Самодельный фреоновый ватерчиллер. Выбираем систему охлаждения ЦОДа: фреон или вода

Комплексное экстремальное охлаждение процессора и видеокарты
Процессор и видеокарту было решено охлаждать с помощью «фреонок», но места в корпусе оказалось не так много, чтобы разместить 2 системы, поэтому пришлось задуматься о системе на одном компрессоре с двумя испарителями. О том, что у меня получилось, вы можете прочитать в этой статье.
Теория фреонового охлаждения

Так как информации о фреоновом охлаждении в русскоязычном Интернете не очень много, то я кратко опишу основные понятия и принципы работы. Сразу замечу, что я не профессионал, никакого специального образования в данной области не имею и, всё чему научился — из форумов и статей. Поэтому кое в чём могу ошибаться. Итак, приступим!

Основными компонентами простейшей системы фреонового охлаждения являются: компрессор, испаритель, конденсер, фильтр, капиллярная трубка. Также необязательным компонентом может быть глазок, ну и хладагент (рефрижерант, фреон). Все части образуют замкнутый контур, по которому движется фреон.

Капиллярная трубка разделяет контур на две области — область высокого давления и область низкого давления. Компрессор перекачивает газообразный фреон на сторону конденсера, создавая в этой области высокое давление. При высоком давлении фреон начинает отдавать тепло и переходить в жидкое состояние. Жидкий фреон проходит через фильтр/драер. Дальше по капиллярной трубке фреон попадает в испаритель, в зону низкого давления. При этом фреон начинает активно испарятся, забирая тепло из окружающей среды. Компрессор прокачивает этот испарившийся фреон на сторону конденсера и цикл повторяется.

Компоненты системы

Компрессор
От выбора компрессора будет зависеть производительность системы, поэтому нужно знать хотя бы некоторые характеристики герметических компрессоров.

  • Мощность (л.с.). Подходят компрессоры от 1/8 до 1 л.с. Если неизвестна мощность в л.с., то желательно найти производительность в ваттах.
  • Температурный режим. Компрессоры делятся на высокотемпературные (HBP-High Back Pressure), средне- (MBP-Medium Back Pressure) и низкотемпературные (LBP-Low Back Pressure). Иными словами, рассчитаны на работу в системе, которая обеспечивает определённую температуру. Так как в данном случае необходимо достичь минимальной температуры, то больше всего подходят низкотемпературные компрессоры.
  • Тип хладагента. Компрессоры изготовляются с расчётом на определённый тип фреона — разныё типы требуют разного давления. В зависимости от типа фреона в компрессорах используется разное масло.

Конденсер
Конденсер — это тот же радиатор, изготовленный с расчётом на более высокие давления. Так как для данной системы важен размер, то конденсер должен быть как можно меньше и при этом обдуваться вентилятором.

Фильтр/драер

Как следует из названия, драер фильтрует входящую жидкость от влаги, частиц и пыли, предотвращая забивание капиллярной трубки и выхода из строя компрессора.

Испаритель

Испаритель — это обычно медный блок с испаряющимся фреоном. Испаритель крепится к процессору и забирает от него тепло. Конструкция испарителя имеет много общего с тем же водоблоком — нужно попытаться достичь максимального внутреннего объема и испарения фреона прямо над ядром процессора.

Xладагент

Все охладители идентифицируются буквой R (refrigerant) и порядковым номером. Основное различие между хладагентами состоит в температуре перехода из жидкого состояния в газ.
Вот только некоторые, подходящие для использования в данном случае — R134а, R22, R12, R404а, R507. Также следует учитывать цену — некоторые низкотемпературные хладагенты достаточно дорогие для экспериментов.
У меня был выбор между хладагентами R134а и R290. Я остановился на R290 из-за более низкой температуры кипения.

Капиллярная трубка

Капиллярная трубка не единственное устройство, обеспечивающее разделение системы на две области (работоспособность системы), но она является наиболее надёжным типом трубок. С одной стороны лучше найти капиллярную трубку малого внутреннего диаметра (потребуется меньшая длина), но при этом увеличиваются шансы забивания ее частицами. Чтобы предотвратить это нужно обязательно ставить фильтр перед капилляром. Я использую трубку с внутренним диаметром 0.7мм.

Инструмент

Для сборки фреонки кроме обычного инструмента понадобится:

  • пропановый паяльник, а лучше ацетиленовый или с IMAPP GAS;
  • обычный припой, оловянный не подходит. Лучше найти с 15% (или более) содержанием серебра;
  • манометры — один из обязательных аксессуаров при настройке системы, так как необходимо следить за давлением на обеих сторонах контура;
  • инструмент для резки и изгиба медных трубок;
  • вакуумный насос — если нет специального насоса (они обычно достаточно дорогие) можно использовать другой компрессор для создания вакуума в системе;
  • теплоизолирующий материал — пенорезина и пенорукава для того чтобы не допустить выпадение конденсата.
  • течеискатель — желательно, если вы хотите собрать герметичную систему с первой-второй попытки, а не с десятой (прим. LaikrodiZ)
Сборка

В данной системе я использовал такие компоненты:

  • компрессор Embraco EMI100hlc мощностью 1 л.с.
  • конденсер — перепаянный из автомобильного
  • фильтр
  • испарители — так как у меня нет возможности сделать испаритель самому, то пришлось покупать. Выбор был не большой — Baker’s CPU evaporator и Baker’s GPU Evaporator.
  • всасывающая трубка — можно использовать и медную, но желательно, чтобы она была гибкая. Поэтому я купил трубки из нержавеющей стали, которые используются для подключения газовых плит. (Трубка должна держать давление как минимум 10 атмосфер и оставаться гибкой при температурах около -50 по цельсию! Уточните перед покупкой так как не все газовые шланги держат такие давления и температуры — прим. LaikrodiZ)

Вот как выглядит эта часть контура вместе (в самом конце работы над проектом я немного изменил разделитель):



И наконец, капиллярная трубка и кое-что из необходимого инструмента:

Корпус я взял, серверный Yeong Yang Cube Server Case YY-0221. Для отвода тепла от конденсера сначала пришлось сделать жалюзи в верхней крышке:

Затем все компоненты крепятся внутри и паяется контур:

После пайки систему нужно проверить на герметичность, вакуум и высокое давление.

Изоляция и крепления

Трубки изолировались специальным поролоном, испарители я поместил в пластмассовые корпуса (части пластиковых бутылок) и залил монтажной пеной.

Система контроля

После готовности контура, пришло время подумать о системе контроля «фреонки». Я не смог найти контроллер подобный тому, что используется в Prometeia, поэтому все пришлось собирать по частям.

Для того чтобы включать компьютер и фреонку вместе, я купил такой Relay Switch. В инструкции он описывался как устройство для запуска насоса водянок:

Но, конечно, запускать компьютер при разогнанной системе пока температура на испарителях не упадёт — не очень хорошая идея, поэтому была куплена ещё одна схема — CPU Delay Timer Kit.

Он позволяет задержать загрузку компьютера (при этом вентиляторы в системе работают). Время перед загрузкой выставляется от 1 секунды до 1часа.

Для вывода информации о состоянии системы используется LCD-дисплей Matrix Orbital LK204-24-USB. Из основных характеристик стоит выделить:

  • USB интерфейс;
  • подключение до 6 температурных датчиков;
  • подключение до 6 вентиляторов (PWM Mode);
  • возможность подключать LED’s, неонки и другие подобные устройства;
  • всё контролируется программно, я использовал программу LCDC.

Вот как выглядит собранная система:



Два датчика температуры закреплены на испарителях

Тестирование и разгон

Конфигурация:

  • AthlonXP 2500+ “Barton”
  • Abit NF-7 Rev 2.0
  • Geil Golden Dragon 2x256Mb PC3500 DDR
  • Radeon 9700 PRO

Сначала я протестировал систему без нагрузки. Результат: температура на обоих испарителях опустилась до -51С. Без разгона температура держалась на уровне -43С для видео и -44С для ЦПУ:

Максимальная частота, на которой система работает стабильно (проходит все тесты):

Процессор: 2630MHz (219x12)@2.1V
Видеокарта: 400/680 (core/memory), без вольтмодов

При этом температура на испарителях держится -35-36С без нагрузки и опускается до -34С при загрузке системы. Подсокетный датчик показывает температуру на процессоре +11С, которая при нагрузке поднимается до +16С.

Выводы

Данная система имеет свои плюсы и минусы.

Сначала о недостатках:

  • производительность фреонки с двумя испарителями ниже, чем при использовании двух отдельных контуров;
  • в корпусе осталось очень мало свободного места (один 5.25" отсек и возможность разместить не больше двух HDD);
  • испаритель видеокарты закрывает несколько PCI слотов, свободными остаются всего 2, в остальных можно использовать только низкопрофильные карты.

Плюсы:

  • комплексное экстремальное охлаждение процессора и видеокарты с возможностью работы в режиме 24/7;
  • низкий шум при работе системы;
  • эстетичность;
  • полный контроль состояния системы;
  • наибольшим плюсом является компактность (all-in-one дизайн), ради этого и затевался данный проект.

Надеюсь, данный материал поможет тем, кто интересуется «фреонками» начать свои собственные проекты.


Дополнительно

От редактора (ALT-F13): Так уж получилось, что статью мы смогли опубликовать аж через два месяца после ее написания. За это время автор не сидел, сложа руки, а двигался дальше в сторону более экстремального охлаждения. Сейчас Steff занимается сборкой самодельных phase-change direct-die систем, в просторечии - «фреонок». На момент написания этих строк, он продемонстрировал уже второй вариант своей системы. Впрочем, первый также прекрасно работал. Так что строки, с которых начинается текст этой статьи - «Экстремальными методами охлаждения компьютера я увлёкся совсем недавно, так что это - описание моего первого эксперимента в этой области» можно считать недействительными:)

Экстремальными методами охлаждения компьютера я увлёкся совсем недавно, так что это - описание моего первого эксперимента в этой области.

Водяное охлаждение я использовал на протяжении нескольких лет, но пришёл момент, когда захотелось большего. Можно было конечно купить готовую систему Asetek VapoChill или nVentiv Mach II (экс-Prometeia), но у фреонок есть свои недостатки. Во-первых это цена, во-вторых - способность охлаждать только один элемент системы. Для охлаждения, к примеру, видеокарты пришлось бы покупать еще одно устройство и серьезно заморачиваться с установкой.
Начинать свое знакомство с экстремальным охлаждением с постройки самодельной direct-die системы показалось мне достаточно сложной задачей, поэтому я выбрал другой путь.
Альтернативой direct-die охлаждения являются ватерчиллеры, то есть системы на базе водяного охлаждения с эффективным охлаждением хладагента, позволяющие достичь температур ниже окружающих.
Серийный ватерчиллер на сегодня есть только один, это достаточно неэффективная (около 0 градусов при загрузке 50-70Вт) и дорогостоящая ($330) система от Swiftech. Голландцы OC-Shop.com обещают начать продажи своего чиллера, но за последние полгода не слишком продвинулись к цели. Известна лишь цена продукта - 600 евро, что еще больше, нежели у продукта Swifttech.
По причине отсутствия эффективных серийных чиллеров, остаются два пути - сделать самому или купить чиллер, предназначенный для другого применения.
Существует два основных вида ватерчиллеров: на основе фазового перехода (phase-change) или с использованием модулей Пельтье. Первые представляют собой двухконтурную систему, где испаритель "фреонки" охлаждает хладагент в контуре жидкостного охлаждения. Во втором случае вода или другой хладагент проходит через ватерблок, охлаждаемый модулями Пельтье. Этот вид чиллеров компактнее и проще в изготовлении, но сильно проигрывает в температурах и соотношении "эффективность/потребляемая энергия". Так, 500Вт суммарной мощности модулей дают температуру жидкости чуть ниже нуля градусов при нагрузке около 100Вт...
Итак, решено - будем делать phase-change waterchiller с тремя охлаждаемыми элементами (процессор, северный мост, ядро видеокарты).

Компоненты системы

Проще всего собирать чиллер на базе бытового конциционера. Желательно найти кондиционер, который использует газ R22, а не R134а, так как R22 испаряется при низшей температуре. Для данных целей также подходит система от холодильника. Я использовал кондиционер 5000BTU, обычно в них устанавливаются компрессоры мощностью в 1/2 л.с.

В качестве резервуара подойдет любая ёмкость с теплоизоляцией, а в крайнем случае можно сделать самому. В моем случае - это изолированный бачок для холодной воды.

Главная головная боль тех, кто рискнул заниматься экстремальным охлаждением - теплоизоляция для предотвращения конденсата. Простых методов, описанных в статье "Теплоизоляция ватерблоков" перестанет хватать, если температура приблизится к нулю и ниже. Поэтому в ход пойдет "тяжелая артиллерия". Для теплообменников - монтажная пена-заполнитель и изолента, для трубок и шлангов - поролон с закрытыми порами. Обязательно использование диэлектрической смазки для мест установки ватерблоков (также можно использовать силиконовое покрытие, но его потом невозможно удалить с плат).

Собственно компоненты системы водяного охлаждения, ватерблоки и помпа. Мой комплект состоит из PolarFlo CPU waterblock, Danger Den Z-Chip block, Swiftech MCW50 VGA block и помпы Rio Aqua 1400.

Следующий вопрос - выбор хладагента. В данном случае я руководствовался двумя параметрами: жидкость не должна замерзать при низких температурах и иметь как можно большую теплопроводность. Для низких температур подходят антифриз (кто бы сомневался;)), водка или смесь вода+метанол. Я выбрал метанол: он ядовит (внимание!), но обладает наилучшей теплопроводностью. Один из самых простых способов его достать - купить в автомагазине жидкость для стеклоочистителя.

Сборка

Здесь фотографии помогут больше, чем длительное описание на словах.

Я начал с теплоизоляции ватерблоков. Блок заливался пеной, после высыхания ставилась изоляция на трубки и всё вместе закрывалось изолентой.

Таким образом я теплоизолировал все три ватерблока.

Осталось изолировать материнскую плату. Всё пространство вокруг сокета и чипсета намазал диэлектрической смазкой, тоже самое проделал с блоками, потом сделал прокладки из поролона. Аналогичным образом обработал заднюю сторону материнки и видеокарты, затем установил поролон и закрепил пластинами из акрила.

Когда блоки были готовы, занялся кондиционером. Полностью разобрал его, стараясь ничего не сломать.

Для легкого и безболезненного сгибания трубок в нужных местах рекомендую использовать инструмент под названием "pipe bender" (не знаю точного русского названия).

Который проводит фирма Gigabyte. Требовалось написать обзор корпуса 3D Aurora. Я сначала согласился, а потом, когда прикинул что к чему, призадумался. Ведь я же не профессиональный писатель обзоров, к тому же серийными корпусами не пользуюсь уже года как три, как минимум. И если честно и пристально посмотреть правде в глаза, становится кристально ясно – писать этот обзор совершенно неинтересно и, естественно, ужасно не хочется. Я уже хотел звонить и отказываться, но все откладывал и откладывал. Прошло какое-то время, и обещание самым естественным образом забылось.

Две недели назад до меня все же дошла очередь на получение корпуса. Я так "обрадовался", что дня три не открывал коробку. Но чувство долга в конце концов победило, и я заглянул внутрь. Скажу сразу: удивительно, но кейс мне понравился. Первое, что поразило, – это размеры: высота 54.5, глубина 51.5, а ширина обычная – 20.5 см.

Корпус выпускается в двух цветовых решениях, черном и серебристом. Мне достался черный вариант. Корпус позиционируется как high-end решение и не комплектуется блоком питания.

На меня эта черная громадина сразу произвела впечатление своим стильным, запоминающимся видом. Дизайнеры поработали на славу. Корпус хотя и большой, но легкий. Изготовлен почти целиком из алюминия. Покраска качественная, ровная, с шелковистым отблеском.

Доступ к пяти 5.25" отсекам и двум 3.5" открывает массивная алюминиевая дверка. Фиксируется дверка в закрытом положении магнитом. В качестве защиты от распоясавшихся злоумышленников эту дверку можно закрыть на ключ. Рядом с 3.5" отсеками расположены кнопки Power и Reset. Нажатие легкое, с приятным на слух легким щелчком.

Ниже дверки располагается выступающая панель, усыпанная вентиляционными отверстиями. За ней расположен 120-мм вентилятор с подсветкой. Воздух внутрь корпуса он втягивает через пылезащитный фильтр. Свет от вентилятора очень красиво пробивается сквозь вентиляционные отверстия.

Справа от этой панели, на боку, расположены два USB, один IEEE 1394 и пара mini-jack"ов: микрофон и наушники. Здесь же расположены и два светодиодных индикатора работы системного блока и активности HDD.

Вот внешний вид корпуса со снятой лицевой панелью

Алюминиевые боковые стенки имеют непривычное крепление. Для того чтобы их снять, стенки нужно не сдвигать, а немного оттянуть и приподнять вверх. Левая стенка для удобства оперативного снятия имеет ручку-защелку и еще один замок с ключом. Имеется в ней также и окно, но не традиционное, из акрилового стекла, а сетчатое, скорее даже дырчатое. Для дополнительной защиты внутренностей от пыли это окно ограждено изнутри еще более мелкой сеткой. Стоит корпус на четырех ножках, которые для устойчивости корпуса можно раздвинуть.

Шасси корпуса довольно крепкое благодаря большому количеству ребер жесткости и дополнительным усиливающим элементам. Нет ни намека на шаткость конструкции. Внутри корпуса много свободного пространства, особенно понравилось большое расстояние между материнской платой и отсеком блока питания.

Корпус рассчитан на безотверточную сборку. Дисководы устанавливаются с помощью пластиковых салазок. Заглушки слотов карт расширения не выламываемые, а съемные, и крепятся все одновременно специальным рычагом-ключом.

Отсек для жестких дисков расположен поперек корпуса. Комфортную температуру винчестерам обеспечивает обдув этого отсека 120-мм вентилятором. В этом же отсеке расположен черный пластиковый бокс, содержащий два переходника питания для SATA-устройств, набор пластиковых салазок для установки 5.25" и 3.5" устройств в корпус, два пластмассовых крепежа для проводов, два комплекта ключей (разных) для передней дверцы и боковой крышки и комплект крепежных винтов.

Провода, идущие внутри корпуса от вентиляторов и лицевой панели, прикреплены к корпусу и уложены в черную трубку. Трассировка довольно удачна.

А теперь о том, что привлекло мое внимание к этому корпусу. Это, как ни странно, задняя панель.

На ней расположены два 120-мм прозрачных вентилятора с подсветкой. Ниже находятся два отверстия, защищенных резиновыми заглушками с лепестками. Сделано это для установки системы водяного охлаждения 3D Galaxy, производства все той же Gigabyte. Вот эти вентиляторы и отверстия превратили скучную процедуру написания обзора в увлекательное занятие.

Когда я увидел эти два 120-мм вентилятора на задней стенке корпуса, то мне сразу вспомнилась давняя идея встроить самодельную фреоновую систему охлаждения в стандартный корпус. Хотелось не просто встроить систему в корпус, а сделать это красиво, интересно и по возможности оригинально. Но я все никак не мог найти подходящий корпус, большой и прочный. Как-никак, компрессор, конденсор и прочие медные трубки весят прилично. К тому же компрессор при работе вибрирует. И, конечно, кроме прочностных ограничений хотелось, чтобы кейс стильно выглядел. 3D Aurora как раз и отвечал всем этим требованиям.

Все фреоновые системы, которые мне встречались, строились как блок, на котором стоит стандартный корпус. В дне корпуса приходится прорезать отверстие под испаритель. Но при такой компоновке отверстие должно быть приличных размеров. Калечить качественный корпус не хотелось, а здесь почти готовое решение.

Сразу начали вырисовываться контуры системы. Если разместить снаружи корпуса, напротив вытяжных вентиляторов, конденсор, то он будет ими отлично охлаждаться, заодно вентилируя корпус. Через готовые отверстия, предназначенные для трубок водяного охлаждения, прекрасно можно пропустить медные соединительные трубки системы. Остается только компрессор. Куда поместить его?

Недавно, экспериментируя со своей целиком самодельной фреоновой системой...

Я с удивлением обнаружил, что прекрасно слышу шум помпы, установленной в системе водяного охлаждения чипсета материнской платы. До этого я, как человек, избалованный бесшумностью своего основного компьютера ...

Считал фреонки ужасно шумными устройствами. Обычными воздушными кулерами я тоже давненько не пользовался, поэтому сравнивать было не с чем. А тут оказалось, что сквозь шум от двух не самых слабых компрессоров отчетливо слышна помпа производительностью 700 л/ч. Выходит, компрессоры шумят не так уж и сильно!

Так почему бы тогда не расположить компрессор просто на крыше корпуса? Это улучшит его охлаждение. Как выяснилось, шум от компрессора не так уж и велик. Прочности корпуса от Gigabyte для такой цели более чем достаточно. И я приступил к осуществлению задуманного.

По решению представителей фирмы Gigabyte корпус одновременно является и призом победителю конкурса. Я, естественно, пока таковым не являюсь и должен возвратить изделие неповрежденным. Поэтому задача несколько усложнялась.

Из-за этих ограничений я прикрепил компрессор L57TN не к верхней крышке корпуса, а к алюминиевой платформе, потихоньку открученной от гладильной доски. (Потом пришлось объяснять супруге, что штукенция эта, скорее всего, отвалилась сама, упала на пол в кладовке и, естественно, куда-то завалилась. Потом она, конечно, найдется... Но не буду отвлекаться.) Платформу эту с установленным компрессором через прокладку из пенофола я и поставил на крышу корпуса. Заодно это должно снизить вибрацию от работающего компрессора.

Теперь о конденсоре. Конденсор, чтобы не мешать подключению устройств к материнской плате, должен быть не шире 120-мм вентилятора, а по высоте соответствовать двум таким вентиляторам. Готовый такой не подобрать, но можно попробовать сделать самому.

Простейший конденсор можно изготовить, намотав спиралью обычную медную трубку. Но спираль имеет большие габариты. Поэтому я сделал из дерева шаблон плоской спирали и уже на него намотал медную трубку диаметром 6 мм.

По бокам спирали припаял медную проволоку с крепежными колечками, соответствующими крепежным отверстиям вытяжных вентиляторов. После я прикинул, как это будет размещаться вживую.

Крепить испаритель и всасывающую трубку к системе я решил на развальцовке. Соединительные муфты легко проходят в отверстия корпуса.

Чтобы не повредить корпус горелкой я, что смог, спаял отдельно от корпуса. Капиллярную трубку смотал в бухту, а последнюю часть пропустил через всасывающую трубку в испаритель.

Испаритель я применил самодельный. Сделан он из половинки серийного кулера Volkano7+.

Так выполняется развальцовка:

В качестве всасывающей я применил обычную медную трубку диаметром 10 мм. Не стал применять сильфон из нержавейки из-за того, что размеры корпуса позволяют помещать в него материнскую плату и без сильного отгиба испарителя. Да и не известно, кто окажется первым в конкурсе – возможно, придется вернуть корпус. Поэтому нестись в магазин за сильфоном я посчитал неразумным.

Вот что получилось.

Чтобы точнее подогнать размеры трубки, пришлось поставить в корпус материнскую плату.

Система собрана, спаяна и опрессована – пора приступать к теплоизоляции. Испаритель я изолировал полосой 3-мм пенофола, приклеив его на двусторонний скотч.

Предварительно я прикрепил к испарителю датчик от электронного термостата Dixell XR20C. На этом же устройстве будет построена и автоматика включения компьютера. Фреоновой системе для охлаждения процессора до определенной величины нужно время, иначе прилично разогнанный процессор может просто перегреться. Вышеуказанное устройство и обеспечит автоматическое включение компьютера по достижении определенной температуры на испарителе, значение которой можно установить вручную.

Существует целый ряд подобных устройств. Для использования в качестве автоматики они требуют минимальной доработки. Я использовал простейшее устройство, содержащее только контакты управления компрессором.

Работает прибор следующим образом. После включения устройство самодиагностируется, после чего замыкает контакты, которые по замыслу конструкторов и включают компрессор. По достижении на датчике определенной температуры размыкают контакты, отключая тем самым компрессор. После того как температура повысится, цикл повторяется.

В нашем случае компрессор работает постоянно, и управлять им не нужно. И требуется не выключать, а включить компьютер по достижении определенной температуры. Для этого нужно инвертировать выход устройства. Люди, хорошо разбирающиеся в электронике, без труда сами могут составить такую схемку, например, на "логике". Я же покажу, как собрать подобную схему человеку, далекому от электроники.

Мне кажется, что проще всего это можно сделать на автомобильном реле.

У реле есть несколько контактов. Два контакта – контакты катушки электромагнита. При подаче напряжения на них электромагнит притягивает коромысло, которое и замыкает одну группу контактов, размыкая другую. В нашем случае нам нужны контакты, замкнутые при отключенном питании катушки электромагнита реле. Если включить реле подобным образом,

происходит следующее. При включении терморегулятор подает напряжение на реле. Контакты, отвечающие за включение компьютера, размыкаются и остаются разомкнутыми до момента, когда термодатчик зафиксирует температуру, необходимую для включения компьютера. Тогда контакты терморегулятора размыкаются, а в реле замыкаются.

Конденсатор с сопротивлением нужен для имитации работы кнопки включения компьютера. Работает эта цепь следующим образом. При замыкании контактов Power ON конденсатором в цепи потечет ток зарядки конденсатора – аналог нажатия кнопки Power ON. После зарядки конденсатора ток в цепи прекращается – аналог отпускания кнопки Power ON. Емкость конденсатора должна быть в пределах 200-400 мкФ, сопротивление 15-20 кОм.

Для работы такой автоматики необходим источник питания напряжением 12 вольт. Также для работы фреоновой системы необходим обдув конденсора вентилятором. А как они будут работать, если блок питания включится только после того, как система должна набрать заданный минус? Поэтому специально для автоматики и работы вентиляторов нужно ставить в корпус отдельный блок питания, выдающий 12 вольт постоянного тока. Назову его блоком питания дежурного режима. К нему и подключаются автоматика и вентиляторы.

Для данной системы я собрал самодельный блок питания, но можно было купить и готовый. Нужно только обратить внимание на максимальный ток нагрузки такого блока. Он в данном случае должен составлять не менее одного ампера.

Всю эту электрическую часть я поместил в корпус от Hardcano, заменив у того лицевую панель на обычную заглушку 5.25" отсека, выкрашенную в серебристый цвет. Все-таки в пластмассе вырезать отверстия гораздо проще, чем в алюминии.

На фотографии видно, что электромонтаж не закончен. Справа от терморегулятора расположен выключатель. С его помощью и включается компрессор, да и все остальное. После сборки устанавливаем блок в отсек и подключаем к нему все провода.

Монтируем все комплектующие в корпус. Под материнскую плату для теплоизоляции я поместил кусок листового пенофола. Толщину подобрал такую, чтобы винты, крепящие материнскую плату к шасси, немного сжали этот теплоизолятор. Между платой и пенофолом не должно быть воздушных пузырей, иначе из этого воздуха при работе системы охлаждения на плату может выпасть конденсат и замкнуть контакты платы. Для гарантированного исключения этого неприятного момента плату под прокладкой я промазал слоем технического вазелина.

По отпечатку термопасты примеряем прилегание испарителя к процессору. Испаритель к процессору я прижимаю с помощью резьбовых шпилек. Корпус, как уже говорил, сверлить нельзя, и пришлось прикрутить эти шпильки прямо к отверстиям в материнской плате. Тут приключилась пара неприятностей, о которых я расскажу в заключительной части статьи.

После этого заканчиваем теплоизоляцию. Осталось самое простое – теплоизоляция трубок. Берется трубчатый рубафлекс, разрезается вдоль ножницами, одевается на трубки и склеивается. Вот и все готово для заправки системы.

Заправляю систему фреоном марки R22. Подробнее о заправке и вакуумировании написано уже более чем достаточно, поэтому не буду отнимать время и описывать эту процедуру еще раз. Напомню только, что в системе использовался компрессор марки L57TN, длина капилляра 2.9 метра. Заправляю систему до промерзания всасывающей трубки до входа в компрессор.

Система без нагрузки выдает температуру -43.8°C.

Выключаю систему. Проверяю еще раз прилегание испарителя к процессору, оказавшееся не слишком плотным. Всасывающая трубка имеет приличную жесткость и немного пружинит. К тому же теплоизоляция на испарителе немного ниже самого испарителя. Сделано это для исключения попадания воздуха в щели теплоизоляции. Притягивать же сильно испаритель к процессору я боюсь. Шпильки-то прикручены не к шасси корпуса, а к материнской плате, и есть риск выломать их из платы.

Отпечаток термопасты получается несколько "однобоким", а верхний левый угол испарителя почти не касается процессора. Но что делать, будем пробовать как есть.

Включаю систему. По достижении температуры на испарителе –20 включается сам компьютер. Автоматика отработала успешно, операционная система загружается – все нормально.

Конфигурация установленного железа такова:

  • процессор – AMD Athlon 64 3200+;
  • материнская плата – DFI Lan Party UT nF4 SLI-D;
  • видеокарта – Leadtek PX7800GT;
  • память – Digma DDR500;
  • жесткий диск – Seagate 160 Gb;
  • блок питания – Hiper R type 480 W;
  • термопаста – КПТ-8.

Первым делом проверяю систему на разгон процессора.

Но тут началась чертовщина. Дальше процессор почему-то гнаться отказался. Я снизил частоту опять до 3100 MHz, но Windows перестал грузиться. Еще более понизил частоту – опять то же самое. И тут я попробовал рукой прижать испаритель к процессору. Система загрузилась. Тогда я еще немного подтянул крепежные гайки. Система снова загрузилась при 3100 MHz, но тест S&M не проходила. Тогда я заглянул в BIOS. Там в разделе мониторинга температура процессора прыгала как гимнаст на батуте: то –14, то +14. Все ясно, причина в плохом прижиме испарителя к процессору. Видимо, от вибрации контакт процессор–испаритель меняется, и, как следствие, скачет температура, что и сказывается на стабильности работы системы.

Дальше подтягивать гайки уже откровенно страшно. Существует большая вероятность выдрать шпильки вместе с текстолитом платы. Но прижим все равно недостаточен. Выход только один: сверлить отверстия в шасси компьютера и сжимать процессор уже не между платой и испарителем, а между металлическим шасси и испарителем, без риска повреждения материнской платы. А сверлить корпус нельзя. Очень жаль, но придется остановиться на этом.

Теперь несколько слов о личных впечатлениях о работе системы. Плохой прижим испарителя – легко устраняемый дефект. Можно прямо по месту просверлить отверстия и закрепить все как следует. И если даже при плохом контакте операционная система загружается с частотой процессора 3100 МГц, то, скорее всего, при нормальном охлаждении этот результат увеличится. Теплоизоляция прекрасно справляется со своей задачей. Никаких следов конденсата не было обнаружено.

О шуме. Компрессор работает очень тихо. Если наклониться над ним и прислушаться, то слышен небольшой шелест. Основной шум исходит из открытого корпуса. Видимо, по нагнетающей трубке и через станину компрессора вибрация передается корпусу, и он издает низкочастотный гул. Я вначале был поражен, что шум идет не от компрессора, а из корпуса. Но потом разобрался, в чем дело. Судя по всему, для комфортной эксплуатации оклеивание корпуса виброшумоизоляцией обязательно.

Неплохо было бы привернуть ручки на верхнюю крышку корпуса. Вес корпуса за счет системы охлаждения увеличился, и передвигать его стало сложно. К тому же взяться не за что.

Также из-за размещения компрессора на верхней крышке корпуса центр тяжести системного блока поднялся. Поэтому теперь даже с разложенными ножками корпус немного неустойчив. Неплохо бы утяжелить нижнюю часть корпуса каким-нибудь балластом. Это поможет и снизить вибрацию корпуса.

Желательно укрепить верхнюю крышку корпуса – виброшумоизолировать и прикрепить компрессор непосредственно к ней. Также необходимо увеличить толщину резиновых прокладок, через которые конденсатор крепится к корпусу, и попробовать сделать амортизаторы между витками конденсора. Все это должно дополнительно снизить шумность системы. Хотя и в таком виде самым шумным компонентом системы является вентилятор видеокарты.

Если суммировать все вышесказанное, то мы получили удобный, качественный корпус с прекрасной вентиляцией и с возможностью встраивания не только водяной, но и фреоновой системы охлаждения. Можно сказать, мечта оверклокера. Когда смотришь на этот корпус, не оставляет чувство, что перед тобой солидная, добротная и вместе с тем красивая и стильная вещь.

Времена однотипных корпусов безвозвратно прошли. Серые, невзрачные решения сменили яркие и экстравагантные модели со множеством интересных функций и эргономичным дизайном, способные стать стильным дополнением любого интерьера. И если раньше компьютер в любом помещении, прямо скажем, мозолил глаза, то теперь он может оказаться более элегантным и красивым, чем иной предмет мебели. Он уже не только выполняет роль ящика для сборки компьютерной системы, но и выглядит достойно. К тому же выпускаемые в настоящее время компьютерные корпуса можно разделить на несколько категорий в зависимости от мощности будущей системы и сферы ее применения. Есть корпуса для геймеров (хотя многие из них отличаются от бюджетных моделей лишь внешними деталями), оверклокеров, компьютерных энтузиастов, корпуса для моддинга и создания портативных систем, а также бюджетные корпуса для офисных компьютеров. В общем пользователь непременно найдет корпус, который будет отвечать всем его требованиям.

В настоящей статье мы познакомим вас с корпусом, который можно причислить к передовым решениям, основная задача которых предложить новые идеи для всей индустрии, направить ее развитие в новое русло и заставить взглянуть на привычные проблемы по-новому. Это корпус от компании Thermaltake с загадочным названием Xpressar RCS100 - первый корпус с фреоновым охлаждением центрального процессора.

Он был представлен два года назад на выставке Computex 2008. Тогда все были очарованы новинкой от Thermaltake - миниатюрной системой охлаждения на основе фреона. Данная система многие годы использовалась в других отраслях, но для охлаждения компьютерных компонентов была предложена крупным производителем впервые.

Как известно, уже давно ведутся поиски инновационного источника охлаждения, который бы положил конец шумным кулерам. Поначалу большие надежды возлагались на жидкостное охлаждение, которое, казалось бы, соответствовало всем требованиям компьютерной индустрии. Однако такие системы не выдержали главного испытания - испытания временем: они не получили широкого распространения и, за исключением краткого ажиотажа, не вызвали никаких перемен в компьютерном мире. Некоторые производители до сих пор поставляют подобные решения на рынок, но, если говорить начистоту, вряд ли их ждет большое будущее. Такие системы остаются дорогими и, несмотря на некоторые преимущества, обладают рядом недостатков. Тем не менее безоговорочно следует признать одно: создание жидкостного охлаждения было необходимым этапом, который следовало пройти хотя бы для того, чтобы исключить из рассмотрения эту технологию. Итак, поиск идеального охлаждения продолжается. Пока подавляющее большинство пользователей продолжает применять старый и проверенный метод охлаждения компонентов; оверклокеры, работающие с экстремальными режимами современных систем, строят собственные охлаждающие контуры на основе жидкого азота. Решение от Thermaltake, которое мы рассмотрим, занимает среднюю позицию: с одной стороны, это больше, чем обычный корпус, а с другой - это серийное решение, которое не требует особых инженерных навыков для использования.

Корпус Xpressar RCS100

Серьезность изделия мы ощутили сразу же: коробка, в которую корпус бережно упакован, весит около 30 кг. При знакомстве с корпусом и его спецификацией становится понятной причина столь внушительного веса: шасси корпуса, как и его боковые панели, изготовлено из стали марки SECC толщиной 1 мм.

Основой для системы Xpressar RCS100, представляющей собой симбиоз корпуса и продвинутой системы охлаждения центрального процессора, послужил корпус знаменитой серии Xaser VI. Модель относится к классу Super Tower и имеет габаритные размеры 605x250x660 мм. Порадовало стилистическое решение корпуса: дизайнеры не стали утяжелять и без того громоздкую конструкцию большим количеством внешних «спецэффектов» типа огромных вентиляторов и светящихся панелей. В результате, несмотря на внушительные размеры, дизайн корпуса получился довольно сдержанным и аккуратным. Классический черный цвет, плавные очертания и линии удачно сочетаются с некоторыми более резкими, привычными для игровых корпусов деталями.

На верхней и нижней частях стального шасси имеются надстройки. Эти металлические конструкции, помимо защиты корпуса от внешних воздействий, выполняют целый ряд функций. В результате установки нижней надстройки корпус немного приподнимается над поверхностью, на которой стоит, за счет чего образуется воздушный зазор между нею и дном корпуса.

Верхняя надстройка выполняет роль площадки для размещения целого ряда функциональных устройств. В передней ее части находится интерфейсная панель, на которой располагаются внешние разъемы и клавиши управления. В их число вошли четыре разъема USB 2.0, два разъема eSATA, один IEEE-1394, два аналоговых разъема mini-jack для подключения наушников и микрофона, кнопки включения/выключения и перезагрузки компьютера, а также LED-индикатор работы жесткого диска. Примечательно, что столь большой набор интерфейсных разъемов и клавиш удалось разместить на довольно небольшой площади, которая, помимо всего прочего, гармонично вписалась в стилистику корпуса. Клавиша включения/выключения компьютера оформлена в виде светящейся буквы X, которая напоминает пользователю о принадлежности корпуса к серии Xaser VI. Любителям моддинга и красивых эффектов также придется по вкусу небольшая глянцевая створка, под которой скрывается вышеописанная интерфейсная панель, - при нажатии на определенную точку створка приподнимается, открывая доступ к разъемам. Такое решение весьма практично - в разъемы попадает меньше пыли. За интерфейсной панелью располагается дополнительный отсек, который становится доступен при сдвигании верхней стенки назад. Судя по всему, он предназначен для хранения мелких деталей, таких как крепежные винты и монтажные ленты.

Передняя панель корпуса закрыта внушительной алюминиевой дверцей с логотипом серии Xaser. В верхней и нижней ее частях имеются прочные выпуклые металлические решетки, которые, помимо эстетической функции, служат для забора воздуха внутрь корпуса. На передней панели расположены заглушки монтажных окон для 5,25-дюймовых устройств: четыре окна являются воздухозаборной решеткой для установленного за ними вентилятора, а остальные семь готовы к установке 5,25-дюймовых приводов. Все заглушки вынимаются без помощи инструментов, что значительно облегчает процесс сборки.

Боковые стенки имеют привычный вид: гладкая глянцевая поверхность с двумя решетками на каждой стороне и несколькими декоративными углублениями. Сняв стенки корпуса с двух сторон, мы пришли в легкое недоумение. На первый взгляд внутри корпуса творится полная неразбериха: провода, трубки, завернутые в теплоизоляцию, непонятные механизмы и устройства. Этот сумбур, как вы уже, должно быть, догадались, был внесен установкой охлаждающей системы Xpressar, к детальному изучению которой мы приступим чуть позже. А пока, сняв охлаждающую систему, рассмотрим более привычные для нас вещи.

Внутренняя компоновка корпуса выполнена на достойном уровне. В области передней стенки блока расположены две корзины для установки приводов. Верхняя корзина имеет семь монтажных мест для 5,25-дюймовых устройств, нижняя - для пяти 3,5-дюймовых приводов. Все монтажные места оборудованы специальными крепежами, которые позволяют установить то или иное устройство без помощи отвертки и других инструментов. Корзина для 3,5-дюймовых устройств имеет съемную основу и развернута к стенке корпуса для удобства извлечения приводов. Между передней стенкой и корзиной расположен 140-мм вентилятор, который продувает всю корзину насквозь и способствует быстрому отводу тепла от жестких дисков системы.

Монтажное место для установки блока питания также выполнено очень удачно: три опоры (две стационарные и одна регулируемая) позволяют жестко удерживать блок на месте и в то же время не загромождают внутреннее пространство. На верхней стенке размещен второй 140-мм охлаждающий вентилятор системы.

Особого внимания заслуживает реализация подложки материнской платы - после откручивания пары крепежных винтов она легко вынимается из корпуса вместе с задней стенкой. Это очень удобно, поскольку можно собрать систему вне корпуса, а затем просто установить подложку на место. В случае установки охладительной системы Xpressar данная конструктивная особенность корпуса и вовсе окажется незаменимой. Подложка имеет несколько отверстий для разводки кабелей питания и интерфейсных шлейфов, а зазор между подложкой и стенкой корпуса позволит уложить все кабели в нужном порядке и не занимать при этом внутренний объем корпуса.

Остается добавить, что к корпусу прилагается весьма внушительный комплект. Помимо документации, в нем обнаружились многочисленные крепежные винты для сборки системы, хомуты и ленты для разводки кабелей, отсек­переходник для монтажа привода 3,5-дюйма в 5,25-дюймовый отсек, дополнительная заглушка для FDD-привода, еще один 140-мм вентилятор, а также контейнер для хранения различных комплектующих, который можно установить в пятидюймовый отсек.

Теперь, когда мы вкратце ознакомились с устройством корпуса, рассмотрим более детально систему охлаждения - безусловно, его главную особенность.

Фреоновое сердце

Принцип работы системы охлаждения на основе фреона, несмотря на внешне сложное устройство, довольно прост. В замкнутом контуре находится газ (фреон), который в процессе фазового перехода из одного агрегатного состояния в другое охлаждает контактную площадку, присоединенную к центральному процессору компьютера. Рассмотрим данный процесс более детально.

Сначала сжиженный фреон, находясь в состоянии охлаждения и низкого давления, поступает к контактной площадке центрального процессора. Под воздействием выделяемого процессором тепла происходит фазовый переход фреона из жидкого в газообразное состояние. При помощи миниатюрного компрессора давление фреона в системе поднимается, газ разогревается, но при этом остается в газообразном состоянии. Однако в таком состоянии фреон уже способен к обратному переходу в жидкое состояние. Для этого при помощи охлаждающего блока, в основе которого лежат вентилятор, длинный контур из медных тепловых трубок и алюминиевые радиаторные пластины, температура фреона понижается, за счет чего газ конденсируется и переходит в жидкое состояние. В заключение цикла вновь образовавшаяся жидкость проходит через расширительный клапан, вследствие чего давление на данном участке падает, готовя фреон к повторному фазовому переходу в газообразное состояние. Такой цикл фазовых переходов давно работает на благо человечества в холодильных бытовых системах.

Проблемы, которые предстояло решить разработчикам Thermaltake, фактически сводились к двум: сделать систему охлаждения миниатюрной и избежать такого неприятного последствия работы фреонового охладителя, как конденсат. И если первая проблема не представляла особой сложности, то вторая заслуживала детального изучения, поскольку ее последствия являются фатальными для компьютера. Однако решение тоже оказалось довольно простым: поскольку рабочая температура центрального процессора находится в зоне так называемой комнатной температуры и выше, нет нужды охлаждать процессор сильнее. То есть задача Xpressar в данном случае сводится к поддержанию температуры в диапазоне 20-45 °С, при этом системе легко удается избежать образования внешнего конденсата. Работа компрессора, а следовательно, и скорость охлаждения контактной площадки регулируются по принципу широтно­импульсной модуляции, также известной как PWM. Иными словами, Xpressar воспринимает сигналы системы подобно обычному четырехконтактному кулеру и регулирует скорость работы охладительного контура. Это, ко всему прочему, решает проблему с охлаждением процессора в режиме «сна», когда оно практически не требуется.

Однако необходимо сделать ряд оговорок, на которые обязательно нужно обратить внимание тем, кто задумался об установке Xpressar. Во­первых, система с Xpressar предполагает установку процессора с тепловыделением более 70 Вт в нормальном режиме работы. Делается это для того, чтобы избежать переохлаждения контактной площадки и образования конденсата. Во­вторых, как указано на официальном сайте компании Thermaltake, система охлаждения требует предварительной подготовки, а именно прогрева в течение пяти минут. В-третьих, установить подобную систему можно только на системы с процессорными гнездами Intel LGA 775 и Intel LGA 1366. Кроме того, перед сборкой системы следует ознакомиться со списком рекомендуемого оборудования, которое может применяться с Xpressar.

Заключение

Система Xpressar безусловно является новым словом в компьютерной индустрии. Как у всех новинок, у нее есть свои плюсы и минусы. Главное преимущество системы заключается в высокоэффективном охлаждении, которое не могут обеспечить привычные вентиляторы, кулеры и даже жидкостные системы охлаждения для ПК. Основной недостаток - такие системы пока не актуальны для рядовых пользователей. Кулеры с активным охлаждением успешно решают проблему охлаждения любых современных систем, а стоят на порядок дешевле, занимают меньше места, их легче чинить и менять. Кроме того, система Xpressar подходит для весьма ограниченного числа плат и процессорных гнезд, что также снижает ее шансы оказаться в ПК обычного пользователя. Эта проблема возникает из-за того, что конструкция лишена какой­либо мобильности вследствие наличия в ней металлических трубок и конструкций. На наш взгляд, если система станет гибкой, то есть появится возможность подвода охлаждающей площадки в любое место системной платы, то такие решения действительно могут обрести популярность. Кроме того, подобным образом можно будет охлаждать и другие компоненты, а именно графические платы.

Возникнет ли потребность в таких системах в будущем - сказать сложно, поскольку технологии совершенствуются чересчур быстро и строить какие­либо прогнозы в данной сфере довольно тяжело. Сейчас же к Xpressar проявят интерес прежде всего оверклокеры и компьютерные энтузиасты, которые экспериментируют с экстремальными режимами работы системы. Для них решение компании Thermaltake действительно может стать панацеей, поскольку, в отличие от сложных установок на базе жидкого азота, Xpressar не требует лабораторных условий и открытых стендов. Кроме того, по слухам, компания Thermaltake продолжает разработку данной серии и в будущем может появиться более мобильное решение, которое, как сегодня СЖО (системы жидкостного охлаждения), будет занимать несколько 5-дюймовых слотов.

Если говорить о готовом решении на базе корпуса Xaser VI, то производитель выбрал очень удачную оболочку для новой системы охлаждения. Данный корпус очень удобен и позволит построить систему по любым запросам. Единственным его минусом являются большие габариты - не каждый пользователь готов поставить подобный корпус дома. Как бы то ни было, мы считаем, что стремление Thermaltake найти что­то новое, взглянуть на проблему охлаждения иначе более чем похвально и рано или поздно принесет плоды.