Виды компьютерных атак. Типовые признаки компьютерных атак

Лекция 33 Виды и типы сетевых атак

Лекция 33

Тема: Виды и типы сетевых атак

Удалённая сетевая атака - информационное разрушающее воздействие на распределённую вычислительную систему, осуществляемое программно по каналам связи.

Введение

Для организации коммуникаций в неоднородной сетевой среде применяются набор протоколов TCP/IP, обеспечивая совместимость между компьютерами разных типов. Данный набор протоколов завоевал популярность благодаря совместимости и предоставлению доступа к ресурсам глобальной сети Интернет и стал стандартом для межсетевого взаимодействия. Однако повсеместное распространение стека протоколов TCP/IP обнажило и его слабые стороны. В особенности из-за этого удалённым атакам подвержены распределённые системы, поскольку их компоненты обычно используют открытые каналы передачи данных, и нарушитель может не только проводить пассивное прослушивание передаваемой информации, но и модифицировать передаваемый трафик.

Трудность выявления проведения удалённой атаки и относительная простота проведения (из-за избыточной функциональности современных систем) выводит этот вид неправомерных действий на первое место по степени опасности и препятствует своевременному реагированию на осуществлённую угрозу, в результате чего у нарушителя увеличиваются шансы успешной реализации атаки.

Классификация атак

По характеру воздействия

Пассивное

Активное

Пассивное воздействие на распределённую вычислительную систему (РВС) представляет собой некоторое воздействие, не оказывающее прямого влияния на работу системы, но в то же время способное нарушить её политику безопасности. Отсутствие прямого влияния на работу РВС приводит именно к тому, что пассивное удалённое воздействие (ПУВ) трудно обнаружить. Возможным примером типового ПУВ в РВС служит прослушивание канала связи в сети.

Активное воздействие на РВС - воздействие, оказывающее прямое влияние на работу самой системы (нарушение работоспособности, изменение конфигурации РВС и т. д.), которое нарушает политику безопасности, принятую в ней. Активными воздействиями являются почти все типы удалённых атак. Связано это с тем, что в саму природу наносящего ущерб воздействия включается активное начало. Явное отличие активного воздействия от пассивного - принципиальная возможность его обнаружения, так как в результате его осуществления в системе происходят некоторые изменения. При пассивном же воздействии, не остается совершенно никаких следов (из-за того, что атакующий просмотрит чужое сообщение в системе, в тот же момент не изменится собственно ничего).

По цели воздействия

Нарушение функционирования системы (доступа к системе)

Нарушение целостности информационных ресурсов (ИР)

Нарушение конфиденциальности ИР

Этот признак, по которому производится классификация, по сути есть прямая проекция трех базовых разновидностей угроз - отказа в обслуживании, раскрытия и нарушения целостности.

Главная цель, которую преследуют практически при любой атаке - получение несанкционированного доступа к информации. Существуют два принципиальных варианта получения информации: искажение и перехват. Вариант перехвата информации означает получение к ней доступа без возможности ее изменения. Перехват информации приводит, следовательно, к нарушению ее конфиденциальности. Прослушивание канала в сети - пример перехвата информации. В этом случае имеется нелегитимный доступ к информации без возможных вариантов ее подмены. Очевидно также, что нарушение конфиденциальности информации относится к пассивным воздействиям.

Возможность подмены информации следует понимать либо как полный контроль над потоком информации между объектами системы, либо возможность передачи различных сообщений от чужого имени. Следовательно, понятно, что подмена информации приводит к нарушению её целостности. Такое информационное разрушающее воздействие есть характерный пример активного воздействия. Примером же удалённой атаки, предназначенной для нарушения целостности информации, может послужить удалённая атака (УА) «Ложный объект РВС».

По наличию обратной связи с атакуемым объектом

С обратной связью

Без обратной связи (однонаправленная атака)

Атакующий отправляет некоторые запросы на атакуемый объект, на которые ожидает получить ответ. Следовательно между атакующим и атакуемым появляется обратная связь, позволяющая первому адекватно реагировать на всяческие изменения на атакуемом объекте. В этом суть удалённой атаки, осуществляемой при наличии обратной связи с атакующим объектом. Подобные атаки наиболее характерны для РВС.

Атаки без обратной связи характерны тем, что им не требуется реагировать на изменения на атакуемом объекте. Такие атаки обычно осуществляются при помощи передачи на атакуемый объект одиночных запросов. Ответы на эти запросы атакующему не нужны. Подобную УА можно назвать также однонаправленной УА. Примером однонаправленных атак является типовая УА «DoS-атака».

По условию начала осуществления воздействия

Удалённое воздействие, также как и любое другое, может начать осуществляться только при определённых условиях. В РВС существуют три вида таких условных атак:

Атака по запросу от атакуемого объекта

Атака по наступлению ожидаемого события на атакуемом объекте

Безусловная атака

Воздействие со стороны атакующего начнётся при условии, что потенциальная цель атаки передаст запрос определённого типа. Такую атаку можно назвать атакой по запросу от атакуемого объекта. Данный тип УА наиболее характерен для РВС. Примером подобных запросов в сети Интернет может служить DNS- и ARP-запросы, а в Novell NetWare - SAP-запрос.

Атака по наступлению ожидаемого события на атакуемом объекте. Атакующий непрерывно наблюдает за состоянием ОС удалённой цели атаки и начинает воздействие при возникновении конкретного события в этой системе. Атакуемый объект сам является инициатором начала атаки. Примером такого события может быть прерывание сеанса работы пользователя с сервером без выдачи команды LOGOUT в Novell NetWare.

Безусловная атака осуществляется немедленно и безотносительно к состоянию операционной системы и атакуемого объекта. Следовательно, атакующий является инициатором начала атаки в данном случае.

При нарушении нормальной работоспособности системы преследуются другие цели и получение атакующим незаконного доступа к данным не предполагается. Его целью является вывод из строя ОС на атакуемом объекте и невозможность доступа для остальных объектов системы к ресурсам этого объекта. Примером атаки такого вида может служить УА «DoS-атака».

По расположению субъекта атаки относительно атакуемого объекта

Внутрисегментное

Межсегментное

Некоторые определения:

Источник атаки (субъект атаки) - программа (возможно оператор), ведущая атаку и осуществляющая непосредственное воздействие.

Хост (host) - компьютер, являющийся элементом сети.

Маршрутизатор (router) - устройство, которое обеспечивает маршрутизацию пакетов в сети.

Подсетью (subnetwork) называется группа хостов, являющихся частью глобальной сети, отличающихся тем, что маршрутизатором для них выделен одинаковый номер подсети. Так же можно сказать, что подсеть есть логическое объединение хостов посредством маршрутизатора. Хосты внутри одной подсети могут непосредственно взаимодействовать между собой, не задействовав при этом маршрутизатор.

Сегмент сети - объединение хостов на физическом уровне.

С точки зрения удалённой атаки крайне важным является взаимное расположение субъекта и объекта атаки, то есть находятся ли они в разных или в одинаковых сегментах. Во время внутрисегментной атаки, субъект и объект атаки располагаются в одном сегменте. В случае межсегментной атаки субъект и объект атаки находятся в разных сетевых сегментах. Этот классификационный признак дает возможность судить о так называемой «степени удалённости» атаки.

Далее будет показано, что практически внутрисегментную атаку осуществить намного проще, чем межсегментную. Отметим так же, что межсегментная удалённая атака представляет куда большую опасность, чем внутрисегментная. Это связано с тем, что в случае межсегментной атаки объект её и непосредственно атакующий могут находиться на расстоянии многих тысяч километров друг от друга, что может существенно воспрепятствовать мерам по отражению атаки.

По уровню эталонной модели ISO/OSI, на котором осуществляется воздействие

Физический

Канальный

Сетевой

Транспортный

Сеансовый

Представительный

Прикладной

Международной организацией по стандартизации (ISO) был принят стандарт ISO 7498, который описывает взаимодействие открытых систем (OSI), к которым принадлежат также и РВС. Каждый сетевой протокол обмена, также как и каждую сетевую программу, удаётся так или иначе спроецировать на эталонную 7-уровневую модель OSI. Такая многоуровневая проекция даёт возможность описать в терминах модели OSI использующиеся в сетевом протоколе или программе функции. УА - сетевая программа, и логично рассматривать её с точки зрения проекции на эталонную модель ISO/OSI .

Краткое описание некоторых сетевых атак

Фрагментация данных

При передаче пакета данных протокола IP по сети может осуществляться деление этого пакета на несколько фрагментов. Впоследствии, при достижении адресата, пакет восстанавливается из этих фрагментов. Злоумышленник может инициировать посылку большого числа фрагментов, что приводит к переполнению программных буферов на приемной стороне и, в ряде случаев, к аварийному завершению системы.

Атака Ping flooding

Данная атака требует от злоумышленника доступа к быстрым каналам в Интернет.

Программа ping посылает ICMP-пакет типа ECHO REQUEST, выставляя в нем время и его идентификатор. Ядро машины-получателя отвечает на подобный запрос пакетом ICMP ECHO REPLY. Получив его, ping выдает скорость прохождения пакета.

При стандартном режиме работы пакеты высылаются через некоторые промежутки времени, практически не нагружая сеть. Но в «агрессивном» режиме поток ICMP echo request/reply-пакетов может вызвать перегрузку небольшой линии, лишив ее способности передавать полезную информацию.

Нестандартные протоколы, инкапсулированные в IP

Пакет IP содержит поле, определяющее протокол инкапсулированного пакета (TCP, UDP, ICMP). Злоумышленники могут использовать нестандартное значение данного поля для передачи данных, которые не будут фиксироваться стандартными средствами контроля информационных потоков.

Атака smurf

Атака smurf заключается в передаче в сеть широковещательных ICMP запросов от имени компьютера - жертвы.

В результате компьютеры, принявшие такие широковещательные пакеты, отвечают компьютеру-жертве, что приводит к существенному снижению пропускной способности канала связи и, в ряде случаев, к полной изоляции атакуемой сети. Атака smurf исключительно эффективна и широко распространена.

Противодействие: для распознавания данной атаки необходимо анализировать загрузку канала и определять причины снижения пропускной способности.

Атака DNS spoofing

Результатом данной атаки является внесение навязываемого соответствия между IP-адресом и доменным именем в кэш DNS сервера. В результате успешного проведения такой атаки все пользователи DNS сервера получат неверную информацию о доменных именах и IP-адресах. Данная атака характеризуется большим количеством DNS пакетов с одним и тем же доменным именем. Это связано с необходимостью подбора некоторых параметров DNS обмена.

Противодействие: для выявления такой атаки необходимо анализировать содержимое DNS трафика либо использовать DNSSEC.

Атака IP spoofing

Большое количество атак в сети Интернет связано с подменой исходного IP-адреса. К таким атакам относится и syslog spoofing, которая заключается в передаче на компьютер-жертву сообщения от имени другого компьютера внутренней сети. Поскольку протокол syslog используется для ведения системных журналов, путем передачи ложных сообщений на компьютер-жертву можно навязать информацию или замести следы несанкционированного доступа.

Противодействие: выявление атак, связанных с подменой IP-адресов, возможно при контроле получения на одном из интерфейсов пакета с исходным адресом этого же интерфейса или при контроле получения на внешнем интерфейсе пакетов с IP-адресами внутренней сети.

Навязывание пакетов

Злоумышленник отправляет в сеть пакеты с ложным обратным адресом. С помощью этой атаки злоумышленник может переключать на свой компьютер соединения, установленные между другими компьютерами. При этом права доступа злоумышленника становятся равными правам того пользователя, чье соединение с сервером было переключено на компьютер злоумышленника.

Sniffing - прослушивание канала

Возможно только в сегменте локальной сети.

Практически все сетевые карты поддерживают возможность перехвата пакетов, передаваемых по общему каналу локальной сети. При этом рабочая станция может принимать пакеты, адресованные другим компьютерам того же сегмента сети. Таким образом, весь информационный обмен в сегменте сети становится доступным злоумышленнику. Для успешной реализации этой атаки компьютер злоумышленника должен располагаться в том же сегменте локальной сети, что и атакуемый компьютер.

Перехват пакетов на маршрутизаторе

Сетевое программное обеспечение маршрутизатора имеет доступ ко всем сетевым пакетам, передаваемым через данный маршрутизатор, что позволяет осуществлять перехват пакетов. Для реализации этой атаки злоумышленник должен иметь привилегированный доступ хотя бы к одному маршрутизатору сети. Поскольку через маршрутизатор обычно передается очень много пакетов, тотальный их перехват практически невозможен. Однако отдельные пакеты вполне могут быть перехвачены и сохранены для последующего анализа злоумышленником. Наиболее эффективен перехват пакетов FTP, содержащих пароли пользователей, а также электронной почты.

Навязывание хосту ложного маршрута с помощью протокола ICMP

В сети Интернет существует специальный протокол ICMP (Internet Control Message Protocol), одной из функцией которого является информирование хостов о смене текущего маршрутизатора. Данное управляющее сообщение носит название redirect. Существует возможность посылки с любого хоста в сегменте сети ложного redirect-сообщения от имени маршрутизатора на атакуемый хост. В результате у хоста изменяется текущая таблица маршрутизации и, в дальнейшем, весь сетевой трафик данного хоста будет проходить, например, через хост, отославший ложное redirect-сообщение. Таким образом возможно осуществить активное навязывание ложного маршрута внутри одного сегмента сети Интернет.

Наряду с обычными данными, пересылаемыми по TCP-соединению, стандарт предусматривает также передачу срочных (Out Of Band) данных. На уровне форматов пакетов TCP это выражается в ненулевом urgent pointer. У большинства ПК с установленным Windows присутствует сетевой протокол NetBIOS, который использует для своих нужд три IP-порта: 137, 138, 139. Если соединиться с Windows машиной по 139 порту и послать туда несколько байт OutOfBand данных, то реализация NetBIOS-а, не зная, что делать с этими данными, попросту вешает или перезагружает машину. Для Windows 95 это обычно выглядит как синий текстовый экран, сообщающий об ошибке в драйвере TCP/IP, и невозможность работы с сетью до перезагрузки ОС. NT 4.0 без сервиспаков перезагружается, NT 4.0 с ServicePack 2 паком выпадает в синий экран. Судя по информации из сети подвержены такой атаке и Windows NT 3.51 и Windows 3.11 for Workgroups.

Посылка данных в 139-й порт приводит к перезагрузке NT 4.0, либо выводу «синего экрана смерти» с установленным Service Pack 2. Аналогичная посылка данных в 135 и некоторые другие порты приводит к значительной загрузке процесса RPCSS.EXE. На Windows NT WorkStation это приводит к существенному замедлению работы, Windows NT Server практически замораживается.

Подмена доверенного хоста

Успешное осуществление удалённых атак этого типа позволит злоумышленнику вести сеанс работы с сервером от имени доверенного хоста. (Доверенный хост - станция легально подключившаяся к серверу). Реализация данного вида атак обычно состоит в посылке пакетов обмена со станции злоумышленника от имени доверенной станции, находящейся под его контролем.

Технологии обнаружения атак

Сетевые и информационные технологии меняются настолько быстро, что статичные защитные механизмы, к которым относятся системы разграничения доступа, МЭ, системы аутентификации во многих случаях не могут обеспечить эффективной защиты. Поэтому требуются динамические методы, позволяющие оперативно обнаруживать и предотвращать нарушения безопасности. Одной из технологий, позволяющей обнаруживать нарушения, которые не могут быть идентифицированы при помощи традиционных моделей контроля доступа, является технология обнаружения атак.

По существу, процесс обнаружения атак является процессом оценки подозрительных действий, которые происходят в корпоративной сети. Иначе говоря, обнаружение атак (intrusion detection) - это процесс идентификации и реагирования на подозрительную деятельность, направленную на вычислительные или сетевые ресурсы

Методы анализа сетевой информации

Эффективность системы обнаружения атак во многом зависит от применяемых методов анализа полученной информации. В первых системах обнаружения атак, разработанных в начале 1980-х годов, использовались статистические методы обнаружения атак. В настоящее время к статистическому анализу добавился ряд новых методик, начиная с экспертных систем и нечёткой логики и заканчивая использованием нейронных сетей.

Статистический метод

Основные преимущества статистического подхода - использование уже разработанного и зарекомендовавшего себя аппарата математической статистики и адаптация к поведению субъекта.

Сначала для всех субъектов анализируемой системы определяются профили. Любое отклонение используемого профиля от эталонного считается несанкционированной деятельностью. Статистические методы универсальны, поскольку для проведения анализа не требуется знания о возможных атаках и используемых ими уязвимостях. Однако при использовании этих методик возникают и проблемы:

«статистические» системы не чувствительны к порядку следования событий; в некоторых случаях одни и те же события в зависимости от порядка их следования могут характеризовать аномальную или нормальную деятельность;

Трудно задать граничные (пороговые) значения отслеживаемых системой обнаружения атак характеристик, чтобы адекватно идентифицировать аномальную деятельность;

«статистические» системы могут быть с течением времени «обучены» нарушителями так, чтобы атакующие действия рассматривались как нормальные.

Следует также учитывать, что статистические методы не применимы в тех слу-чаях, когда для пользователя отсутствует шаблон типичного поведения или когда для пользователя типичны несанкционированные действия.

Экспертные системы

Экспертные системы состоят из набора правил, которые охватывают знания человека-эксперта. Использование экспертных систем представляет собой распространенный метод обнаружения атак, при котором информация об атаках формулируется в виде правил. Эти правила могут быть записаны, например, в виде последовательности действий или в виде сигнатуры. При выполнении любого из этих правил принимается решение о наличии несанкционированной деятельности. Важным достоинством такого подхода является практически полное отсутствие ложных тревог.

БД экспертной системы должна содержать сценарии большинства известных на сегодняшний день атак. Для того чтобы оставаться постоянно актуальными, экспертные системы требуют постоянного обновления БД. Хотя экспертные системы предлагают хорошую возможность для просмотра данных в журналах регистрации, требуемые обновления могут либо игнорироваться, либо выполняться администратором вручную. Как минимум, это приводит к экспертной системе с ослабленными возможностями. В худшем случае отсутствие надлежащего сопровождения снижает степень защищенности всей сети, вводя ее пользователей в заблуждение относительно действительного уровня защищенности.

Основным недостатком является невозможность отражения неизвестных атак. При этом даже небольшое изменение уже известной атаки может стать серьёзным препятствием для функционирования системы обнаружения атак.

Нейронные сети

Большинство современных методов обнаружения атак используют некоторую форму анализа контролируемого пространства на основе правил или статистического подхода. В качестве контролируемого пространства могут выступать журналы регистрации или сетевой трафик. Анализ опирается на набор заранее определённых правил, которые создаются администратором или самой системой обнаружения атак.

Любое разделение атаки во времени или среди нескольких злоумышленников является трудным для обнаружения при помощи экспертных систем. Из-за большого разнообразия атак и хакеров даже специальные постоянные обновления БД правил экспертной системы никогда не дадут гарантии точной идентификации всего диапазона атак.

Использование нейронных сетей является одним из способов преодоления указанных проблем экспертных систем. В отличие от экспертных систем, которые могут дать пользователю определённый ответ о соответствии рассматриваемых характеристик заложенным в БД правилам, нейронная сеть проводит анализ информации и предоставляет возможность оценить, согласуются ли данные с характеристиками, которые она научена распознавать. В то время как степень соответствия нейросетевого представления может достигать 100 %, достоверность выбора полностью зависит от качества системы в анализе примеров поставленной задачи.

Сначала нейросеть обучают правильной идентификации на предварительно подобранной выборке примеров предметной области. Реакция нейросети анализируется и система настраивается таким образом, чтобы достичь удовлетворительных результатов. В дополнение к начальному периоду обучения, нейросеть набирается опыта с течением времени, по мере того, как она проводит анализ данных, связанных с предметной областью.

Важным преимуществом нейронных сетей при обнаружении злоупотреблений является их способность «изучать» характеристики умышленных атак и идентифицировать элементы, которые не похожи на те, что наблюдались в сети прежде.

Каждый из описанных методов обладает рядом достоинств и недостатков, поэтому сейчас практически трудно встретить систему, реализующую только один из описанных методов. Как правило, эти методы используются в совокупности.

Введение

Системы обнаружения сетевых вторжений и выявления признаков компьютерных атак на информационные системы уже давно применяются как один из необходимых рубежей обороны информационных систем. Разработчиками систем защиты информации и консультантами в этой области активно применяются такие понятия (перенесенные из направления обеспечения физической и промышленной безопасности), как защита "по периметру", "стационарная" и "динамическая" защита, стали появляться собственные термины, например, "проактивные" средства защиты.

Исследования в области обнаружения атак на компьютерные сети и системы на самом деле ведутся за рубежом уже больше четверти века. Исследуются признаки атак, разрабатываются и эксплуатируются методы и средства обнаружения попыток несанкционированного проникновения через системы защиты, как межсетевой, так и локальной — на логическом и даже на физическом уровнях. В действительности, сюда можно отнести даже исследования в области ПЭМИН , поскольку электромагнитный тамперинг имеет свои прямые аналоги в уже ставшей обычной для рядового компьютерного пользователя сетевой среде. На российском рынке широко представлены коммерческие системы обнаружения вторжений и атак (СОА) иностранных компаний (ISS RealSecure, NetPatrol, Snort, Cisco и т.д.) и в тоже время практически не представлены комплексные решения российских разработчиков. Это вызвано тем, что многие отечественные исследователи и разработчики реализуют СОА, сохраняя аналогии архитектур и типовых решений уже известных систем, не особенно стараясь увеличить эффективность превентивного обнаружения атак и реагирования на них. Конкурентные преимущества в этом сегменте российского рынка достигаются обычно за счет существенного снижения цены и упования на "поддержку отечественного производителя".

Рисунок 2. Информационная пирамида

Верхняя часть информационной пирамиды — это риски и угрозы, присущие рассматриваемой системе. Ниже располагаются различные варианты реализаций угроз (атаки), и самый нижний уровень — это признаки атак. Конечный пользователь, равно как и система обнаружения атак, имеет возможность регистрировать только процесс развития конкретной атаки или свершившийся факт атаки по наблюдаемым характерным признакам. Признаки атаки — то, что мы реально можем зафиксировать и обработать различными техническими средствами, а следовательно, необходимы средства фиксации признаков атак.

Если данный процесс рассматривать во времени, то можно говорить, что определенные последовательности наблюдаемых признаков порождают события безопасности. События безопасности могут переводить защищаемые объекты информационной системы в небезопасное состояние. Следовательно, для системы обнаружения атак необходим информационный срез достаточной полноты, содержащий все события безопасности, произошедшие в информационной системе за рассматриваемый период. Кроме того, поднимаясь вверх по пирамиде, для события безопасности можно указать, к реализации какого вида угроз оно может привести, для того чтобы в процессе развития атаки производить прогнозирование ее развития и принимать меры по противодействию угрозам, которые может вызывать данная атака.

Методология обработки данных в современных информационных системах подразумевает повсеместное использование многоуровневости. Для СОА нового типа можно выделить следующие крупные уровни, на которых возможно осуществление доступа к обрабатываемой информации:

  1. Уровень прикладного ПО , с которым работает конечный пользователь информационной системы. Прикладное программное обеспечение зачастую имеет уязвимости, которые могут использовать злоумышленники для доступа к обрабатываемым данным ПО.
  2. Уровень СУБД. Уровень СУБД является частным случаем средств прикладного уровня, но должен выделяться в отдельный класс в силу своей специфики. СУБД, как правило, имеет свою собственную систему политик безопасности и организации доступа пользователей, которую нельзя не учитывать при организации защиты.
  3. Уровень операционной системы. Операционная система компьютеров защищаемой ИС является важным звеном защиты, поскольку любое прикладное ПО использует средства, предоставляемые именно ОС. Бесполезно совершенствовать качество и надежность прикладного ПО, если оно эксплуатируется на незащищенной ОС.
  4. Уровень среды передачи. Современные ИС подразумевают использование различных сред передачи данных для взаимосвязи аппаратных компонентов, входящих в состав ИС. Среды передачи данных являются на сегодня одними из самых незащищенных компонентов ИС. Контроль среды передачи и передаваемых данных является одной из обязательных составляющих механизмов защиты данных.

Иллюстративно уровни обработки потоков данных в информационной системе представлены на .

Рисунок 3. Уровни обработки информации в информационной системе

Исходя из вышесказанного, можно сделать вывод, что любые средства защиты информации, в том числе и системы обнаружения и предупреждения атак, обязаны иметь возможность анализировать обрабатываемые и передаваемые данные на каждом из выделенных уровней. Требование присутствия системы обнаружения атак на каждом функциональном уровне информационной системы приводит к необходимости выделения подсистемы регистрации событий безопасности в отдельный комплекс информационных зондов СОА, обеспечивающих сбор информации в рамках всей сети информационной системы. В то же время, разнородность программно-аппаратных платформ и задач, решаемых различными объектами ИС, требует применения модульной архитектуры информационных зондов для обеспечения возможности максимальной адаптации к конкретным условиям применения.

Использование знаний об угрозах ИБ для обнаружения атак на информационную систему

Угрозы информационной безопасности, как правило, каким-либо образом взаимосвязаны друг с другом. Например, угроза захвата уязвимого веб-сервера узла сети может привести к реализации угрозы полного захвата управления данным узлом, поэтому в целях прогнозирования и оценки ситуации целесообразно учитывать вероятностную взаимосвязь угроз.

Если рассмотреть U — множество угроз безопасности рассматриваемой информационной системы, то u i О U — i-я угроза. В предположении, что множество угроз конечно, будем считать, что реализация i-ой угрозы может с некоторой вероятностью приводить к возможности реализации других угроз. При этом возникает задача вычисления P(u|u i1 ,u i2 ,...,u ik) — вероятности реализации угрозы u, при условии реализации угроз u i1 ,u i2 ,...,u ik (см. ).

Рисунок 4. Вид графа зависимости угроз ИБ

Наиболее надежно атаку можно обнаружить, имея как можно более полную информацию о произошедшем событии. Как видно из предыдущих разделов, современные системы чаще всего фиксируют атаки по наличию определенной, вполне конкретной сигнатуры.

Расширив этот подход, мы можем акцентировать внимание на процесс выделения в компьютерных атаках различных этапов (фаз) их реализации. Выделение фаз атак, особенно ранних, является важным процессом, который, в конечном счете, позволяет обнаружить атаку в процессе ее развития. Однако сделать это возможно лишь определив соответствующим образом перечень угроз информационной системе, которые могут реализовываться на каждой из фаз атаки, и соответствующим образом отразив данный факт в классификации. В самом крупном приближении выделяются три основных фазы атаки: сетевая разведка, реализация, закрепление и сокрытие следов.

Анализ взаимосвязи угроз с фазами атаки и прогнозирования наиболее вероятных угроз, которые могут быть реализованы злоумышленником, является важной задачей обеспечения ИБ. Это необходимо для своевременного принятия решений по блокировке злонамеренных воздействий.

Следующим элементом концепции обнаружения атак является классификация. Вопросы классификации компьютерных атак до сих пор активно исследуются. Основная задача разработки классификации компьютерных атак состоит в том, чтобы обеспечить удобство использования данной классификации на практике. Основные требования к классификации таковы: непересекающиеся классы, полнота, применимость, объективность, расширяемость, конечность. Интересные подходы к классификации сетевых атак предложены в. Классификация угроз безопасности должна учитывать структуру и фазы проведения атаки на компьютерные системы, определять такие атрибуты как источники и цели атаки, их дополнительные характеристики, многоуровневую типизацию. Модель обнаружения вторжений должна строиться на базе разработанной классификации.

Таким образом, в перспективе необходимо решение следующих задач — определение наиболее вероятной реализации угрозы на текущий момент времени для того, чтобы иметь представление, какие последствия могут в кратчайшее время ожидать информационную систему, а также составление прогноза развития ситуации с целью определения наиболее вероятной реализации угроз в будущем.

Повышение эффективности систем обнаружения атак — интегральный подход

Вообще говоря, современные системы обнаружения вторжений и атак еще далеки от эргономичных и эффективных, с точки зрения безопасности решений. Повышение же эффективности следует ввести не только в области обнаружения злонамеренных воздействий на инфраструктуру защищаемых объектов информатизации, но и с точки зрения повседневной "боевой" эксплуатации данных средств, а также экономии вычислительных и информационных ресурсов владельца данной системы защиты.

Если же говорить непосредственно о модулях обработки данных, то, следуя логике предыдущего раздела, каждая сигнатура атаки в представленной схеме обработки информации об атаке является базовым элементом для распознавания более общих действий — распознавания фазы атаки (этапа ее реализации). Само понятие сигнатуры обобщается до некоторого решающего правила (например, с помощью поиска аномалий в сетевом трафике или клавиатурном почерке пользователя). А каждая атака наоборот разбивается на набор этапов ее проведения. Чем проще атака, тем проще ее обнаружить и больше возможностей появляется по ее анализу. Каждая сигнатура отображает определенное событие в вычислительной сетевой и локальной среде в фазовое пространство компьютерных атак. Фазы можно определить свободно, но лучше сохранять при этом достаточную степень детализации, чтобы иметь возможность описывать атаки с помощью подробных сценариев атак (списка фаз атак и переходов между ними).

Сценарий атаки в этом случае представляет собой граф переходов, в аналогичный графу конечного детерминированного автомата. А фазы атак можно описать, например, следующим образом:

  • опробование портов;
  • идентификация программных и аппаратных средств;
  • сбор баннеров;
  • применение эксплоитов;
  • дезорганизация функционала сети с помощью атак на отказ в обслуживании;
  • управление через бэкдоры;
  • поиск установленных троянов;
  • поиск прокси-серверов;
  • удаление следов присутствия;
  • и т.д. (по необходимости с различной степенью детализации).

Преимущества такого подхода очевидны — в случае раздельной обработки различных этапов атаки появляется возможность распознавать угрозу еще в процессе ее подготовки и формирования, а не на стадии ее реализации, как это происходит в существующих системах. При этом, элементной базой для распознавания может быть как сигнатурный поиск, так и выявление аномалий, использование экспертных методов и систем, доверительных отношений и прочих информационных, уже известных и реализованных, сетевых и локальных примитивов оценки происходящего в вычислительной среде потока событий.

Обобщающий подход к анализу позволяет соответственно определять и распределенные (во всех смыслах) угрозы, как во временно"м, так и логическом и физическом пространстве. Общая схема обработки поступающих событий также позволяет осуществлять поиск распределенных атак — путем последующей агрегации данных из различных источников и конструирования мета-данных об известных инцидентах по защищаемому "периметру" (см. ).

Рисунок 5. Схема интегрального обнаружения компьютерных атак

Распределенные атаки выявляются путем агрегации данных о поступающих атаках и подозрительных действиях и сопоставления шаблонов и статистической фильтрации. Таким образом, оповещение о подозрительных действиях в компьютерных системах происходит на нескольких уровнях:

  • нижний уровень сообщает о примитивных событиях (совпадении сигнатур, выявлении аномалий);
  • средний уровень извлекает информацию из нижнего уровня и агрегирует ее с помощью конечных автоматов (сценариев атак), статистического анализа и механизмов пороговой фильтрации;
  • высший уровень агрегирует информацию с двух предыдущих и позволяет выявлять обычные и распределенные атаки, их реальный источник и прогнозировать его дальнейшее поведение на основе интеллектуального анализа.

Ядро системы обнаружения компьютерных атак должно быть четко разделено с системой визуализации и сигнализации.

Для поиска сигнатур в сетевых пакетах используются правила, формирующие перечень опций (паспорт), по которым осуществляется проверка поступающих сетевых пакетов. Существующие системы (как, например, Snort или PreludeIDS, которая использует правила Snort) применяют строчный вид описаний таких правил:

Alert tcp $HOME_NET 1024:65535 ->
$EXTERNAL_NET 1024:65535
(msg:"BLEEDING-EDGE TROJAN Trojan.Win32.Qhost C&C Traffic Outbound (case1)";
flow:established;
dsize:>1000;
content:"|00 00 00 28 0a 00 00 02 0f|Service Pack 1|00|";
classtype:trojan-activity;
reference: url,/www.viruslist.com/en/viruses/ encyclopedia?virusid=142254;
sid:2007578;
rev:1;
)

Такой вид более удобен для быстрой машинной обработки, но менее пригоден для человека. Кроме того, в нем отсутствуют возможности для расширения функциональности, которые заложены в XML-подобных реализациях сигнатурных баз. Например, простая "скобочная" (от англ. brace-like) конфигурация позволяет записать ряд управляющих переменных и описать правила в гораздо более приятной и понятной визуальной форме, сохраняя возможность для легкого расширения функциональности. Так, определение фаз атак, защищаемых объектов и совершаемых в сети событий может выглядеть следующим образом:

Type_defs {
alert = 1;
warning = 2;
fail = 4;
}
srcdst_defs {
HOME_NET = 195.208.245.212
localhost = 127.0.0.1
}
proto_defs {
tcp = 1;
udp = 2;
tcp-flow = 10;
}
phase_defs {
port_scanning = 1;
exploiting = 2;
icmp_sweeping = 3;
ftp_bouncing = 4;
shell_using = 5;
dir_listing = 6;
file_opening = 7;
}

А секция определения угроз информационной безопасности может иметь основные позиции, подобные следующей:

Treat_defs = {
treat {
name = file-unauthorised-access;
id = FUAC;
msg = "message in english";
}
}

Кроме указанных в гибкой форме угроз, фаз атак и защищаемых объектов, интегральная обработка информации, связанная с выявлением угроз информационной безопасности, позволяет ввести также сервис-ориентированный подход к обнаружению атак, формируя автоматическим или ручным способом описания сетевых и локальных служб, а также приоритезируя важность, с точки зрения обеспечения должного уровня, информационной безопасности и жизнедеятельности информационной инфраструктуры сети.

Service_defs = {
service {
name = pop3;
msg = "";
rulesets = "backdoors, pop3scanners";
security_tolerance = 3
life_insurance = 5
}
}

Сами же правила выглядят, например, следующим образом:

Ruleset {
name = backdoors;
rule {
id = 0x1000;
type = alert;
proto = tcp;
src = localhost;
dst = 195.208.245.0/24:2000;
msg = "service::what is bad in this alert";
options = AP,vice_versa;
contains = "|0a0a0d03|";
phase = exploiting;
treat = file-unauthorized-access;
revision = 1;
}
}

Здесь учитываются как классические признаки события (тип события, протокол обнаружения, источник и объект воздействия, краткое сообщение), так и добавочные — фаза атаки, тип угрозы, к возникновению которой относится данное событие. При этом сами правила могут быть сгруппированы в наборы, пригодные затем для связывания их с установленными в защищаемой системе сетевыми и локальными службами.

Если же вернуться к эффективности проверки правил в системах обнаружения сетевых атак, то следует отметить следующий факт. На текущий момент все правила в системах СОА проверяются следующим образом (см. ). Проверка неоднородных правил происходит раздельно, правило за правилом, при этом однородные операции над пакетами выполняются все время порознь. Такой подход не позволяет эффективно распараллелить обработку сетевых пакетов, полностью использовать возможности нескольких конвейеров на современных процессорах, а также оптимизировать поиск частично похожих правил-сигнатур.

Однако есть минус и такого подхода, когда, например, шаблоны связаны друг с другом (вот пример такого шаблона: найти первое вхождение, затем относительно него через несколько байт проверить наличие определенной бинарной последовательности). Правда, таких правил — подавляющее меньшинство (даже если судить по общепринятым правилам популярной СОА Snort), что позволяет вынести их в отдельный класс распараллеливаемых методов и использовать в них любые простые методы последовательной проверки.

Помимо преимущества в распараллеливании процесса поиска сигнатур, становится возможным применение методов одновременного поиска многих сигнатур в сетевом потоке за один проход (можно, например, построить один большой конечный автомат для большинства шаблонов, участвующих в правилах, или использовать мультисигнатурную модернизацию алгоритма Бойера-Мура).

Экспериментальные проверки различных вариантов реализации методов одновременного поиска многих сигнатур показали, что наиболее быстрой оказывается реализация большого конечного автомата, модифицированного таким образом, чтобы он позволял "пропускать" однородные ошибки — пропуски и вставки произвольной длины, а также ошибки замены (в результате модификации сигнатуры, что является довольно частым явлением, с целью ее сокрытия от СОА).

Наиболее сложные в проверке правила (шаблоны) можно предварительно компилировать в бинарные подключаемые модули (как это сделано, например, в системе RealSecure IDS).

Заключение

Современный подход к построению систем обнаружения сетевых вторжений и выявления признаков компьютерных атак на информационные системы полон недостатков и уязвимостей, позволяющих, к сожалению, злонамеренным воздействиям успешно преодолевать системы защиты информации. Переход от поиска сигнатур атак к выявлению предпосылок возникновения угроз информационной безопасности должен способствовать тому, чтобы в корне изменить данную ситуацию, сократив дистанцию отставания в развитии систем защиты от систем их преодоления.

Кроме того, такой переход должен способствовать повышению эффективности управления информационной безопасностью и, наконец, более конкретным примерам применения нормативных и руководящих документов уже ставших стандартами.

Компьютерная атака

"...Компьютерная атака: целенаправленное , на ресурс автоматизированной информационной системы или получение несанкционированного доступа к ним с применением программных или программно-аппаратных средств..."

Источник:

"ЗАЩИТА ИНФОРМАЦИИ. ОБЪЕКТ ИНФОРМАТИЗАЦИИ. ФАКТОРЫ, ВОЗДЕЙСТВУЮЩИЕ НА ИНФОРМАЦИЮ. ОБЩИЕ ПОЛОЖЕНИЯ. ГОСТ Р 51275-2006 "

(утв. Приказом Ростехрегулирования от 27.12.2006 N 374-ст)


Официальная терминология . Академик.ру . 2012 .

Смотреть что такое "Компьютерная атака" в других словарях:

    компьютерная атака - Целенаправленное несанкционированное воздействие на информацию, на ресурс информационной системы или получение несанкционированного доступа к ним с применением программных или программно аппаратных средств. [Р 50.1.056 2005 ] Тематики защита… … Справочник технического переводчика

    компьютерная атака - 3.11 компьютерная атака: Целенаправленное несанкционированное воздействие на информацию, на ресурс автоматизированной информационной системы или получение несанкционированного доступа к ним с применением программных или программно аппаратных… …

    сетевая атака - 3.12 сетевая атака: Компьютерная атака с использованием протоколов межсетевого взаимодействия , . Источник: ГОСТ Р 51275 2006: Защита информации. Объект информатизации. Факторы, воздействующие на информацию. Общие положения … Словарь-справочник терминов нормативно-технической документации

    Сетевая атака: компьютерная атака с использованием протоколов межсетевого взаимодействия... Источник: ЗАЩИТА ИНФОРМАЦИИ. ОБЪЕКТ ИНФОРМАТИЗАЦИИ. ФАКТОРЫ, ВОЗДЕЙСТВУЮЩИЕ НА ИНФОРМАЦИЮ. ОБЩИЕ ПОЛОЖЕНИЯ. ГОСТ Р 51275 2006 (утв. Приказом… … Официальная терминология

    Чапаев (компьютерная игра) - Компьютерная игра Чапаев 3D «Чапаев», или «Чапаевцы» советская настольная игра, получившая название по фамилии героя Гражданской войны Василия Ивановича Чапаева. Эта игра родственна бильярду и особенно близка к таким играм, как карром, крокинол,… … Википедия

    StarCraft (компьютерная игра) - StarCraft Обложка оригинального компакт диска Разработчик Blizzard Entertainment Издатели Blizzard Entertainment, Sierra Entertainment, Soft Club Локализатор … Википедия

    Война и мир (компьютерная игра)

    Вторая корона (компьютерная игра) - Knights and Merchants: The Shattered Kingdom Разработчик Joymania Entertainment Издатель TopWare Interactive … Википедия

При вооруженном ограблении банка потери в среднем составляют 19 тысяч долларов, а при компьютерном преступлении — уже 560 тысяч. По оценке американских специалистов, ущерб от компьютерных преступлений на протяжении последних десяти лет ежегодно увеличивается в среднем на 35%. При этом выявляется в среднем 1% компьютерных преступлений, а вероятность того, что за раскрытое компьютерное мошенничество преступник попадет в тюрьму, — не более 10%.

Разумеется, целенаправленное применение таких традиционных средств управления безопасностью, как антивирусное ПО, межсетевые экраны, средства криптографии и так далее, способствует предотвращению несанкционированного доступа к информации. Однако в данном случае на сцену выходит человеческий фактор. Человек, конечный пользователь, оказывается самым слабым звеном системы информационной безопасности, и хакеры, зная это, умело применяют методы социальной инженерии. Какие бы ни были многоуровневые системы идентификации, от них нет никакого эффекта, если пользователи, к примеру, используют простые для взлома пароли. При профессиональном подходе к вопросам безопасности подобные проблемы в компаниях решают путем централизованной выдачи уникальных и сложных паролей или установкой жестких корпоративных правил для сотрудников и адекватных мер наказания за их несоблюдение. Однако ситуация осложняется тем, что в последнее время в роли компьютерных преступников все чаще выступают не "внешние" хакеры, а сами конечные пользователи. По словам одного из американских специалистов по информационной безопасности, "Типичный компьютерный преступник сегодня — это служащий, имеющий доступ к системе, нетехническим пользователем которой он является". В США компьютерные преступления, совершенные служащими, составляют 70-80% ежегодного ущерба, связанного с современными технологиями. При этом только в 3% мошенничеств и 8% злоупотреблений происходило специальное разрушение оборудования, уничтожение программ или данных. В остальных случаях злоумышленники только манипулировали информацией — крали ее, модифицировали или создавали новую, ложную. В наши дни все более широкое распространение Интернета позволяет хакерам обмениваться информацией в глобальном масштабе. Уже давно сложился своего рода "хакерский интернационал" — ведь Интернет как никакое другое техническое средство стирает границы между государствами и даже целыми континентами. Добавьте сюда практически полную анархичность Сети. Любой желающий сегодня может отыскать инструкции по компьютерному взлому и весь необходимый программный инструментарий, просто проведя поиск по ключевым словам типа "хакер", "взлом", "hack", "crack" или "phreak". Еще один фактор, существенно повышающий уязвимость компьютерных систем, — широкое распространение стандартизированных, простых в использовании операционных систем и сред разработки. Это позволяет хакерам создавать универсальные инструменты для взлома, а потенциальному злоумышленнику теперь не нужно, как прежде, обладать хорошими навыками программирования — достаточно знать IP-адрес атакуемого сайта, а для проведения атаки достаточно запустить найденную в Интернете программу. Вечное противостояние брони и снаряда продолжается. Специалисты по защите информации уже поняли, что вечно догонять хакерские технологии — бессмысленно, компьютерные злоумышленники всегда на шаг впереди. Поэтому новые методики все больше строятся на превентивном обнаружении нарушений в информационных системах. Однако с течением времени возникают и новые проблемы — в первую очередь связанные с развитием беспроводной связи. Поэтому компаниям, специализирующимся на информационной безопасности, все больше внимания приходится уделять защите данных, передаваемых по новым, беспроводным, стандартам.

Классификация

Сетевые атаки столь же разнообразны, сколь разнообразны системы, против которых они направлены. Чисто технологически большинство сетевых атак использует ряд ограничений, изначально присущих протоколу TCP/IP. Ведь в свое время Интернет создавался для связи между государственными учреждениями и университетами для поддержки учебного процесса и научных исследований. Тогда создатели Сети и не подозревали, насколько широко она распространится. Из-за этого в спецификациях ранних версий интернет-протокола (IP) отсутствовали требования безопасности, а потому многие реализации IP изначально являются уязвимыми. Только спустя много лет, когда началось бурное развитие электронной коммерции и произошел ряд серьезных инцидентов с хакерами, наконец, начали широко внедряться средства обеспечения безопасности интернет-протокола. Однако, поскольку изначально средства защиты для IP не разрабатывались, его реализации начали дополнять различными сетевыми процедурами, услугами и продуктами, призванными снижать риски, "от рождения" присущие этому протоколу.

Почтовая бомбардировка

Бомбардировка электронной почтой (т.н. mailbombing) — один из самых старых и примитивных видов интернет-атак. Правильнее даже будет назвать это компьютерным вандализмом (или просто хулиганством — в зависимости от тяжести последствий). Суть мэйлбомбинга — в засорении почтового ящика "мусорной" корреспонденцией или даже выведении из строя почтового сервера интернет-провайдера. Для этого применяются специальные программы — мэйлбомберы. Они попросту засыпают указанный в качестве мишени почтовый ящик огромным количеством писем, указывая при этом фальшивые данные отправителя — вплоть до IP-адреса. Все, что нужно агрессору, использующему такую программу, — указать e-mail объекта атаки, число сообщений, написать текст письма (обычно пишется что-нибудь оскорбительное), указать фальшивые данные отправителя, если программа этого не делает сама и нажать кнопку "пуск". Впрочем, большинство интернет-провайдеров имеют собственные системы защиты клиентов от мэйлбомбинга. Когда число одинаковых писем из одного и того же источника начинает превышать некие разумные пределы, вся поступающая корреспонденция такого рода просто уничтожается. Так что сегодня почтовых бомбардировок можно всерьез уже не опасаться.

Атаки с подбором пароля

Атакующий систему хакер часто начинает свои действия с попыток раздобыть пароль администратора или одного из пользователей. Для того чтобы узнать пароль, существует великое множество различных методов. Вот основные из них: IP-спуфинг и сниффинг пакетов — их мы рассмотрим ниже. Внедрение в систему "троянского коня" — один из наиболее распространенных в хакерской практике приемов, про него мы также расскажем подробнее в дальнейшем. Перебор "в лоб" (brute force attack — "атака грубой силой"). Существует множество программ, которые осуществляют простой перебор вариантов паролей через Интернет или напрямую на атакуемом компьютере. Одни программы перебирают пароли по определенному словарю, другие просто генерируют случайным образом различные последовательности символов. Логический перебор вариантов пароля. Использующий этот метод злоумышленник просто перебирает вероятные комбинации символов, которые могут быть использованы пользователем в качестве пароля. Такой подход обычно оказывается на удивление эффективным. Специалисты по компьютерной безопасности не перестают удивляться, до чего часто пользователи используют в качестве пароля такие "загадочные" комбинации как, 1234, qwerty или собственное имя, написанное задом наперед. Серьезные хакеры, подбирая заветный пароль, могут досконально изучить человека, этот пароль использующего. Имена членов семьи и прочих родственников, любимой собаки/кошки; за какие команды и в каких видах спорта "объект" болеет; какие книги и кинофильмы любит; какую газету читает по утрам — все эти данные и их комбинации идут в дело. Спастись от подобных атак можно, только используя в качестве пароля случайную комбинацию букв и цифр, желательно сгенерированную специальной программой. И, разумеется, необходимо регулярно менять пароль — следить за этим обязан системный администратор. Социальная инженерия. Это использование хакером психологических приемов "работы" с пользователем. Типичный (и самый простой) пример — телефонный звонок от якобы "системного администратора" с заявлением вроде "У нас тут произошел сбой в системе, и информация о пользователях была утеряна. Не могли бы вы сообщить еще раз свой логин и пароль?". Так жертва сама отдает пароль в руки хакеру. Защититься от таких атак, помимо обычной бдительности, помогает система "одноразовых паролей". Впрочем, из-за своей сложности она до сих пор не получила достаточно широкого распространения.

Вирусы, почтовые черви и "троянские кони"

Эти напасти поражают, в основном, не провайдеров или корпоративные коммуникации, а компьютеры конечных пользователей. Масштабы поражения при этом просто впечатляют — вспыхивающие все чаще глобальные компьютерные эпидемии приносят многомиллиардные убытки. Авторы же "зловредных" программ становятся все изощреннее, воплощая в современных вирусах самые передовые программные и психологические технологии. Вирусы и "троянские кони" — это разные классы "враждебного" программного кода. Вирусы внедряются в другие программы с целью выполнения заложенной в них вредоносной функции на рабочей станции конечного пользователя. Это может быть, например, уничтожение всех или только определенных файлов на винчестере (чаще всего), порча оборудования (пока экзотика) или другие операции. Часто вирусы запрограммированы на срабатывание в определенную дату (типичный пример — знаменитый WinChih, он же "Чернобыль"), а также на рассылку своих копий посредством электронной почты по всем адресам, найденным в адресной книге пользователя. "Троянский конь", в отличие от вируса, — самостоятельная программа, чаще всего не ориентированная на грубое разрушение информации, свойственное вирусам. Обычно цель внедрения "троянского коня" — получение скрытого удаленного контроля над компьютером для того, чтобы манипулировать содержащейся на нем информацией. "Троянские кони" успешно маскируются под различные игры или полезные программы, великое множество которых бесплатно распространяется в Интернете. Более того, хакеры иногда встраивают "троянских коней" в совершенно "невинные" и пользующиеся хорошей репутацией программы. Попав на компьютер, "троянский конь" обычно не афиширует свое присутствие, выполняя свои функции максимально скрытно. Такая программа может, к примеру, тишком отсылать своему хозяину-хакеру пароль и логин для доступа в Интернет с данного конкретного компьютера; делать и отправлять по заложенному в нее адресу определенные файлы; отслеживать все, что вводится с клавиатуры, и т.д. Более изощренные версии "троянских коней", адаптированные для атаки на конкретные компьютеры конкретных пользователей, могут по указанию хозяина заменять те или иные данные на другие, заранее заготовленные, или видоизменять хранящиеся в файлах данные, вводя тем самым в заблуждение владельца компьютера. К слову, довольно распространенный прием из арсенала промышленного шпионажа и провокаций. Борьба с вирусами и "троянскими конями" ведется при помощи специализированного программного обеспечения, причем, грамотно выстроенная защита обеспечивает двойной контроль: на уровне конкретного компьютера и на уровне локальной сети. Современные средства борьбы с вредоносным кодом достаточно эффективны, и практика показывает, что регулярно вспыхивающие глобальные эпидемии компьютерных вирусов происходят во многом благодаря "человеческому фактору" — большинство пользователей и многие системные администраторы (!) попросту ленятся регулярно обновлять базы данных антивирусных программ и проверять на вирусы приходящую электронную почту перед ее прочтением (хотя сейчас это все чаще делают сами провайдеры услуг Интернет).

Сетевая разведка

Собственно говоря, сетевую разведку нельзя назвать атакой на компьютерную систему — ведь никаких "зловредных" действий хакер при этом не производит. Однако сетевая разведка всегда предшествует собственно нападению, так как при его подготовке злоумышленникам необходимо собрать всю доступную информацию о системе. При этом информация собирается с использованием большого набора общедоступных данных и приложений — ведь хакер старается получить как можно больше полезной информации. При этом производится сканирование портов, запросы DNS, эхо-тестирование раскрытых с помощью DNS адресов и т.д. Так удается, в частности, выяснить, кому принадлежит тот или иной домен и какие адреса этому домену присвоены. Эхо-тестирование (ping sweep) адресов, раскрытых с помощью DNS, позволяет увидеть, какие хосты реально работают в данной сети, а средства сканирования портов позволяют составить полный список услуг, поддерживаемых этими хостами. Анализируются при проведении сетевой разведки и характеристики приложений, работающих на хостах, — словом, добывается информация, которую впоследствии можно использовать при взломе или проведении DoS-атаки. Полностью избавиться от сетевой разведки невозможно, в первую очередь потому, что формально враждебных действий не производится. Если, например, отключить эхо ICMP и эхо-ответ на периферийных маршрутизаторах, можно избавиться от эхо-тестирования, однако при этом окажутся потеряны данные, которые необходимы для диагностики сбоев в Сети. К тому же, просканировать порты злоумышленники могут и без предварительного эхо-тестирования. Защитные и контролирующие системы на уровне сети и хостов обычно вполне справляются с задачей уведомления системного администратора о ведущейся сетевой разведке. При добросовестном отношении администратора к своим обязанностям это позволяет лучше подготовиться к предстоящей атаке и даже принять упреждающие меры, например, оповестив провайдера, из сети которого кто-то проявляет чрезмерное любопытство.

Сниффинг пакетов

Сниффер пакетов представляет собой прикладную программу, которая использует сетевую карту, работающую в режиме promiscuous mode (в этом режиме все пакеты, полученные по физическим каналам, сетевой адаптер отправляет приложению для обработки). При этом сниффер ("нюхач") перехватывает все сетевые пакеты, которые передаются через атакуемый домен. Особенность ситуации в данном случае в том, что сейчас во многих случаях снифферы работают в сетях на вполне законном основании — их используют для диагностики неисправностей и анализа трафика. Поэтому далеко не всегда можно достоверно определить, используется или нет конкретная программа-сниффер злоумышленниками, и не произошло ли банальной подмены программы на аналогичную, но с "расширенными" функциями. При помощи сниффера злоумышленники могут узнать различную конфиденциальную информацию — такую, например, как имена пользователей и пароли. Связано это с тем, что ряд широко используемых сетевых приложений передает данные в текстовом формате (telnet, FTP, SMTP, POP3 и т.д.). Поскольку пользователи часто применяют одни и те же логин и пароль для множества приложений и систем, даже однократный перехват этой информации несет серьезную угрозу информационной безопасности предприятия. Единожды завладев логином и паролем конкретного сотрудника, хитроумный хакер может получить доступ к пользовательскому ресурсу на системном уровне и с его помощью создать нового, фальшивого, пользователя, которого можно в любой момент использовать для доступа в Сеть и к информационным ресурсам. Впрочем, используя определенный набор средств, можно существенно смягчить угрозу сниффинга пакетов. Во-первых, это достаточно сильные средства аутентификации, которые трудно обойти, даже используя "человеческий фактор". Например, однократные пароли (One-Time Passwords). Это технология двухфакторной аутентификации, при которой происходит сочетание того, что у вас есть, с тем, что вы знаете. При этом аппаратное или программное средство генерирует по случайному принципу уникальный одномоментный однократный пароль. Если хакер узнает этот пароль с помощью сниффера, эта информация будет бесполезной, потому что в этот момент пароль уже будет использован и выведен из употребления. Но это касается только паролей — к примеру, сообщения электронной почты все равно остаются незащищенными. Другой способ борьбы со сниффингом — использование анти-снифферов. Это работающие в Сети аппаратные или программные средства, которые распознают снифферы. Они измеряют время реагирования хостов и определяют, не приходится ли хостам обрабатывать "лишний" трафик. Подобного рода средства не могут полностью ликвидировать угрозу сниффинга, но жизненно необходимы при построении комплексной системы защиты. Однако наиболее эффективной мерой, по мнению ряда специалистов, будет просто сделать работу снифферов бессмысленной. Для этого достаточно защитить передаваемые по каналу связи данные современными методами криптографии. В результате хакер перехватит не сообщение, а зашифрованный текст, то есть непонятную для него последовательность битов. Сейчас наиболее распространенными являются криптографические протоколы IPSec от корпорации Cisco, а также протоколы SSH (Secure Shell) и SSL (Secure Socket Layer).

IP-спуфинг

Спуфинг — это вид атаки, при которой хакер внутри организации или за ее пределами выдает себя за санкционированного пользователя. Для этого существуют различные способы. Например, хакер может воспользоваться IP-адресом, находящимся в пределах диапазона санкционированных к применению в рамках Сети данной организации IP-адресов, или авторизованным внешним адресом, в случае если ему разрешен доступ к определенным сетевым ресурсам. Кстати, IP-спуфинг часто используется как составная часть более сложной, комплексной атаки. Типичный пример — атака DDoS, для осуществления которой хакер обычно размещает соответствующую программу на чужом IP-адресе, чтобы скрыть свою истинную личность. Однако чаще всего IP-спуфинг используется для выведения из строя системы при помощи ложных команд, а также для воровства конкретных файлов или, наоборот, внедрения в базы данных ложной информации. Полностью устранить угрозу спуфинга практически невозможно, но ее можно существенно ослабить. Например, имеет смысл настроить системы безопасности таким образом, чтобы они отсекали любой трафик, поступающий из внешней сети с исходным адресом, который должен на самом деле находиться в сети внутренней. Впрочем, это помогает бороться с IP-спуфингом, только когда санкционированными являются лишь внутренние адреса. Если таковыми являются и некоторые внешние адреса, использование данного метода теряет смысл. Неплохо также на всякий случай заблаговременно пресечь попытки спуфинга чужих сетей пользователями вашей сети — эта мера может позволить избежать целого ряда неприятностей, если внутри организации объявится злоумышленник или просто компьютерный хулиган. Для этого нужно использовать любой исходящий трафик, если его исходный адрес не относится ко внутреннему диапазону IP-адресов организации. При необходимости данную процедуру может выполнять и провайдер услуг Интернет. Этот тип фильтрации известен под названием "RFC 2827". Опять-таки, как и в случае со сниффингом пакетов, самой лучшей защитой будет сделать атаку абсолютно неэффективной. IP-спуфинг может быть реализован только при условии, что аутентификация пользователей происходит на базе IP-адресов. Поэтому криптошифрование аутентификации делает этот вид атак бесполезными. Впрочем, вместо криптошифрования с тем же успехом можно использовать случайным образом генерируемые одноразовые пароли.

Атака на отказ в обслуживании

Сегодня одна из наиболее распространенных в мире форм хакерских атак — атака на отказ в обслуживании (Denial of Service — DoS). Между тем, это одна из самых молодых технологий — ее осуществление стало возможно только в связи с действительно повсеместным распространением Интернета. Не случайно о DoS-атаках широко заговорили только после того, как в декабре 1999 года при помощи этой технологии были "завалены" web-узлы таких известных корпораций, как Amazon, Yahoo, CNN, eBay и E-Trade. Хотя первые сообщения о чем-то похожем появились еще в 1996 году, до "рождественского сюрприза" 1999 года DoS-атаки не воспринимались как серьезная угроза безопасности в Сети. Однако спустя год, в декабре 2000-го, все повторилось: web-узлы крупнейших корпораций были атакованы по технологии DoS, а их системные администраторы вновь не смогли ничего противопоставить злоумышленникам. Ну а в 2001 году DoS-атаки стали уже обычным делом. Собственно говоря, DoS-атаки производятся отнюдь не для кражи информации или манипулирования ею. Основная их цель — парализовать работу атакуемого web-узла. В сущности, это просто сетевой терроризм. Не случайно поэтому американские спецслужбы подозревают, что за многими DoS-атаками на серверы крупных корпораций стоят пресловутые антиглобалисты. Действительно, одно дело швырнуть кирпич в витрину "Макдональдса" где-нибудь в Мадриде или Праге, и совсем другое — "завалить" сайт этой суперкорпорации, давно уже ставшей своего рода символом глобализации мировой экономики. DoS-атаки опасны еще и тем, что для их развертывания кибертеррористам не требуется обладать какими-то особенными знаниями и умениями — все необходимое программное обеспечение вместе с описаниями самой технологии совершенно свободно доступно в Интернете. К тому же от подобного рода атак очень сложно защититься. В общем случае технология DoS-атаки выглядит следующим образом: на выбранный в качестве мишени web-узел обрушивается шквал ложных запросов со множества компьютеров по всему миру. В результате, обслуживающие узел серверы оказываются парализованы и не могут обслуживать запросы обычных пользователей. При этом пользователи компьютеров, с которых направляются ложные запросы, и не подозревают о том, что их машина тайком используется злоумышленниками. Такое распределение "рабочей нагрузки" не только усиливает разрушительное действие атаки, но и сильно затрудняет меры по ее отражению, не позволяя выявить истинный адрес координатора атаки. Сегодня наиболее часто используются следующие разновидности DoS-атак:

Smurf — ping-запросы ICMP (Internet Control Message Protocol) по адресу направленной широковещательной рассылки. Используемый в пакетах этого запроса фальшивый адрес источника в результате оказывается мишенью атаки. Системы, получившие направленный широковещательный ping-запрос, отвечают на него и "затапливают" сеть, в которой находится сервер-мишень.

  • ICMP flood — атака, аналогичная Smurf, только без усиления, создаваемого запросами по направленному широковещательному адресу.
  • UDP flood — отправка на адрес системы-мишени множества пакетов UDP (User Datagram Protocol), что приводит к "связыванию" сетевых ресурсов.
  • TCP flood — отправка на адрес системы-мишени множества TCP-пакетов, что также приводит к "связыванию" сетевых ресурсов.
  • TCP SYN flood — при проведении такого рода атаки выдается большое количество запросов на инициализацию TCP-соединений с узлом-мишенью, которому, в результате, приходится расходовать все свои ресурсы на то, чтобы отслеживать эти частично открытые соединения.

В случае атаки трафик, предназначенный для переполнения атакуемой сети, необходимо "отсекать" у провайдера услуг Интернет, потому что на входе в Сеть сделать это уже будет невозможно — вся полоса пропускания будет занята. Когда атака этого типа проводится одновременно через множество устройств, говорится о распределенной атаке DoS (Distributed Denial of Service — DDoS). Угрозу DoS-атак можно снизить несколькими способами. Во-первых, необходимо правильно сконфигурировать функции анти-спуфинга на маршрутизаторах и межсетевых экранах. Эти функции должны включать, как минимум, фильтрацию RFC 2827. Если хакер будет не в состоянии замаскировать свою истинную личность, он вряд ли решится на проведение атаки. Во-вторых, необходимо включить и правильно сконфигурировать функции анти-DoS на маршрутизаторах и межсетевых экранах. Эти функции ограничивают число полуоткрытых каналов, не позволяя перегружать систему. Также рекомендуется при угрозе DoS-атаки ограничить объем проходящего по Сети некритического трафика. Об этом уже нужно договариваться со своим интернет-провайдером. Обычно при этом ограничивается объем трафика ICMP, так как он используется сугубо для диагностических целей.

Атаки типа Man-in-the-Middle

Этот тип атак весьма характерен для промышленного шпионажа. При атаке типа Man-in-the-Middle хакер должен получить доступ к пакетам, передаваемым по Сети, а потому в роли злоумышленников в данном случае часто выступают сами сотрудники предприятия или, к примеру, сотрудник фирмы-провайдера. Для атак Man-in-the-Middle часто используются снифферы пакетов, транспортные протоколы и протоколы маршрутизации. Цель подобной атаки, соответственно, — кража или фальсификация передаваемой информации или же получение доступа к ресурсам сети. Защититься от подобных атак крайне сложно, так как обычно это атаки "крота" внутри самой организации. Поэтому в чисто техническом плане обезопасить себя можно только путем криптошифрования передаваемых данных. Тогда хакер вместо необходимых ему данных получит мешанину символов, разобраться в которой, не имея под рукой суперкомпьютера, попросту невозможно. Впрочем, если злоумышленнику повезет, и он сможет перехватить информацию о криптографической сессии, шифрование данных автоматически потеряет всяческий смысл. Так что "на переднем крае" борьбы в данном случае должны находиться не "технари", а кадровый отдел и служба безопасности предприятия.

Использование "дыр" и "багов" в ПО

Весьма и весьма распространенный тип хакерских атак — использование уязвимых мест (чаще всего банальных недоработок) в широко используемом программном обеспечении, прежде всего для серверов. Особо "славится" своей ненадежностью и слабой защищенностью ПО от Microsoft. Обычно ситуация развивается следующим образом: кто-либо обнаруживает "дыру" или "баг" в программном обеспечении для сервера и публикует эту информацию в Интернете в соответствующей конференции. Производитель данного ПО выпускает патч ("заплатку"), устраняющий данную проблему, и публикует его на своем web-сервере. Проблема в том, что далеко не все администраторы, по причине элементарной лени, постоянно следят за обнаружением и появлением патчей, да и между обнаружением "дыры" и написанием "заплатки" тоже какое-то время проходит: Хакеры же тоже читают тематические конференции и, надо отдать им должное, весьма умело применяют полученную информацию на практике. Не случайно же большинство ведущих мировых специалистов по информационной безопасности — бывшие хакеры.

Основная цель подобной атаки — получить доступ к серверу от имени пользователя, работающего с приложением, обычно с правами системного администратора и соответствующим уровнем доступа. Защититься от подобного рода атак достаточно сложно. Одна из причин, помимо низкокачественного ПО, состоит в том, что при проведении подобных атак злоумышленники часто пользуются портами, которым разрешен проход через межсетевой экран и которые не могут быть закрыты по чисто технологическим причинам. Так что лучшая защита в данном случае — грамотный и добросовестный системный администратор.

То ли еще будет…

Вместе с расширением посевов какой-либо сельскохозяйственной культуры всегда увеличивается и численность насекомых-вредителей этой самой культуры. Так и с развитием информационных технологий и проникновением их во все сферы современной жизни растет число злоумышленников, активно эти технологии использующих. Поэтому в обозримом будущем вопросы защиты компьютерных сетей будут становиться все более актуальными. Причем, защита будет вестись по двум основным направлениям: технологическому и консалтинговому. Что же касается основных тенденций развития отрасли защиты информации, то, по мнению специалистов известной компании The Yankee Group, в ближайшие годы они будут таковы:

1. Акцент при построении защитных систем будет плавно перемещаться — от противодействия "внешним" хакерским нападениям к защите от нападений "изнутри".

2. Будут развиваться и совершенствоваться аппаратные средства защиты от хакерских атак. На рынке появится новый класс сетевого оборудования — "защитные сервисные коммутаторы". Они смогут обеспечивать комплексную защиту компьютерных сетей, тогда как современные устройства обычно выполняют довольно ограниченный набор конкретных функций, а основная тяжесть все равно ложится на специализированное программное обеспечение.

3. Стремительное развитие обеспечено рынку услуг по защищенной доставке цифрового контента и защите самого контента от нелегального копирования и несанкционированного использования. Параллельно с развитием рынка защищенной доставки будут развиваться и сответствующие технологии. Объем же этого рынка специалисты The Yankee Group оценивают в 200 млн долл. по итогам 2001 года и прогнозируют рост до 2 млрд долл. к 2005 году.

4. Гораздо шире будут применяться системы биометрической аутентификации (по сетчатке глаза, отпечаткам пальцев, голосу и т.д.), в том числе и комплексные. В повседневную корпоративную жизнь войдет многое из того, что сейчас можно увидеть разве что в остросюжетных кинофильмах.

5. К 2005 году львиную долю услуг безопасности будут оказывать своим клиентам интернет-провайдеры. Причем основными их клиентами станут компании, бизнес которых строится именно на интернет-технологиях, то есть активные потребители услуг web-хостинга, систем электронной коммерции и т.д.

6. Быстрый рост ожидает рынок интеллектуальных услуг сетевой защиты. Это связано с тем, что новые концепции защиты IT-систем от хакеров акцентируют внимание не столько на реагирование на уже произошедшие события/атаки, а на их прогнозирование, предупреждение и проведение упреждающих и профилактических мероприятий.

7. Существенно повысится спрос на коммерческие системы криптошифрования передаваемых данных, включая "индивидуальные" разработки для конкретных компаний с учетом их сфер деятельности.

8. На рынке решений по IT-безопасности будет происходить постепенный отход от "систем стандартной комплектации", в связи с чем возрастет спрос на консалтинговые услуги по разработке концепций информационной безопасности и построению систем управления информационной безопасностью для конкретных заказчиков.

На "постсоветском пространстве" также развивается рынок систем и услуг по обеспечению информационной безопасности — хотя и не такими темпами и не в таких масштабах, как на Западе. Как сообщила газета "Коммерсант", в России на развитие информационной инфраструктуры различного типа организации тратят от 1% (металлургия) до 30% (финансовый сектор) своих бюджетов. При этом расходы на защиту составляют пока только лишь порядка 0,1-0,2% в затратной части бюджетов. Таким образом, общий объем рынка систем информационной безопасности в 2001 году в России оценен экспертами в размере 40-80 млн долларов. В 2002 году в соответствии с данными, заложенными в проект Государственного бюджета, они должны составить 60-120 млн долларов. Для сравнения: как продемонстрировали последние исследования IDC, объем одного только европейского рынка продуктов защиты информации (программных и аппаратных) должен возрасти с 1.8 миллиарда USD в 2000 году до $ 6.2 миллиарда в 2005 году.

20.06.05 37.2K

Интернет полностью меняет наш образ жизни: работу, учебу, досуг. Эти изменения будут происходить как в уже известных нам областях (электронная коммерция, доступ к информации в реальном времени, расширение возможностей связи и т.д.), так и в тех сферах, о которых мы пока не имеем представления.

Может наступить такое время, когда корпорация будет производить все свои телефонные звонки через Интернет, причем совершенно бесплатно. В частной жизни возможно появление специальных Web-сайтов, при помощи которых родители смогут в любой момент узнать, как обстоят дела у их детей. Наше общество только начинает осознавать безграничные возможности Интернета.

Введение

Одновременно с колоссальным ростом популярности Интернета возникает беспрецедентная опасность разглашения персональных данных, критически важных корпоративных ресурсов, государственных тайн и т.д.

Каждый день хакеры подвергают угрозе эти ресурсы, пытаясь получить к ним доступ при помощи специальных атак, которые постепенно становятся, с одной стороны, более изощренными, а с другой - простыми в исполнении. Этому способствуют два основных фактора.

Во-первых , это повсеместное проникновение Интернета. Сегодня к Сети подключены миллионы устройств, и многие миллионы устройств будут подключены к Интернету в ближайшем будущем, поэтому вероятность доступа хакеров к уязвимым устройствам постоянно возрастает.

Кроме того, широкое распространение Интернета позволяет хакерам обмениваться информацией в глобальном масштабе. Простой поиск по ключевым словам типа «хакер », «взлом », «hack », «crack » или «phreak » даст вам тысячи сайтов, на многих из которых можно найти вредоносные коды и способы их использования.

Во-вторых , это широчайшее распространение простых в использовании операционных систем и сред разработки. Данный фактор резко снижает уровень необходимых хакеру знаний и навыков. Раньше, чтобы создавать и распространять простые в использовании приложения, хакер должен был обладать хорошими навыками программирования.

Теперь, чтобы получить доступ к хакерскому средству, нужно только знать IP-адрес нужного сайта, а для проведения атаки достаточно щелкнуть мышью.

Классификация сетевых атак

Сетевые атаки столь же многообразны, как и системы, против которых они направлены. Некоторые атаки отличаются большой сложностью, другие по силам обычному оператору, даже не предполагающему, к каким последствиям может привести его деятельность. Для оценки типов атак необходимо знать некоторые ограничения, изначально присущие протоколу TPC/IP. Сеть

Интернет создавалась для связи между государственными учреждениями и университетами с целью оказания помощи учебному процессу и научным исследованиям. Создатели этой сети не подозревали, насколько широкое распространение она получит. В результате в спецификациях ранних версий Интернет-протокола (IP) отсутствовали требования безопасности. Именно поэтому многие реализации IP являются изначально уязвимыми.

Через много лет, после множества рекламаций (Request for Comments, RFC ), наконец стали внедряться средства безопасности для IP. Однако ввиду того, что изначально средства защиты для протокола IP не разрабатывались, все его реализации стали дополняться разнообразными сетевыми процедурами, услугами и продуктами, снижающими риски, присущие этому протоколу. Далее мы кратко рассмотрим типы атак, которые обычно применяются против сетей IP, и перечислим способы борьбы с ними.

Сниффер пакетов

Сниффер пакетов представляет собой прикладную программу, которая использует сетевую карту, работающую в режиме promiscuous mode (в этом режиме все пакеты, полученные по физическим каналам, сетевой адаптер отправляет приложению для обработки).

При этом сниффер перехватывает все сетевые пакеты, которые передаются через определенный домен. В настоящее время снифферы работают в сетях на вполне законном основании. Они используются для диагностики неисправностей и анализа трафика. Однако ввиду того, что некоторые сетевые приложения передают данные в текстовом формате (Telnet, FTP, SMTP, POP3 и т.д .), с помощью сниффера можно узнать полезную, а иногда и конфиденциальную информацию (например, имена пользователей и пароли).

Перехват имен и паролей создает большую опасность, так как пользователи часто применяют один и тот же логин и пароль для множества приложений и систем. Многие пользователи вообще имеют единый пароль для доступа ко всем ресурсам и приложениям.

Если приложение работает в режиме «клиент-сервер », а аутентификационные данные передаются по сети в читаемом текстовом формате, то эту информацию с большой вероятностью можно использовать для доступа к другим корпоративным или внешним ресурсам. Хакеры слишком хорошо знают и используют человеческие слабости (методы атак часто базируются на методах социальной инженерии).

Они прекрасно представляют себе, что мы пользуемся одним и тем же паролем для доступа к множеству ресурсов, и потому им часто удается, узнав наш пароль, получить доступ к важной информации. В самом худшем случае хакер получает доступ к пользовательскому ресурсу на системном уровне и с его помощью создает нового пользователя, которого можно в любой момент использовать для доступа в Сеть и к ее ресурсам.

Снизить угрозу сниффинга пакетов можно с помощью следующих средств :

Аутентификация . Сильные средства аутентификации являются важнейшим способом защиты от сниффинга пакетов. Под «сильными » мы понимаем такие методы аутентификации, которые трудно обойти. Примером такой аутентификации являются однократные пароли (One-Time Passwords, OTP ).

ОТР - это технология двухфакторной аутентификации, при которой происходит сочетание того, что у вас есть, с тем, что вы знаете. Типичным примером двухфакторной аутентификации является работа обычного банкомата, который опознает вас, во-первых, по вашей пластиковой карточке, а во-вторых, по вводимому вами пин-коду. Для аутентификации в системе ОТР также требуются пин-код и ваша личная карточка.

Под «карточкой » (token) понимается аппаратное или программное средство, генерирующее (по случайному принципу) уникальный одномоментный однократный пароль. Если хакер узнает данный пароль с помощью сниффера, то эта информация будет бесполезной, поскольку в этот момент пароль уже будет использован и выведен из употребления.

Отметим, что этот способ борьбы со сниффингом эффективен только в случаях перехвата паролей. Снифферы, перехватывающие другую информацию (например, сообщения электронной почты), не теряют своей эффективности.

Коммутируемая инфраструктура . Еще одним способом борьбы со сниффингом пакетов в вашей сетевой среде является создание коммутируемой инфраструктуры. Если, к примеру, во всей организации используется коммутируемый Ethernet, хакеры могут получить доступ только к трафику, поступающему на тот порт, к которому они подключены. Коммутируемая инфраструктура не устраняет угрозы сниффинга, но заметно снижает ее остроту.

Антиснифферы . Третий способ борьбы со сниффингом заключается в установке аппаратных или программных средств, распознающих снифферы, работающие в вашей сети. Эти средства не могут полностью ликвидировать угрозу, но, как и многие другие средства сетевой безопасности, они включаются в общую систему защиты. Антиснифферы измеряют время реагирования хостов и определяют, не приходится ли хостам обрабатывать лишний трафик. Одно из таких средств, поставляемых компанией LOpht Heavy Industries, называется AntiSniff.

Криптография . Этот самый эффективный способ борьбы со сниффингом пакетов хотя и не предотвращает перехвата и не распознает работу снифферов, но делает эту работу бесполезной. Если канал связи является криптографически защищенным, то хакер перехватывает не сообщение, а зашифрованный текст (то есть непонятную последовательность битов). Криптография Cisco на сетевом уровне базируется на протоколе IPSec, который представляет собой стандартный метод защищенной связи между устройствами с помощью протокола IP. К другим криптографическим протоколам сетевого управления относятся протоколы SSH (Secure Shell) и SSL (Secure Socket Layer) .

IP-спуфинг

IP-спуфинг происходит в том случае, когда хакер, находящийся внутри корпорации или вне ее, выдает себя за санкционированного пользователя. Это можно сделать двумя способами: хакер может воспользоваться или IP-адресом, находящимся в пределах диапазона санкционированных IP-адресов, или авторизованным внешним адресом, которому разрешается доступ к определенным сетевым ресурсам.

Атаки IP-спуфинга часто являются отправной точкой для прочих атак. Классический пример - атака DoS, которая начинается с чужого адреса, скрывающего истинную личность хакера.

Как правило, IP-спуфинг ограничивается вставкой ложной информации или вредоносных команд в обычный поток данных, передаваемых между клиентским и серверным приложением или по каналу связи между одноранговыми устройствами.

Для двусторонней связи хакер должен изменить все таблицы маршрутизации, чтобы направить трафик на ложный IP-адрес. Некоторые хакеры, однако, даже не пытаются получить ответ от приложений - если главная задача заключается в получении от системы важного файла, то ответы приложений не имеют значения.

Если же хакеру удается поменять таблицы маршрутизации и направить трафик на ложный IP-адрес, он получит все пакеты и сможет отвечать на них так, как будто является санкционированным пользователем.

Угрозу спуфинга можно ослабить (но не устранить) с помощью перечисленных ниже меров:

  • Контроль доступа . Самый простой способ предотвращения IP-спуфинга состоит в правильной настройке управления доступом. Чтобы снизить эффективность IP-спуфинга, настройте контроль доступа на отсечение любого трафика, поступающего из внешней сети с исходным адресом, который должен располагаться внутри вашей сети.

    Правда, это помогает бороться с IP-спуфингом, когда санкционированными являются только внутренние адреса; если же санкционированными являются и некоторые адреса внешней сети, данный метод становится неэффективным;

  • Фильтрация RFC 2827 . Вы можете пресечь попытки спуфинга чужих сетей пользователями вашей сети (и стать добропорядочным сетевым гражданином). Для этого необходимо отбраковывать любой исходящий трафик, исходный адрес которого не является одним из IP-адресов вашей организации.

    Данный тип фильтрации, известный под названием RFC 2827, может выполнять и ваш провайдер (ISP). В результате отбраковывается весь трафик, который не имеет исходного адреса, ожидаемого на определенном интерфейсе. К примеру, если ISP предоставляет соединение с IP-адресом 15.1.1.0/24, он может настроить фильтр таким образом, чтобы с данного интерфейса на маршрутизатор ISP допускался только трафик, поступающий с адреса 15.1.1.0/24.

Отметим, что до тех пор, пока все провайдеры не внедрят этот тип фильтрации, его эффективность будет намного ниже возможной. Кроме того, чем дальше от фильтруемых устройств, тем труднее проводить точную фильтрацию. Например , фильтрация RFC 2827 на уровне маршрутизатора доступа требует пропуска всего трафика с главного сетевого адреса (10.0.0.0/8), тогда как на уровне распределения (в данной архитектуре) можно ограничить трафик более точно (адрес - 10.1.5.0/24).

Наиболее эффективный метод борьбы с IP-спуфингом - тот же, что и в случае со сниффингом пакетов: необходимо сделать атаку абсолютно неэффективной. IP-спуфинг может функционировать только при условии, что аутентификация происходит на базе IP-адресов.

Поэтому внедрение дополнительных методов аутентификации делает подобные атаки бесполезными. Лучшим видом дополнительной аутентификации является криптографическая. Если она невозможна, хорошие результаты может дать двухфакторная аутентификация с использованием одноразовых паролей.

Отказ в обслуживании

Denial of Service (DoS) , без сомнения, является наиболее известной формой хакерских атак. Кроме того, против атак такого типа труднее всего создать стопроцентную защиту. Среди хакеров атаки DoS считаются детской забавой, а их применение вызывает презрительные усмешки, поскольку для организации DoS требуется минимум знаний и умений.

Тем не менее именно простота реализации и огромные масштабы причиняемого вреда привлекают к DoS пристальное внимание администраторов, отвечающих за сетевую безопасность. Если вы хотите больше узнать об атаках DoS, вам следует рассмотреть их наиболее известные разновидности, а именно:

  • TCP SYN Flood;
  • Ping of Death;
  • Tribe Flood Network (TFN) и Tribe Flood Network 2000 (TFN2K);
  • Trinco;
  • Stacheldracht;
  • Trinity.

Прекрасным источником информации по вопросам безопасности является группа экстренного реагирования на компьютерные проблемы (Computer Emergency Response Team, CERT), опубликовавшая отличную работу по борьбе с атаками DoS.

Атаки DoS отличаются от атак других типов. Они не нацелены ни на получение доступа к вашей сети, ни на получение из этой сети какой-либо информации, но атака DoS делает вашу сеть недоступной для обычного использования за счет превышения допустимых пределов функционирования сети, операционной системы или приложения.

В случае использования некоторых серверных приложений (таких как Web-сервер или FTP-сервер) атаки DoS могут заключаться в том, чтобы занять все соединения, доступные для этих приложений, и держать их в занятом состоянии, не допуская обслуживания рядовых пользователей. В ходе атак DoS могут использоваться обычные Интернет-протоколы, такие как TCP и ICMP (Internet Control Message Protocol ).

Большинство атак DoS рассчитано не на программные ошибки или бреши в системе безопасности, а на общие слабости системной архитектуры. Некоторые атаки сводят к нулю производительность сети, переполняя ее нежелательными и ненужными пакетами или сообщая ложную информацию о текущем состоянии сетевых ресурсов.

Данный тип атак трудно предотвратить, так как для этого требуется координация действий с провайдером. Если не остановить у провайдера трафик, предназначенный для переполнения вашей сети, то сделать это на входе в сеть вы уже не сможете, поскольку вся полоса пропускания будет занята. Когда атака данного типа проводится одновременно через множество устройств, мы говорим о распределенной атаке DoS (distributed DoS, DDoS ).

Угроза атак типа DoS может быть снижена тремя способами:

  • Функции антиспуфинга . Правильная конфигурация функций антиспуфинга на ваших маршрутизаторах и межсетевых экранах поможет снизить риск DoS. Эти функции как минимум должны включать фильтрацию RFC 2827. Если хакер не сможет замаскировать свою истинную личность, он вряд ли решится провести атаку.
  • Функции анти-DoS . Правильная конфигурация функций анти-DoS на маршрутизаторах и межсетевых экранах способна ограничить эффективность атак. Эти функции часто ограничивают число полуоткрытых каналов в любой момент времени.
  • Ограничение объема трафика (traffic rate limiting) . Организация может попросить провайдера (ISP) ограничить объем трафика. Этот тип фильтрации позволяет ограничить объем некритического трафика, проходящего по вашей сети. Типичным примером является ограничение объемов трафика ICMP, который используется только для диагностических целей. Атаки (D)DoS часто используют ICMP.

Парольные атаки

Хакеры могут проводить парольные атаки с помощью целого ряда методов, таких как простой перебор (brute force attack ), троянский конь, IP-спуфинг и сниффинг пакетов. Хотя логин и пароль зачастую можно получить при помощи IP-спуфинга и сниффинга пакетов, хакеры нередко пытаются подобрать пароль и логин, используя для этого многочисленные попытки доступа. Такой подход носит название простого перебора (brute force attack ).

Часто для такой атаки используется специальная программа, которая пытается получить доступ к ресурсу общего пользования (например, к серверу). Если в результате хакеру предоставляется доступ к ресурсам, то он получает его на правах обычного пользователя, пароль которого был подобран.

Если этот пользователь имеет значительные привилегии доступа, хакер может создать себе «проход » для будущего доступа, который будет действовать, даже если пользователь изменит свои пароль и логин.

Еще одна проблема возникает, когда пользователи применяют один и тот же (пусть даже очень хороший) пароль для доступа ко многим системам: к корпоративной, персональной и к системам Интернета. Поскольку устойчивость пароля равна устойчивости самого слабого хоста, то хакер, узнавший пароль через этот хост, получает доступ ко всем остальным системам, где используется тот же пароль.

Парольных атак можно избежать, если не пользоваться паролями в текстовой форме. Одноразовые пароли и/или криптографическая аутентификация могут практически свести на нет угрозу таких атак. К сожалению, не все приложения, хосты и устройства поддерживают вышеуказанные методы аутентификации.

При использовании обычных паролей старайтесь придумать такой, который было бы трудно подобрать. Минимальная длина пароля должна быть не менее восьми символов. Пароль должен включать символы верхнего регистра, цифры и специальные символы (#, %, $ и т.д.).

Лучшие пароли трудно подобрать и трудно запомнить, что вынуждает пользователей записывать их на бумаге. Чтобы избежать этого, пользователи и администраторы могут использовать ряд последних технологических достижений.

Так, например, существуют прикладные программы, шифрующие список паролей, который можно хранить в карманном компьютере. В результате пользователю нужно помнить только один сложный пароль, тогда как все остальные будут надежно защищены приложением.

Для администратора существует несколько методов борьбы с подбором паролей. Один из них заключается в использовании средства L0phtCrack , которое часто применяют хакеры для подбора паролей в среде Windows NT. Это средство быстро покажет вам, легко ли подобрать пароль, выбранный пользователем. Дополнительную информацию можно получить по адресу http://www.l0phtcrack.com/ .

Атаки типа Man-in-the-Middle

Для атаки типа Man-in-the-Middle хакеру нужен доступ к пакетам, передаваемым по сети. Такой доступ ко всем пакетам, передаваемым от провайдера в любую другую сеть, может, к примеру, получить сотрудник этого провайдера. Для атак данного типа часто используются снифферы пакетов, транспортные протоколы и протоколы маршрутизации.

Атаки проводятся с целью кражи информации, перехвата текущей сессии и получения доступа к частным сетевым ресурсам, для анализа трафика и получения информации о сети и ее пользователях, для проведения атак типа DoS, искажения передаваемых данных и ввода несанкционированной информации в сетевые сессии.

Эффективно бороться с атаками типа Man-in-the-Middle можно только с помощью криптографии. Если хакер перехватит данные зашифрованной сессии, у него на экране появится не перехваченное сообщение, а бессмысленный набор символов. Отметим, что если хакер получит информацию о криптографической сессии (например, ключ сессии), то это может сделать возможной атаку Man-in-the-Middle даже в зашифрованной среде.

Атаки на уровне приложений

Атаки на уровне приложений могут проводиться несколькими способами. Самый распространенный из них - использование хорошо известных слабостей серверного программного обеспечения (sendmail, HTTP, FTP ). Используя эти слабости, хакеры могут получить доступ к компьютеру от имени пользователя, работающего с приложением (обычно это бывает не простой пользователь, а привилегированный администратор с правами системного доступа).

Сведения об атаках на уровне приложений широко публикуются, чтобы дать администраторам возможность исправить проблему с помощью коррекционных модулей (патчей). К сожалению, многие хакеры также имеют доступ к этим сведениям, что позволяет им совершенствоваться.

Главная проблема при атаках на уровне приложений заключается в том, что хакеры часто пользуются портами, которым разрешен проход через межсетевой экран. К примеру, хакер, эксплуатирующий известную слабость Web-сервера, часто использует в ходе атаки ТСР порт 80. Поскольку web-сервер предоставляет пользователям Web-страницы, то межсетевой экран должен обеспечивать доступ к этому порту. С точки зрения межсетевого экрана атака рассматривается как стандартный трафик для порта 80.

Полностью исключить атаки на уровне приложений невозможно. Хакеры постоянно открывают и публикуют в Интернете новые уязвимые места прикладных программ. Самое главное здесь - хорошее системное администрирование. Вот некоторые меры, которые можно предпринять, чтобы снизить уязвимость для атак этого типа:

  • читайте лог-файлы операционных систем и сетевые лог-файлы и/или анализируйте их с помощью специальных аналитических приложений;
  • подпишитесь на услуги по рассылке данных о слабых местах прикладных программ: Bugtrad (http://www.securityfocus.com ).

Сетевая разведка

Сетевой разведкой называется сбор информации о сети с помощью общедоступных данных и приложений. При подготовке атаки против какой-либо сети хакер, как правило, пытается получить о ней как можно больше информации. Сетевая разведка проводится в форме запросов DNS, эхо-тестирования и сканирования портов.

Запросы DNS помогают понять, кто владеет тем или иным доменом и какие адреса этому домену присвоены. Эхо-тестирование адресов, раскрытых с помощью DNS, позволяет увидеть, какие хосты реально работают в данной среде. Получив список хостов, хакер использует средства сканирования портов, чтобы составить полный список услуг, поддерживаемых этими хостами. И наконец, хакер анализирует характеристики приложений, работающих на хостах. В результате он добывает информацию, которую можно использовать для взлома.

Полностью избавиться от сетевой разведки невозможно. Если, к примеру, отключить эхо ICMP и эхо-ответ на периферийных маршрутизаторах, то вы избавитесь от эхо-тестирования, но потеряете данные, необходимые для диагностики сетевых сбоев.

Кроме того, сканировать порты можно и без предварительного эхо-тестирования - просто это займет больше времени, так как сканировать придется и несуществующие IP-адреса. Системы IDS на уровне сети и хостов обычно хорошо справляются с задачей уведомления администратора о ведущейся сетевой разведке, что позволяет лучше подготовиться к предстоящей атаке и оповестить провайдера (ISP), в сети которого установлена система, проявляющая чрезмерное любопытство:

  1. пользуйтесь самыми свежими версиями операционных систем и приложений и самыми последними коррекционными модулями (патчами);
  2. кроме системного администрирования, пользуйтесь системами распознавания атак (IDS) - двумя взаимодополняющими друг друга технологиями ID:
    • сетевая система IDS (NIDS) отслеживает все пакеты, проходящие через определенный домен. Когда система NIDS видит пакет или серию пакетов, совпадающих с сигнатурой известной или вероятной атаки, она генерирует сигнал тревоги и/или прекращает сессию;
    • система IDS (HIDS) защищает хост с помощью программных агентов. Эта система борется только с атаками против одного хоста.

В своей работе системы IDS пользуются сигнатурами атак, которые представляют собой профили конкретных атак или типов атак. Сигнатуры определяют условия, при которых трафик считается хакерским. Аналогами IDS в физическом мире можно считать систему предупреждения или камеру наблюдения.

Самым большим недостатком IDS является их способность генерировать сигналы тревоги. Чтобы минимизировать количество ложных сигналов тревоги и добиться корректного функционирования системы IDS в сети, необходима тщательная настройка этой системы.

Злоупотребление доверием

Собственно говоря, этот тип действий не является в полном смысле слова атакой или штурмом. Он представляет собой злонамеренное использование отношений доверия, существующих в сети. Классическим примером такого злоупотребления является ситуация в периферийной части корпоративной сети.

В этом сегменте часто располагаются серверы DNS, SMTP и HTTP. Поскольку все они принадлежат к одному и тому же сегменту, взлом любого из них приводит к взлому всех остальных, так как эти серверы доверяют другим системам своей сети.

Другим примером является установленная с внешней стороны межсетевого экрана система, имеющая отношения доверия с системой, установленной с его внутренней стороны. В случае взлома внешней системы хакер может использовать отношения доверия для проникновения в систему, защищенную межсетевым экраном.

Риск злоупотребления доверием можно снизить за счет более жесткого контроля уровней доверия в пределах своей сети. Системы, расположенные с внешней стороны межсетевого экрана, ни при каких условиях не должны пользоваться абсолютным доверием со стороны защищенных экраном систем.

Отношения доверия должны ограничиваться определенными протоколами и, по возможности, аутентифицироваться не только по IP-адресам, но и по другим параметрам.

Переадресация портов

Переадресация портов представляет собой разновидность злоупотребления доверием, когда взломанный хост используется для передачи через межсетевой экран трафика, который в противном случае был бы обязательно отбракован. Представим себе межсетевой экран с тремя интерфейсами, к каждому из которых подключен определенный хост.

Внешний хост может подключаться к хосту общего доступа (DMZ), но не к тому, что установлен с внутренней стороны межсетевого экрана. Хост общего доступа может подключаться и к внутреннему, и к внешнему хосту. Если хакер захватит хост общего доступа, он сможет установить на нем программное средство, перенаправляющее трафик с внешнего хоста прямо на внутренний.

Хотя при этом не нарушается ни одно правило, действующее на экране, внешний хост в результате переадресации получает прямой доступ к защищенному хосту. Примером приложения, которое может предоставить такой доступ, является netcat. Более подробную информацию можно получить на сайте http://www.avian.org .

Основным способом борьбы с переадресацией портов является использование надежных моделей доверия (см. предыдущий раздел). Кроме того, помешать хакеру установить на хосте свои программные средства может хост-система IDS (HIDS).

Несанкционированный доступ

Несанкционированный доступ не может быть выделен в отдельный тип атаки, поскольку большинство сетевых атак проводятся именно ради получения несанкционированного доступа. Чтобы подобрать логин Тelnet, хакер должен сначала получить подсказку Тelnet на своей системе. После подключения к порту Тelnet на экране появляется сообщение «authorization required to use this resource» («Для пользования этим ресурсом нужна авторизация »).

Если после этого хакер продолжит попытки доступа, они будут считаться несанкционированными. Источник таких атак может находиться как внутри сети, так и снаружи.

Способы борьбы с несанкционированным доступом достаточно просты. Главным здесь является сокращение или полная ликвидация возможностей хакера по получению доступа к системе с помощью несанкционированного протокола.

В качестве примера можно рассмотреть недопущение хакерского доступа к порту Telnet на сервере, который предоставляет Web-услуги внешним пользователям. Не имея доступа к этому порту, хакер не сможет его атаковать. Что же касается межсетевого экрана, то его основной задачей является предотвращение самых простых попыток несанкционированного доступа.

Вирусы и приложения типа «троянский конь»

Рабочие станции конечных пользователей очень уязвимы для вирусов и троянских коней. Вирусами называются вредоносные программы, которые внедряются в другие программы для выполнения определенной нежелательной функции на рабочей станции конечного пользователя. В качестве примера можно привести вирус, который прописывается в файле command.com (главном интерпретаторе систем Windows) и стирает другие файлы, а также заражает все другие найденные им версии command.com.

Троянский конь - это не программная вставка, а настоящая программа, которая на первый взгляд кажется полезным приложением, а на деле исполняет вредную роль. Примером типичного троянского коня является программа, которая выглядит, как простая игра для рабочей станции пользователя.

Однако пока пользователь играет в игру, программа отправляет свою копию по электронной почте каждому абоненту, занесенному в адресную книгу этого пользователя. Все абоненты получают по почте игру, вызывая ее дальнейшее распространение.

Борьба с вирусами и троянскими конями ведется с помощью эффективного антивирусного программного обеспечения, работающего на пользовательском уровне и, возможно, на уровне сети. Антивирусные средства обнаруживают большинство вирусов и троянских коней и пресекают их распространение.

Получение самой свежей информации о вирусах поможет бороться с ними более эффективно. По мере появления новых вирусов и троянских коней предприятие должно устанавливать новые версии антивирусных средств и приложений.

При написании статьи использованы материалы, предоставленные компанией Cisco Systems.

Хорошо Плохо