют также многопортовыми повторителями. Однако даже при наличии повторителей в сети существуют ограничения расстояния передачи пакетов. Всякий раз, когда сообщение ретранслируется, оно считается одной пересылкой повторителя (repeater hop).

В сети Ethernet максимально возможны четыре такие пересылки между любой парой устройств - серверов или рабочих станций - в одном и том же сегменте. В случае Fast Ethernet этот максимум равен двум. Если сеть приходится расширять и дальше, следует использовать коммутатор, мост или маршрутизатор.

Кроме того, все повторители Ethernet могут передавать сигнал на одно и то же расстояние. В случае Fast Ethernet имеются два типа повторителей: класса (I) и класса (II). Как правило:

  • Повторители класса (I)
  • могут соединять кабели двух различных типов (например, 100BASE-TX, 100BASE-T4, 100BASE-FX). При использовании устройств этого типа может производиться только одна пересылка между двумя сетевыми станциями в одном и том же сегменте.
  • Повторители класса (II)
  • поддерживают кабели одного типа (например, 100BASE-TX, 100BASE-T4, 100BASE-FX). При использовании этих повторителей может производиться до двух пересылок между любыми двумя сетевыми станциями в одном и том же сегменте.

Ограничения на длину кабеля

В Fast Ethernet появляется еще и другое определение: максимальный диаметр сети - длина кабеля между двумя оконечными станциями в одном и том же сегменте (см. иллюстрации). Для кабеля - витая пара максимальный диаметр сети составляет 205 метров. Волоконно-оптический кабель, конечно, может иметь большую длину. Возможны также комбинации медного и волоконно-оптического кабеля. Они указаны в таблице в конце части 1.

Кроме того, имеются ограничения на максимальную длину кабеля. Для витой пары она ограничена 100 метрами - как и у 10BASE-T Ethernet.

Из-за этих ограничений наращиваемые концентраторы и коммутаторы ЛВС приобретают даже большую значимость для Fast Ethernet, чем для сетей на основе Ethernet. Эти устройства снимают ограничения с размера сети Fast Ethernet.

С помощью наращиваемых концентраторов одна рабочая группа может быть расширена для охвата большего числа пользователей. Даже если к стеку добавить дополнительные модули, весь стек все равно рассматривается как один логический повторитель. Поэтому рабочая группа Fast Ethernet, созданная вокруг наращиваемого концентратора класса (I), может поддерживать десятки пользователей.

С помощью коммутаторов ЛВС многие рабочие группы могут быть соединены между собой для формирования большой ЛВС. Недорогие коммутаторы работают лучше, чем маршрутизаторы, обеспечивая более высокую эффективность функционирования ЛВС. Рабочие группы Fast Ethernet, включающие в себя один или два концентратора, могут соединяться через коммутатор Fast Ethernet с целью дальнейшего увеличения числа пользователей, а также охвата более обширной площади.

Решение общих проблем увеличения пропускной способности ЛВС

Причины общих проблем повышения пропускной способности ЛВС

На повышение пропускной способности сетей может воздействовать ряд факторов, например, быстродействие персональных компьютеров (ПК) и серверов, тип метода хранения информации на дисках, а также сетевая архитектура. В настоящее время, вследствие изменения характера трафика решающее значение приобретает грамотная проработка сетевой архитектуры. В прошлом наибольшая часть трафика - фактически целых 80% - была локальной, ограниченной рабочей группой, в то время как по сетевой магистрали проходило всего лишь около 20% пакетов. Сегодня, при с распределенном характере приложений клиент-сервер, в сочетании с доступом к Internet/интрасети и приданием особого значения центральным серверам для улучшения администрирования, управления и безопасности, эти процентные соотношения изменились. В результате сегодняшние сети требуют более высокоскоростных сетевых магистралей.

Если эти факторы были учтены, а производительность ЛВС по-прежнему остается недостаточной, самое время проверить коэффициент использования пропускной способности сети. Когда этот коэффициент приближается к 40%, эффективность начинает снижаться. Это снижение производительности часто можно объяснить конкуренцией клиентов и/или тем, что сервер ЛВС становится “узким местом” в сети.

Если сеть является управляемой, вы можете добиться желаемого коэффициента при помощи программного обеспечения, основанного на протоколе SNMP (простой протокол управления сетью). Кроме того, некоторые из новейших концентраторов и коммутаторов содержат комплект световых индикаторов, позволяющих визуально определить коэффициент использования пропускной способности.

Что вызывает конкуренцию клиентов?

Ethernet является технологией коллективного использования канала. В типичной ЛВС пропускная способность 10 Мбит/с используется совместно всеми рабочими станциями и серверами. Если к ЛВС добавляется больше пользователей (клиентов), увеличивается сетевой трафик. Ключевыми факторами, способствующими росту сетевого трафика, являются такие приложения клиент/сервер, как Lotus Notes и служебный протокол SAP, программы доступа в Internet, а также приложения, использующие графические файлы. Они увеличивают конкуренцию в сети, снижая среднюю доступную пропускную способность в расчете на одного пользователя.

Даже несколько пользователей, одновременно обращающихся к стандартным офисным приложениям, как, например, Microsoft Office, могут “поглотить” пропускную способность 10 Мбит/с ЛВС коллективного пользования. При таком сценарии Fast Ethernet коллективного пользования, как правило, превзойдет коммутируемый Ethernet со скоростью 10 Мбит/с.

Что приводит к возникновению “узких мест”?

В сети клиент/сервер диалоги происходят только между пользователем (или клиентом) и сервером. Каждый сервер ставит в очередь запросы от многих клиентов и передает данные небольшими пакетами каждому из них по очереди.

Если сервер не успевает обрабатывать запросы своих клиентов, он становится “узким местом”, снижающим эффективность функционирования сети.

Как можно решить эти проблемы?

Конкуренция из-за увеличенного трафика может быть снижена путем сегментации сети. Пользователи, работающие с приложениями, требующими интенсивной пропускной способности, могут быть объединены в рабочие группы Fast Ethernet.

Как только сеть будет сегментирована, можно устранить “узкие места” путем соединения каждого сервера с выделенным сегментом Ethernet или Fast Ethernet (преимущественно в дуплексном режиме) или путем подключения серверов к небольшой рабочей группе Fast Ethernet, так чтобы они могли совместно использовать пропускную способность 100 Мбит/с этого сегмента.

Сценарии, иллюстрирующие эти проблемы, и их решения для сетей Ethernet различных размеров, представлены на последующих страницах.

Проблема 1: Высокий уровень конкуренции клиентов в малой сети

Малая сеть коллективного пользования состоит из нескольких рабочих станций и сервера, подключенных к двум концентраторам Ethernet 10BASE-T, соединенным в каскаду, как, например, 8-портовые концентраторы EtherEZ™ фирмы SMC.

Из-за интенсивного трафика время отклика очень велико.

Решение 1: Сегментирование через сервер и подключение мощных пользователей к сегменту Fast Ethernet

Установка в сервер двухканального сетевого адаптера создаст два независимых сегмента ЛВС.

  1. Установить в сервере двухканальную плату, например, PCI-плату EtherPower™ 10/100 фирмы SMC. С помощью этого адаптера, который поддерживает функцию Auto-Negotiation, каждый канал может работать независимо на скорости 10 или 100 Мбит/с.
  2. Отсоединить концентраторы друг от друга и заново подключить их по одному к каждому каналу сервера.
  3. Если некоторые клиенты используют приложения, требующие высокой пропускной способности, установить в них адаптеры Fast Ethernet, напр. РСI- адаптер EtherPower™ 10/100 корпорации SMC. Затем заменить один из концентраторов Ethernet моделью Fast Ethernet, напр. EZ Hub™ 100 фирмы SMC. Этот концентратор класса II является каскадируемым и имеет восемь портов 100BASE-TX. Наконец, подключить мощных клиентов к новому концентратору.

Проблема 2: “узкие места” и конкуренция клиентов в небольшой сети

Небольшая сеть, показанная ниже, состоит из нескольких рабочих станций и пары серверов, соединенных с концентраторами Ethernet 10BASE-T, подключенными в каскаду, напр. EtherEZ™ фирмы SMC. Эта сеть включает в себя 16-портовый концентратор и два 8-портовых концентраторов.

16-портовый концентратор оснащен световыми индикаторами, показывающими степень использования пропускной способности и уровень коллизий. Из-за напряженного трафика индикаторы показывают, что пропускная способность приближается к 40% и число коллизий растет.

Решение 2: Сегментирование сети через коммутатор Ethernet и подключение серверов к выделенным сегментам Fast Ethernet

Сегментация сети уменьшает число пользователей в каждом сегменте и повышает среднюю доступную пропускную способность в расчете на одного пользователя. Подключение каждого сервера к выделенному каналу Fast Ethernet даст возможность быстрее обслуживать запросы.

  1. Установить коммутатор Ethernet, например, EZ Switch™ 8+2 фирмы SMC. Этот коммутатор имеет 8 портов 10BASE-T и два порта 100BASE-TX и поддерживает дуплексный режим на каждом из портов.
  2. Отсоединить серверы от концентратора и установить в каждом из них сетевые адаптеры Fast Ethernet, напр. РСI-платы EtherPower™ 10/100 фирмы SMC.
  3. Заново подключить серверы к портам 100BASE-TX коммутатора и сконфигурировать эти порты для работы в дуплексном режиме.
  4. Присоединить каждый концентратор (максимум шесть) к свободным портам коммутатора.

Технология: коммутируемый Ethernet, введенный Fast Ethernet. Суммарная пропускная способность: 460 Мбит/с.

Проблема 3: Сервер становится “узким местом” в сети средних размеров

Сеть средних размеров состоит из нескольких рабочих станций и серверов, соединенных со стеком повторителей, напр., наращиваемых концентраторов TigerStack™ корпорации SMC. Эта сеть включает в себя четыре концентратора 10BASE-T: две 14-портовые модели и две 28-портовые модели.

Концентраторы TigerStack выпускаются также с разъемами для коаксиального и волоконно-оптического кабеля. Все модели могут объединяться в стек до восьми концентраторов.

Из-за растущего трафика время ответа в сети также растет, а при использовании приложений, требующих интенсивного обмена данных, серверы не успевают обрабатывать запросы.

Решение 3: Сегментирование сети через коммутатор Ethernet и подключение серверов и мощных пользователей к сегменту Fast Ethernet.

Сегментация сети уменьшает число пользователей на сегмент и повышает среднюю пропускную способность в расчете на одного пользователя. Подключение серверов и мощных пользователей к сегменту Fast Ethernet дает этим устройствам возможность совместно использовать пропускную способность 100 Мбит/с.

  1. Установить коммутатор Ethernet, например, 8-портовый коммутатор TigerSwitch™ 8+2ТX фирмы SMC. Этот коммутатор имеет восемь портов 10BASE-T и два порта 100BASE-TX.
  2. Разделить стек Ethernet на не более чем восемь сегментов.
  3. Подключить каждый сегмент к отдельному порту коммутатора.
  4. Отключить мощных пользователей и серверы от стека и установить в каждом из них сетевой адаптер Fast Ethernet, напр., PCI-плату EtherPower 10/100 фирмы SMC.
  5. Подключить концентратор Fast Ethernet, напр., TigerStack 100 фирмы SMC, порту 100BASE-TX коммутатора и подключить серверы и мощных пользователей к новому концентратору. Этот наращиваемый концентратор выпускается в 12- и 24-портовых моделях.

Проблема 4: “узкие места” сервера и конкуренция клиентов в большой сети совместного пользования

Сеть, показанная ниже, состоит из нескольких рабочих станций и серверов, подключенных к стеку концентраторов, напр., TigerStack фирмы SMC. Этот стек состоит из восьми концентраторов и имеет разъемы 10BASE-T, а также разъемы для коаксиального и волоконно-оптического кабеля.

Каждый отдельный концентратор TigerStack может быть разделен на два, три или четыре сегмента. Таким образом, максимальное число сегментов в стеке, состоящем из восьми концентраторов - 32 сегмента.

TigerStack также может управляться по протоколу SNMP. Благодаря этому, оптимальное использование пропускной способности может быть достигнуто при помощи любой программы управления на базе SNMP. Из-за напряженного трафика и применения приложений, требующих интенсивного обмена данными, коэффициент использования пропускной способности приближается к 40%.

Технология: Ethernet совместного пользования. Суммарная пропускная способность: 10 Мбит/с.

Решение 4: Внедрение сети Fast Ethernet для серверов и мощных пользователей, сегментирование обеих сетей и сегментов через коммутатор Fast Ethernet

Превращение серверов в выделенные сегменты Fast Ethernet обеспечит им подключение к отдельным каналам по 100 Мбит/с, что повысит скорость обслуживания запросов.

  1. Установить коммутатор Ethernet, например, 16-портовый TigerSwitch 16+2 фирмы SMC. Этот коммутатор имеет 16 портов 10BASE-T и два порта по 100BASE-TX.
  2. Разделить стек не более чем на 16 сегментов и соединить каждый сегмент с отдельным портом в коммутаторе.
  3. Добавить коммутатор Fast Ethernet, например, TigerSwitch 100 фирмы SMC. Этот коммутатор имеет 8 портов 10BASE-TX с функцией Auto-Negotiation.
  4. Отсоединить серверы и мощных пользователей от стека и установить сетевые адаптеры Fast Ethernet, напр., PCI-плату EtherPower 10/100 фирмы SMC.
  5. Соединить коммутатор Ethernet с коммутатором Fast Ethernet через uplink порт Fast Ethernet. Соединить также два из имеющихся серверов непосредственно с теми коммутируемыми портами Fast Ethernet, которые были сконфигурированы для работы в дуплексном режиме.Подключить к сети стек концентраторов Fast Ethernet, например, TigerSwitch 100 фирмы SMC, для мощных пользователей и остальных серверов. Разделить этот стек не более чем на пять сегментов и подключить каждый сегмент к отдельному порту коммутатора Fast Ethernet.

Технология: коммутируемый Ethernet и коммутируемый Fast Ethernet. Суммарная пропускная способность: 1160 Мбит/с.

Конкуренция клиентов может быть снижена посредством:

  • сегментации сети и подключения сегментов к серверу или коммутатору для повышения доступной пропускной способности в расчете на одного пользователя;
  • добавления небольшой рабочей группы Fast Ethernet для мощных пользователей, так чтобы они могли отдельно использовать пропускную способность 100 Мбит/с высокоскоростного сегмента.

“узкие места” сервера могут быть устранены посредством:

  • сегментации сети с помощью коммутатора и соединения серверов непосредственно с коммутируемыми портами, так чтобы каждый из них имел выделенную пропускную способность 10 или 100 Мбит/с (а если и порты, и сетевые адаптеры поддерживают дуплексный режим, то обеспечивается скорость 20 или 200 Мбит/с);
  • добавления небольшой рабочей группы Fast Ethernet для группы серверов, так чтобы они могли совместно использовать пропускную способность 100 Мбит/с высокоскоростного сегмента.

План достижения успеха

При планировании интеграции Fast Ethernet в ЛВС Ethernet следует принимать во внимание ряд факторов. На первом этапе следует проверить свою сеть Ethernet.

Может ли она использоваться совместно с Fast Ethernet? Является ли коммутируемой? Управляемой? Следующий этап -систематизация причин, по которым Вы планируете внедрить Fast Ethernet в свою ЛВС Ethernet. Вы хотите повысить эффективность функционирования серверов? Поддержать высокоскоростные приложения? Снизить конкуренцию клиентов? Или вы просто хотите подстраховаться, прежде чем объем трафика превысит пропускную способность Вашей сети и изменения станут абсолютной необходимостью? В заключение требуется определить, сколько пользователей и серверов Fast Ethernet будут подключены к сети.

При разнообразии сетевых продуктов на сегодняшнем рынке интеграция Fast Ethernet в ЛВС Ethernet может выглядеть по-разному. Однако любое решение включает:

    сегментацию сети для снижения конкуренции и обеспечения большей пропускной способности для серверов и мощных пользователей;

    дополнительную коммутацию для подсоединения отдельных сегментов.

Надеемся, что методы, описанные настоящем руководстве, помогут Вам разобраться в проблемах Вашей ЛВС, так что вы сможете подойти к задаче выбора приемлемого решения профессионально и уверенно.

Современный мир всеми силами пытается избавиться от проводов, и лишь малым свидетельством этого становится появление беспроводных наушников и зарядных устройств. Что же касается функционирования компьютерных сетей, то здесь на смену проводам пытаются прийти технологии передачи данных по Wi-Fi и Bluetooth. Не спорим, в будущем, наверное, мы сможем полностью обходиться без всевозможных кабелей, но пока беспроводная передача данных во многом уступает проводной: она больше подвержена помехам, имеет меньший радиус и скорость действия. Сегодня для соединения компьютеров в локальную сеть и для подключения периферийных устройств используют старые добрые провода, в видах которых и постараемся разобраться.

Чтобы соединить компьютеры между собой в локальную сеть или подключить их к глобальным сетям , используют сетевые кабели.

Основные виды сетевых кабелей для локальных сетей:

  • коаксиальный кабель;
  • витая пара;
  • оптоволоконный кабель.

Коаксиальный кабель – наиболее древний, если так можно сказать, представитель сетевых кабелей, сегодня его используют нечасто, но все же совсем без него не обойтись. Конструкция его достаточно проста: металлический проводник заключен в слой изоляции, сверху которой идет оплетка из алюминия или меди. Для соединения применяются специальные коннекторы типа BNC и BNC-T.

Основной минус коаксиального кабеля – он подвержен воздействию электромагнитного поля, поэтому компьютерные сети с его помощью уже давно не строят, зато сегодня такие провода используют для подключения спутников тарелок. Также неплохо коаксиальный кабель показывает себя как проводник высокоскоростных сетей для передачи одновременно цифровых и аналоговых сигналов, поэтому часто его используют для обустройства сетей кабельного телевидения.

На смену коаксиальным вариантам пришла витая пара . Почему новые модификации получили такое название? Такой кабель сетевой для компьютера состоит из попарных проводников, изготовленных из медного материала. Стандартный вариант содержит 4 пары жил, то есть 8 элементов, но в продаже можно найти кабель с 4 проводниками (2 парами). Цвет внутренней изоляции определяется стандартом.

В зависимости от наличия защиты в виде медной оплетки или алюминиевой фольги витая пара делится на такие виды:

  • UTP, или незащищенная витая пара, – это проводники в обычной пластиковой защите, никакие дополнительные элементы защиты не используются;
  • F/UTP, или фольгированная витая пара, ­– все пары проводников оплетены фольгой;
  • STP – каждая пара кабелей имеет собственную защиту из фольги;
  • S/FTP – здесь каждая пара защищена оплеткой из фольги, а все они вместе дополнительно защищены медным экраном;
  • SF/UTP – все кабели вместе помещены в фольгу и медный экран.

Незащищенная витая пара стоит дешевле. Использование кабелей с экранирующим слоем оправдано, если требуется высокое качество передачи информации на значительные расстояния.

Витая пара также маркируется от CAT 1 до CAT 7 : чем числовой показатель выше, тем лучше. Для построения локальных компьютерных сетей подойдет витая пара CAT5, но лучше все же использовать CAT5e – она лучше пропускает высокочастотные сигналы. Витой парой соединяют устройства, расположенные на расстоянии не более 100 м друг от друга.

Оптоволокно – наиболее быстрый и современный вариант , использующийся при построении компьютерных сетей. Главное преимущество заключается в высокой степени защиты от помех и неограниченной скорости передаче данных. Такой кабель обеспечивает передачу данных на значительные расстояния – до 100 км. Само оптоволокно стоит не сильно дорого, а вот адаптеры для него и прочее оборудование – удовольствие не из дешевых, поэтому пока применение такого рода кабелей ограничено только лишь соединением сегментов больших сетей, передачей данных на солидные расстояния и высокоскоростным доступом в интернет. Для работы с оптоволокном необходимо иметь специальные навыки и дорогостоящее оборудование.

Для тех, кто только начинает осваивать теорию и практику построения компьютерных сетей, отметим, что для соединения компьютера с периферийными устройствами используют кабели другого типа. USB-кабели нужны для подключения принтера, сканера, МФУ и т.д. С помощью такого шнура также обеспечивается питание смартфона или плеера в случае утери оригинальной зарядки. HDMI/VGA/DVI-кабеля соединяют компьютер с телевизором или монитором. Такой подход позволяет получить более детализированную картинку и объемный звук. Преимущество в том, что для запуска не требуются драйвера. Важным параметром является пропускная способность такой продукции. Чтобы отображать фото и видео, будет достаточно и стандартной вариации. Игры и фильмы требуют наличия высокоскоростного провода.