Проблемы материнской платы. Почему вздуваются конденсаторы

Вот мы с Вами и подобрались к проблемам материнской платы компьютера. ВАЖНО! В отличие от всех остальных поломок комплектующих, в данном случае у нас в арсенале нет ни одной программы, которая могла бы ясно "сказать" что у нас - проблемы материнской платы.

Из инструментов в нашем распоряжении есть: здравый смысл, наблюдательность, умение рассуждать логически и - опыт, приходящий со временем:) Поэтому, прежде чем выбрасывать на свалку вполне рабочее устройство, убедитесь хотя бы в том, что проделали все то, что будет описано в последующих статьях, освещающих проблемы материнской платы.

Итак, приступим:) Очень часто причиной этих проблем являются потерявшие емкость или "вздувшиеся" конденсаторы на .

Симптомы различных "глюков", связанных с вышедшими из строя конденсаторами на плате могут быть различными. В худшем случае компьютер просто не будет включаться. Точнее, кроме вращения всеми имеющимися вентиляторами не будет подавать никаких признаков "жизни". Также ПК может включаться не с первого раза или - после определенного числа попыток (когда конденсаторы достаточно прогреются).

Если проблемы материнской платы достаточно серьезны, - возможна самопроизвольная перезагрузка компьютера (связанная с получением различными узлами заниженного напряжения, в результате потерявших емкость конденсаторов). Возможны всяческие "зависания" операционной системы.

Справедливости ради стоит отметить, что иногда встречаются такие экземпляры материнских плат, на которых присутствует целая череда вздутых элементов и эти платы продолжают стабильно работать. В таком случае, возможно, нужно последовать золотому правилу настоящего администратора: "Работает? - НЕ трогай! " :)

Если же Вы все таки столкнулись с симптомами, описанными выше, тогда - читаем дальше.

Вздутые конденсаторы на материнской плате выглядят следующим образом:

Проблемы материнской платы могут быть именно из за них. Для большей наглядности давайте посмотрим на еще одно фото ниже.



Слева мы видим нормальный конденсатор, а справа - "вздувшийся". Именно такие нестабильные элементы часто являются причиной проблем с материнской платой. Их легко обнаружить, внимательно осмотрев плату. При пальпировании (на ощупь) :) такой конденсатор будет иметь небольшое вздутие сверху, в то время как у рабочего будет прощупываться небольшое углубление в том же месте.

Конденсаторы служат для того, чтобы сглаживать электрическое напряжение в шинах питания компьютера. Заряжаются и,при необходимости, - разряжаются, отдавая часть накопленного заряда. Задача конденсаторов, расположенных в цепях (или среди других элементов фаз) питания - поглощать чрезмерные всплески напряжения и восполнять его во время "просадки" из накопленого ранее заряда.

Заполнены они жидким электролитом. При нестабильной работе элемента электролит может просто "закипать" и вытечь из оболочки конденсатора.


В самых "клинических" случаях защитная оболочка просто "взрывается", выплескивая электролит.



При подобных проблемах с материнской платой надо внимательно производить визуальный осмотр на наличие вздувшихся "потекших" конденсаторов не только сверху, но и в местах контакта непосредственно с платой. Бывают случаи, когда утечка электролита происходит из нижней части элемента, что также может приводить к проблемам в работе материнской платы.



В таких случаях, как правило, производится на заведомо исправные аналогичной (или большей) емкости. Замена подразумевает под собой банальную их перепайку:)

Примечание: емкость конденсаторов измеряется в фарадах. При внимательном осмотре Вы найдете ее числовое обозначение на его корпусе и сокращение - (Мкф) или (Мк).

Что же является причиной всех перечисленных нами выше проблем материнской платы компьютера? Как правило, это часто связано с длительным ее перегревом (организованный неправильно или отсутствующий вообще отток горячего воздуха внутри ).

Среднее время работы "на отказ" традиционного электролитического конденсатора составляет 2000-5000 часов. Причем с повышением температуры окружающей среды это время резко сокращается. Выводы делайте, как говорится, сами:)

Рекомендации: Почаще проводите профилактику и осмотр своего компьютера на предмет удаления накапливающейся пыли внутри системного блока. Следите за тем, исправно ли работают все вентиляторы, установленные внутри корпуса? При необходимости - установите дополнительные

Также причиной подобных проблем материнской платы может быть некачественное электрическое питание. Некачественный может со временем стать причиной описанных выше проблем. Запомните правило: в хорошем компьютере должен стоять хороший блок питания!

Ну и, естественно,если Вы покупаете материнскую плату от неизвестного производителя за 30 долларов, то нет никакой гарантии того, что этот самый китайский производитель не сэкономил на комплектующих (в частности - на конденсаторах) и не впаял туда некачественные и с малой емкостью, которые через несколько месяцев эксплуатации выйдут из строя.

Также не лишним будет знать, как можно проверить конденсаторы с помощью мультиметра.

Сейчас на рынке в большом количестве присутствуют материнские платы, на которых установлены твердотельные конденсаторы.


Они не имеют сверху, характерных для жидкостных, "лепестков". Их корпус состоит из цельного однородного материала.

В них вместо жидкого электролита используется специальный токопроводящий органический полимер. Средний срок их службы составляет порядка 50 000 часов. При этом они позволяют резко снизить коэффициент типичных проблем материнской платы, так как сами по себе гораздо надежнее в работе и устойчивей к условиям окружающей среды.

Иногда почитываю Хабр, в основном DIY. Иногда - это редко, поскольку работа, знаете-ли… И вот, не так давно, с удивлением наткнулся на хабратопик (не буду тыкать пальцем) с описанием, так сказать, ремонта ЖК-монитора. Бегло проглядев, почувствовал сперва желание поплакать, а затем - посмеяться. Почему?

Мне приходится примерно 8 часов в день работать как раз в одной веселой организации, одним из направлений деятельности которой является ремонт различной техники, включая и ЖК-мониторы. Хотел высказать все, что можно только высказать в комментариях, но не смог. Решил написать хотя бы в Песочницу, ибо сил молчать нет.
Беглое расследование показало, что автор того самого топика, посвященного «ремонту» ЖК-монитора, успел опубликовать еще один, на этот раз про ремонт телевизора. Должен сказать, что данные топики породили не очень длинный тред в закрытом разделе одного широко известного технического форума. Общий настрой этого треда можно охарактеризовать следующей взятой там цитатой:

Ждём от автора новых опусов на тему:
«Как с помощью кривых рук, зеркальца и ножниц удалить геморрой»
«Дрель и снижение внутричерепного давления»

Нередко приходится ремонтировать технику после других мастеров, которые не смогли определить неисправность, либо не имели возможности ее устранить. И очень часто - после любителей, попытавшихся «отремонтировать» аппарат при помощи очередной «инструкции», во множестве щедро разбросанных по интернету. И, честно говоря, был сильно удивлен, обнаружив сразу 2 такие «инструкции» на Хабре.

Итак, начнем с пресловутого «ремонта» телевизора, поскольку это хабратопик появился первым. Для начала хотелось бы указать на наличие такого параметра, как ESR. Любой желающий элементарно загуглит этот термин и получит всю теоретическую базу. Поэтому плотно рассматривать ее не будем. Нас интересует только тот факт, что дефектовка электролитических конденсаторов производится не только по факту раздутия аллюминиевой рубашки, но и по этому самому параметру ESR. На самом деле это довольно важно, поскольку конденсатор вздувается по причине излишнего нагрева, приводящего к увеличению давления внутри его корпуса вследствии испарения электролита. А нагрев конденсатора тем выше, чем выше ESR. Таким образом, подумав пару минут, мы поймем, что в блоке питания вполне может быть довольно большое количество конденсаторов, еще не вздутых, но уже с завышенным ESR. Т.е. по сути уже неисправных, однако простому взгляду еще не видных. Для измерения ESR применяются простейшие приборы, доступные любому ребенку, однако многие мастера пользуются ими довольно редко, поскольку самым простым решением проблемы является замена всех электролитов в т.н. «холодной» части блока питания, так же называемой «вторичкой». Менять только вздутые конденсаторы без проверки остальных, не вздутых, нельзя. Поскольку чревато отнюдь не профитом, а повторным ремонтом через небольшой промежуток времени. Причем учитывая схемотехнику современной цифровой техники - вполне возможно, что ремонтом не только БП.

Еще одной ошибкой автора является техника пайки. Помилуйте, зачем лудить выводы конденсаторов? Которые после монтажа все равно придется обрезать?
А использование в монтажных работах кислоты? Высокоактивные флюсы типа «Паяльной кислоты» вообще не предназначены для электромонтажных работ! Это флюсы для пайки черных металлов. И кислотой называются не спроста. «Паяльная кислота» способна за пару-тройку месяцев сгноить пайку этого самого кондесатора, даже будучи нанесена в незначительных количествах. Именно по этому после применения таких флюсов спаянные поверхности надо обязательно отмывать водой, растворителями, а лучше - специальными жидкостями. И никогда нельзя их применять в радимонтажных работах.

Очень часто в прейскурантах сервисных организаций указано, что применяется повышающий коэфициент к стоимости ремонта аппаратуры со следами не квалифицированного ремонта и это не спроста! Как пример - описанный телевизор вполне уже способен доставить часок-другой веселых развлечений любому сервису через неопределенный промежуток времени. От недели до года.

Второй хабратопик, посвященный «ремонту» монитора тоже весьма веселит. Любой специалист знает, что ремонт начинается с измерений. Автор топика же проводит измерения таких параметров как «горючесть лампочки» - результат измерения «не горит», и «рабочесть монитора» - результат измерения «умер». Методика ремонта - так же бездумно заменить визуально вздутые электролиты на выдранные из «древнего БП», да еще и на меньшее напряжение. Конечно, конструкторы LG дураки ведь - зачем-то поставили конденсаторы на 16 вольт, если и 10-ти вольтовые работают… И очередное чудо - горючесть лампочки поднялась до «горит», срочно постим в Хабр…

Поверьте, все это написано не по причине того, что я боюсь остаться без работы. Напротив - такие «акушеры беременных литов» как раз и обеспечивают нормальных мастеров работой. К сожалению, зачастую, когда после замены конденсатора монитор все равно не работает или работает не удовлетворительно, монитор начинают жестоко «копать», портя дорожки на плате, выпаивая детали и т.д. А ремонт такой копанины - совсем другое дело. Мы, к примеру, применяем для таких аппаратов повышающий коэффициент 1.3 к цене.
Тут проблема в другом. Совсем недавно был вынужден выдать клиенту «копанный» монитор, по причине того скромного факта, что «копатель» «укопал» плату БП-инвертора насмерть, до дыры в текстолите под одной из транзисторных сборок. Ему же было неизвестно, что широкая минусовая дорожка под сборкой проложенна неспроста. И число таких примеров множится, именно по причине широкого распостранения различных «инструкций», написанных различными «специалистами»…

Типичная неисправность БП либо материнских плат. Связана с использованием производителем некачественных либо неподходящих по макс. температуре или эквивалентному электрическому сопротивлению (ESR) конденсаторов. Ухудшение их параметров прогрессирует о временем. Поэтому БП, находящиеся в эксплуатации несколько лет, необходимо более внимательно осматривать на предмет вспухших (вздувшихся) конденсаторов. Порой негодность конденсатора неочевидна - следов вздутия, потекшего по плате электролита - нет. В этом случае поможет только проверка конденсатора измерителем ESR либо замена его на заведомо исправный.

Блок Thermaltake XP550PP 430W, взрыв КС3843В

Блок Thermaltake XP550PP 430W(p/n: w0095), был отдан со словами посмотреть. При визуальном осмотре обнаружен вздутый(рядом резистор, который стоит параллельно конденсатору, судя по его цвету, он выполняет роль неплохого подогревателя конденсатора) конденсатор в дежурке 330мкФ х 16В, так же лопнул корпус ШИМ КС3843В.

Linkworld модель LPG2-35 350W, греются резисторы на выходе. (решено)

Попал в ремонт блок питания Linkworld модель LPG2-35 мощность 350W. Наприжение дежурки впорядке, включать не стал так как высохли электролиты на выходе и начали грется низкоомные резисторы(которые стоят на каждом выходе, между ним и общим(нулем)), так как они запаяны между пучком проводов, то охлаждение минимально и есть оплавленная изоляция проводов. Меня интерисует может это быть связано с выходом из строя конденсаторов и при их замене все будет нормально с резисторами? Диоды на выходе проверил, поврежденных не нашел. Интерисует также схема данного экземпляра.

PowerMaster FA-5-2, сильный нагрев БП (радиаторы, конденсаторы) (решено)

Здравствуйте. Извиняюсь, если пишу не там и не так, я тут впервые.

Чинил блок питания ATX. 5 или 6 конденсаторов оказались вздутыми, я их заменил новыми, с бОльшим допустимым напряжением. При проверке в работе выяснилось, что весь БП очень сильно греется - даже корпус. Горячие радиаторы, и горячие ВСЕ новые конденсаторы! Эдак они тоже за день вспухнут!
Подскажите, по какой причине вообще новый конденсатор на выходе БП может греться?..

Вот еще деталь: на ЖК-мониторе- постоянная рябь, волны, муар. Это с испытуемым компом. С другим - все прекрасно.

горит резистор 22Ома с 12 ноги ТЛ494, ток 1,8А

фирма Golden Field, модель JHT-450ATX+P4 мощность 350W

Схема похожа вот на эту: Power Master FA 5-2 По крайней мере резистор есть 22Ома, на других 1к5 стоит...

Внешне осмотр не выявил гореликов. проверил диоды и мосфеты на радиаторах- все в норме. Был один несильно вздувшийся кондер на 1000мкфх10в, сменил.

Замена вздувшихся конденсаторов в БП на LowESR

Доброго времени суток всем!
Прошу не пинать, если аналогичная тема уже была.
Есть несколько БП с попухшими конденсаторами и желание их починить. Емкости планируется взять с материнок-доноров, проверив их ESR. С цепью +12 в все понятно, и там и там стоят емкости на 16в.
А по +5 не совсем понятно. В БП на 10 в, на материнках - на 6.3в.

В связи с этим вопрос. Кто нибудь уже делал такую замену и чем это может грозить, ведь по идее выбросов после дросселей уже не должно быть.

С уважением ко всем откликнувшимся.

HIPER HPU-3S350 Типовая неисправность.

Прошло несколько блоков HIPER HPU-3S350. Во всех блоках, в вторичной цепи, как обычно, вышли из строя конденсаторы известной фирмы Fuhjyyu. При полностью рабочих вентиляторах. Блоки сами по себе тоже не шедевр, напоминают по размерам основных компонентов спаркманы 350. Но даже в спаркманы уже не ставят эти конденсаторы. Вывод, у всех подобных блоков эти конденсаторы во вторичке менять в любом случае и в любом состоянии, так как они хитрые, могут быть не всдуты, но с ESR 50 Ом.

Чаще всего причиной вздутия является сам конденсатор, оказавшийся некачественным. Само же вздутие происходит из-за выкипания или испарения электролита.

Выкипание электролита случается при высоких температурах, источником которых бывает как внешняя среда (нагревательные приборы вблизи оборудования, закрывающие вентиляцию в устройстве предметы, несоблюдение эксплуатационных характеристик устройства), так и внутренняя (некачественное питание, поступающие на конденсатор импульсы, пробивание изоляционного слоя конденсатора, несоблюдение его полярности, либо самая частая причина – нехватка электролита).

Для конденсаторов достаточно скачка температуры выше 45 градусов.

Испарение электролита происходит в том случае, если конденсатор имеет плохую герметичность (об этом обычно свидетельствуют следы коррозии от электролита на конденсаторе). Тогда в течение некоторого времени уровень электролита будет постепенно уменьшаться, что неизбежно приведет к изменению изначальных свойств конденсатора и, как следствие, закипанию оставшегося электролита, а затем и вздутию конденсатора. Впрочем, порой некачественный конденсатор может быть настолько плохо загерметизирован, что электролит просто вытекает через его нижнюю часть.

Электролит используется в электролитических конденсаторах в качестве катода (электрод, присоединенный к отрицательному источнику тока).

В любом случае вздутые и даже имеющие следы коррозии или плохой герметизации подлежат замене. Конечно, содержащее их устройство еще может служить своему пользователю какое-то время, однако скоро в его работе неминуемо появятся сбои.

Замена вздутых конденсаторов

При обнаружении вздувшихся необходима их замена, либо установка дополнительных высокочастотных для гашения импульсов. При этом следует учесть, что номинальное рабочее напряжение на новых должно быть не меньше, чем было у вздутых. Емкость новых конденсаторов также не должна быть меньше сменяемых, иначе будут пропускаться пульсации. Помимо того, стоит соблюдать полярность, если она указана на плате и конденсаторе (иначе при включении оборудования вновь установленный конденсатор может тут же разорваться).

Для смены современных конденсаторов, имеющих небольшие размеры, лучше использовать тонкий паяльник, так как более мощный способен быстро разогреть конденсаторы до критической температуры, что приведет к их порче.

Статьи мы с вами начали знакомиться с искусством врачевания компьютерных блоков питания. Продолжим же это увлекательно дело и посмотрим внимательно на высоковольтную их часть.

Проверка высоковольтной части блока питания

После осмотра платы и восстановления паек следует проверить мультиметром (в режиме измерения сопротивления) предохранитель.

Надеюсь, вы хорошо уяснили и запомнили правила техники безопасности , изложенные ранее!

Если он перегорел, то это свидетельствует, как правило, о неисправностях в высоковольтной части.

Чаще всего неисправность предохранителя видна (если стеклянный) визуально: он внутри «грязный» («грязь» — это испарившаяся свинцовая нить).

Иногда стеклянная трубка разлетается на куски.

В этом случае надо проверить (тем же тестером) исправность высоковольтных диодов, силовых ключевых транзисторов и силового транзистора источника дежурного напряжения. Силовые транзисторы высоковольтной части находятся, как правило, на общем радиаторе.

При сгоревшем предохранителе нередко выводы коллектор-эмиттер «звонятся» накоротко, и удостовериться в этом можно и не выпаивая транзистор. С полевыми же транзисторами дело обстоит несколько сложнее.

Как проверять полевые и биполярные транзисторы, можно почитать и .

Высоковольтная часть находится в той части платы, где расположены высоковольтные конденсаторы (они больше по объему, чем низковольтные). На этих конденсаторах указывается их емкость (330 – 820 мкФ) и рабочее напряжение (200 – 400 В).

Пусть вас не удивляет, что рабочее напряжение может быть равным 200 В. В большинстве схем эти конденсаторы включены последовательно, так что их общее рабочее напряжение будет равным 400 В. Но существуют и схемы с одним конденсатором на рабочее напряжение 400 В (или даже больше).

Нередко бывает, что вместе с силовыми элементами выходят из строя электролитические конденсаторы – как низковольтные, так и высоковольтные (высоковольтные – реже).

В большинстве случаев это видно явно – конденсаторы вздуваются, верхняя крышка их лопается.

В наиболее тяжелых случаях из них вытекает электролит. Лопается она не просто так, а по местам, где ее толщина меньше.

Это сделано специально, чтобы обойтись «малой кровью». Раньше так не делали, и конденсатор при взрыве разбрасывал свои внутренности далеко вокруг. А монолитной алюминиевой оболочкой можно было и сильно в лоб получить.

Все такие конденсаторы надо заменить аналогичными. Следы электролита на плате следует тщательно удалить.

Электролитические конденсаторы блока питания и ESR

Напоминаем, что в блоках питания используются специальные низковольтные конденсаторы с низким ESR (эквивалентным последовательным сопротивлением, ЭПС).

Подобные устанавливают и на материнских платах компьютеров.

Узнать их можно по маркировке.

Например, конденсатор с низким ESR фирмы «СapXon» имеет маркировку «LZ». У «обычного» конденсатора букв LZ нет. Каждой фирмой выпускается большое количество различных типов конденсаторов. Точное значение ESR конкретного типа конденсатора можно узнать на сайте фирмы-производителя.

Производители блоков питания часто экономят на конденсаторах, ставя обычные, у которых ЭПС выше (и стоят они дешевле). Иногда даже пишут на корпусах конденсаторов «Low ESR» (низкое ЭПС).

Это обман, и такие лучше конденсаторы лучше сразу заменить .

В наиболее тяжелом режиме работают конденсаторы фильтра по шинам +3,3 В, +5 В, +12 В, так как по ним циркулируют большие токи.

Встречаются еще «подлые» случаи, когда со временем подсыхает конденсаторы небольшой емкости в источнике дежурного напряжения. При этом их емкость падает, а ESR растет.

Или емкость падает незначительно, а ESR растет сильно. При этом никаких внешних изменений формы может и не быть, так как их габариты и емкость невелики.

Это может привести к тому, что изменится величина напряжения дежурного источника. Если оно будет меньше нормы, основной инвертор блока питания вообще не включится.

Если оно будет больше, компьютер будет сбоить и «подвисать», так как часть компонентов материнской платы находится под именно этим напряжением.

Емкость можно измерить .

Впрочем, большинство тестеров может измерять емкости только до 20 мкФ, чего явно недостаточно .

Отметим, что ESR измерить штатным тестером невозможно.

Нужен специальный измеритель ESR!

У конденсаторов большой емкости ESR может иметь величину десятых и сотых долей Ома, у конденсаторов малой емкости – десятых долей или единиц Ом.

Если оно больше – такой конденсатор необходимо заменить.

Если такого измерителя нет, «подозрительный» конденсатор необходимо заменить новым (или заведомо исправным).

Отсюда мораль – не оставлять включенным источник дежурного напряжения в блоке питания. Чем меньшее время он будет работать, тем дольше будут подсыхать конденсаторы в нем.

Необходимо после окончания работы либо снимать напряжение выключателем фильтра, либо вынимать вилку кабеля питания из сетевой розетки.

В заключение скажем еще несколько слов

Об элементах высоковольтной части блока питания

В недорогих небольшой мощности (до 400 Вт) в качестве ключевых часто применяют силовые биполярные транзисторы 13007 или 13009 с токами коллектора соответственно 8 и 12 А и напряжением между эмиттером и коллектором 400 В.

В источнике дежурного напряжения может быть использован силовой полевой транзистор 2N60 с током стока 2А и напряжением сток-исток 600 В.

Впрочем, в качестве ключевых могут быть использованы полевые транзисторы, а в источнике дежурного режима – биполярный.

При отсутствии необходимых транзисторов их можно заменить аналогами.

Аналоги биполярных транзисторов должны иметь рабочее напряжение между эмиттером и коллектором и ток коллектора не ниже, чем у заменяемых.

Аналоги полевых транзисторов должны иметь рабочее напряжение сток-исток и ток стока не ниже, чем у заменяемого, а сопротивление открытого канала «сток-исток» не выше , чем у заменяемого.

Внимательный читатель может спросить: «А почему это сопротивление канала должно быть не выше? Ведь чем больше значения параметров, тем, как бы, лучше?»

Отвечаю – при одном и том же рабочем токе на канале с бОльшим сопротивлением будет, в соответствии с законом Джоуля-Ленца, рассеиваться бОльшая мощность. И, значит, он (т.е. и весь транзистор) будет сильнее греться.

Лишний нагрев нам ни к чему!

У нас блок питания, а не отопительный радиатор!

На этом, друзья, мы сегодня закончим. Нам осталось еще ознакомиться с лечением низковольтной части, чем мы займемся в следующей статье.

До встречи на блоге!