Частные случаи правила множителей лагранжа. Смысл множителей Лагранжа


Пусть и - дважды непрерывно дифференцируемые скалярные функции векторного аргумента . Требуется найти экстремум функции при условии, что аргумент удовлетворяет системе ограничений:

(последнее условие называют также условием связи).

Наиболее простым методом нахождения условного экстремума является сведение задачи к нахождению безусловного экстремума путем разрешения уравнения связи относительно m переменных и последующей их подстановки в целевую функцию.

Пример 3. Найти экстремум функции при условии .

Решение . Из уравнения связи выразим х 2 через х 1 и подставим полученное выражение в функцию у :

Эта функция имеет единственный экстремум (минимум) при х 1 =2. Соответственно, х 2 =1. Таким образом, точкой условного экстремума (минимума) заданной функции является точка .

В рассмотренном примере уравнение связи легко разрешимо относительно одной из переменных. Однако в более сложных случаях выразить переменные удается не всегда. Соответственно, описанный выше подход применим не ко всем задачам.

Более универсальным методом решения задач отыскания условного экстремума является метод множителей Лагранжа . Он основан на применении следующей теоремы. Если точка является точкой экстремума функции в области, определяемой уравнениями , то (при некоторых дополнительных условиях) существует такой m -мерный вектор , что точка является стационарной точкой функции

Алгоритм метода множителей Лагранжа

Шаг 1 . Составить функцию Лагранжа:

где - множитель Лагранжа, соответствующий i -му ограничению.

Шаг 2 . Найти частные производные функции Лагранжа и приравнять их к нулю

Шаг 3. Решив получившуюся систему из n +m уравнений, найти стационарные точки.

Заметим, что в стационарных точках выполняется необходимое, но не достаточное условие экстремума функции. Анализ стационарной точки на наличие в ней экстремума в данном случае достаточно сложен. Поэтому метод множителей Лагранжа в основном используют в тех случаях, когда о существовании минимума или максимума исследуемой функции заранее известно из геометрических или содержательных соображений.

При решении некоторых экономических задач множители Лагранжа имеют определенное смысловое содержание. Так, если - прибыль предприятия при плане производства n товаров , - издержки i -го ресурса, то l i - оценка этого ресурса, характеризующая скорость изменения оптимума целевой функции в зависимости от изменения i -го ресурса.

Пример 4. Найти экстремумы функции при условии .

Решение . Функции и непрерывны и имеют непрерывные частные производные. Составим функцию Лагранжа:

Найдем частные производные и приравняем их к нулю.

Получаем две стационарные точки:

Принимая во внимание характер целевой функции, линиями уровня которой являются плоскости, и функции (эллипс) заключаем, что в точке , функция принимает минимальное значение, а в точке максимальное.

Пример 5. В области решений системы

найти максимальное и минимальное значение функции при условии .

Решение . Пересечением области допустимых решений и прямой является отрезок MN : М (0,6), N (6,0). Поэтому экстремальные значения функция может принимать либо в стационарных точках, либо в точках M и N . Для нахождения стационарной точки применим метод Лагранжа. Составим функцию Лагранжа

Найдем частные производные функции Лагранжа и приравняем их к нулю

Решая систему, получаем стационарную точку K (2,2;3,8). Сравним значения целевой функции в точках K , M , N :

Следовательно,

Пример 6. Известен рыночный спрос на определенное изделие в количестве 180 штук. Это изделие может быть изготовлено двумя предприятиями одного концерна по различным технологиям. При производстве х 1 изделий первым предприятием его затраты составят руб., а при изготовлении х 2 изделий вторым предприятием они составляют руб.

Определить, сколько изделий, изготовленных по каждой технологии, может предложить концерн, чтобы общие издержки его производства были минимальны.

Решение . Математическая модель задачи:

Для нахождения минимального значения целевой функции при условии х 1 + х 2 =180, т.е. без учета требования неотрицательности переменных, составим функцию Лагранжа:

Найдем первые производные функции Лагранжа по х 1 , х 2 , l , и приравняем их к 0. Получим систему уравнений:

Решая эту систему, найдем следующие корни: , т.е. получаем координаты точки, подозрительной на экстремум.

Чтобы определить, является ли точка ( ) локальным минимумом, исследуем определитель Гессе, для чего вычислим вторые частные производные целевой функции:

Так как

то определитель Гессе положительно определен; следовательно, целевая функция является выпуклой и в точке ( ) имеем локальный минимум:

1.9 Метод неопределенных множителей Лагранжа

Естественно, что решение задач условной оптимизации значительно сложнее решения задач безусловной оптимизации . Естественно стремление сведения задачи условной оптимизации (поиска относительного экстремума) к более простой задаче безусловной оптимизации (поиска абсолютного экстремума). Такая процедура осуществляется в методе Лагранжа. Рассмотрим сущность этого метода.

Необходимо найти условный экстремум нелинейной функции

n переменных, при m ограничениях

(1.56)

Ограничения-неравенства преобразуются в равенства, а свободные члены переносятся в левые части ограничений, т.е. система (1.56) приводится к виду

(1.57)


В соответствии с методом Лагранжа вместо относительного экстремума функции (1.55) при ограничениях (1.57) ищется абсолютный экстремум функции Лагранжа, которая имеет следующий вид:

где - неопределенные множители Лагранжа, являющиеся, как и переменные искомыми переменными.

Видно, что в функцию Лагранжа входит целевая функция плюс каждое ограничение, умноженное на множитель Лагранжа.

Доказано, что относительный экстремум целевой функции (1.55) при ограничениях (1.57) совпадает с абсолютным экстремумом функции Лагранжа (1.58).

Поиск абсолютного экстремума функции (1.58) выполняется известными методами. В частности, определяются и приравниваются к нулю частные производные функции Лагранжа:

(1.59)


Последние m уравнений представляют собой ограничения (1.57) оптимизационной задачи.

Система (1.59) содержит (m+n) уравнений и такое же количество неизвестных.

Решение системы (1.59) даст координаты абсолютного минимума функции Лагранжа (1.58) или относительного минимума целевой функции (1.55) при ограничениях (1.57).

Решение системы (1.59) выполняется известными методами вычислительной математики. Если система (1.59) линейная, используется, как правило, метод Гаусса. Если система (1.59) нелинейная – метод Ньютона.

1.10 Выбор метода оптимизации

Перед выбором метода оптимизации, проведем краткий анализ задач, которые должно решать разрабатываемое программное обеспечение:

программа должна решать задачу условной минимизации, т.е. находить относительный экстремум, так как в математической модели кроме линейных ограничений будут иметь место и нелинейные;

так как целевая функция – функция нескольких переменных, то она может иметь несколько экстремумов, и в этом случае программа должна осуществлять поиск локального минимума.

Проведя анализ наиболее часто использующихся методов оптимизации, для реализации поставленной цели был выбран градиентный метод квадратичного программирования, который представляет собой наиболее эффективный из вышеперечисленных градиентных методов, модифицированный с методами полиномиальной аппроксимации.

Предполагается, что целевая функция и граничные условия аппроксимируются квадратичными зависимостями или полиномами второго порядка. Более подробно этот метод будет рассмотрен далее в разделе "Разработка программного обеспечения метода оптимизации".

Данный метод позволяет создать надежную программу, соответствующую всем вышеперечисленным требованиям.


2. Разработка метода оптимизации по реактивной мощности

Требуемая в электроэнергетической системе (ЭЭС) суммарная мощность компенсирующих устройств определяется из уравнения баланса реактивной мощности (6.1). Эту мощность необходимо разместить в узлах электрической сети с минимальными затратами.

где - суммарная реактивная мощность, генерируемая в ЭЭС, включая реактивную мощность, поступающую из соседних ЭЭС;

Суммарная реактивная мощность потребителей ЭЭС, включая реактивную мощность, отдавая в соседние ЭЭС;

Суммарная реактивная мощность собственных нужд электростанций;

Суммарные потери реактивной мощности;

Суммарное потребление реактивной мощности в ЭЭС.

Рассмотрим простейшую схему существующей сети (рис.2.1). от источника питания с напряжением U через сопротивление сети R получает питание нагрузка мощностью S=P+jQ . На шинах нагрузки установлено компенсирующее устройство мощностью Qк.

Рисунок 2.1 – Простейшая схема компенсации реактивной мощности

Потери активной мощности в линии при отсутствии у потребителя компенсирующего устройства () составляют

. (2.2)

При установке у потребителя компенсирующего устройства () эти потери уменьшатся до величины

. (2.3)

Таким образом, компенсация реактивной мощности позволяет уменьшить потери активной мощности в схеме электроснабжения и, следовательно, улучшить технико-экономические показатели этой схемы.

Оценим влияние КУ на затраты в сети.

Выражение для суммарных затрат на передачу мощности к нагрузке при установке КУ будет иметь вид:

(2.4)

где ЗК – затраты на КУ;

соΔР – затраты на покрытие потерь активной мощности в сети;

со – стоимость единицы потерянной активной мощности;

зк – удельные затраты на КУ.

Для определения минимума функции З приравняем к нулю ее производную от переменной QK:


(2.5)

Из (2.5) определяется экономически целесообразная реактивная мощность, передача которой от источника к потребителю отвечает минимуму затрат З

(2.6)

Величина QЭ не зависит от активной мощности Р, а зависит лишь от соотношения стоимостных показателей зк и со и параметров сети U и R, по которой передается мощность.

Вопрос о размещении компенсирующих устройств в электрической сети реальной ЭЭС представляет собой сложную оптимизационную задачу. Сложность заключается в том, что электроэнергетические системы являются большими системами, состоящими из взаимосвязанных подсистем. Рассматривать изолированно каждую отдельную подсистему нельзя, поскольку свойства больших систем определяются характером взаимосвязей отдельных подсистем.

При анализе больших систем используется системный подход , согласно которому анализ большой системы выполняется при разделении ее на подсистемы, непосредственно не связанные между собой, но влияющие друг на друга через систему более высокого уровня.

Применительно к рассматриваемому вопросу электрическая сеть представляется разными уровнями, как это показано на рис. 2.2. верхний уровень – это электрическая сеть напряжением 110 кВ и выше. Эта сложнозамкнутая электрическая сеть, представляемая полной схемой замещения, показана на рис.2.2 условно, как ЭС1. Реактивные мощности, вырабатываемые генераторами электростанций QЭС, компенсирующими устройствами QК, линиями электропередачи QС, а также реактивные мощности, протекающие по связям с соседними ЭС2 и ЭС3 (Q12, Q21, Q13, Q31) обеспечивают в ЭС1 располагаемую реактивную мощность Qр1.

Рисунок 2.2 – Схема размещения КУ в электрической сети

Второй уровень – это множество n разомкнутых местных распределительных сетей напряжением 35 кВ и ниже, присоединенных к n узлам электрической сети верхнего уровня через трансформаторы Т. Эти местные распределительные сети непосредственно не связаны между собой, но влияют друг на друга через сеть верхнего уровня. Синхронные генераторы, компенсаторы и двигатели в каждой такой распределительной сети представлены одной эквивалентной синхронной машиной G. От местных электрических сетей через распределительные трансформаторы Т1 питаются низковольтные потребители P+jQ.

Компенсирующие устройства могут устанавливаться на шинах высшего (jQкв) и низшего (jQкс) напряжения трансформаторов Т, а также на шинах 0,4 кВ распределительных трансформаторов Т1 и в самой сети 0,4 кВ (jQкн). Значение мощностей этих КУ и подлежит определению.

В общем виде задача оптимизации размещения КУ формулируется следующим образом: определить реактивные мощности имеющихся в узлах 6…35 кВ синхронных машин G, мощности КУ в сетях всех напряжений Qкв, Qкс, Qкн, а также значения реактивных мощностей Qэi (i=1, 2, …n), передаваемых в сети потребителей, при которых обеспечивается минимум суммарных затрат.

Расчеты компенсации реактивной мощности для сетей всех видов выполняются как при проектировании развития электрических сетей, так и в условиях их эксплуатации. При проектировании определяются мощности КУ и решается задача их распределения в электрической сети. В условиях эксплуатации определяют оптимальные режимы имеющихся КУ в течение суток. Критериями оптимальности в этом случае служат минимум потерь мощности и энергии и соответствие отклонений напряжений допустимым значениям.

При проектировании схемы электроснабжения, как правило, минимизируются денежные затраты на эту схему. Снижение потерь мощности за счет установки КУ уменьшает затраты на схему, по следующим причинам:

каждый потерянный кВт мощности необходимо выработать на электростанциях и, следовательно, затратить на это денежные средства;

генерация недополученной реактивной мощности на электростанциях обходится гораздо дороже, чем потребление (в 3 раза!).

Однако и компенсирующие устройства требуют денежных затрат.

В связи с этим возникает задача определения оптимальной мощности компенсирующих устройств, отвечающей минимуму суммарных затрат. Такая задача относится к задаче безусловной оптимизации и может быть решена, например, градиентными методами.

Рассмотрим такую задачу для магистральной схемы электроснабжения (рис. 2.3). Необходимо определить мощности компенсирующих устройств QК1 и QК2 в узлах 1 и 2 исходя из условия минимума суммарных затрат на установку этих устройств и покрытие потерь активной мощности в схеме.

Рисунок 2.3 – Схема электроснабжения

Исходные данные:

напряжение схемы U;

сопротивления линий R1 и R2;

реактивные нагрузки узлов 1 и 2 Q1 и Q2;

удельные затраты на установку компенсирующих устройств zo;

удельные затраты на покрытие потерь активной мощности со.

Целевая функция, представляющая собой суммарные затраты на установку компенсирующих устройств и покрытие потерь активной мощности в схеме, имеет следующий вид

где а1=R1∙co∙10-3/U2=0,0006;

а2=R2∙co∙10-3/U2=0,0004.

Введение числового коэффициента 10-3 необходимо для приведения всех составляющих целевой функции к одной размерности (у.е.).

Для решения задачи выберем метод покоординатного спуска. Определим частные производные целевой функции Z по переменным Q1 и Q2:

(2.8)

Примем исходное приближение:

Для этих значений вычислим значения целевой функции и ее частных производных.

Примем, что в направлении переменной Qk2 целевая функция Z убывает сильнее, чем в направлении переменной Qk1, т.е.

(2.10)

В направлении переменной Qk2 и начнем спуск.

Примем величину шага =400 квар. Первое приближение (первый шаг) будет Qk11=0, Qk21=400 квар. Рассчитываем значение целевой функции Z1.

Второй шаг: Qk12=0, Qk22=400 квар. Рассчитываем значение целевой функции Z2.

Спуск по координате Qk2 следует продолжать до тех пор, пока Zn

Выполним новый шаг в направлении другой переменной Qk1. Находится новое значение целевой функции Z. Спуск по этой переменной продолжается так же, как и в направлении Qk2 – до тех пор, пока Zm

Точка с полученными координатами Qk1m-1, Qk2n-1 находится в окрестности минимума целевой функции Z. При принятой длине шага =400квар более точное решение получено быть не может. Для получения более точного решения необходимо уменьшить шаг и продолжить спуск. Абсолютно точно что, чем меньше шаг, тем точнее будет результат. Посредством ручного расчета мы не можем добиться такой точности. Для решения этой задачи целесообразно будет использовать программное обеспечение, предназначенное для решения задачи нелинейного программирования с нелинейными ограничениями. Одним из таких языков программирования является язык С++.

Это была рассмотрена задача безусловной оптимизации, т.е. нахождения абсолютного минимума. При решении поставленной задачи для нахождения оптимального режима работы сети ОАО "ММК им. Ильича" требуется найти относительный минимум, так как система ограничений будет иметь нелинейный вид (см. далее "Разработка программного обеспечения"). Таким образом, перед нами ставится задача условной оптимизации по реактивной мощности, для которой мы применяем выбранный ранее градиентный метод квадратичного программирования.

Информация о работе «Анализ режимов работы электрических сетей ОАО "ММК им. Ильича" и разработка адаптивной системы управления режимами электропотребления»

Жозеф Луи Лагранж родился в Турине (Италия) в итало-французской семье. Он учился, а затем преподавал в Артиллерийском училище. В 1759 г. по рекомендации Эйлера 23-летнего Лагранжа избирают в члены Берлинской академии наук. В 1766 г. он уже стал ее президентом. Фридрих II пригласил Лагранжа в Берлин. После смерти Фридриха II в 1786 г. Лагранж переехал в Париж. С 1722 г. он был членом Парижской академии наук, в 1795 г. его назначили членом Бюро долгот, и он принял активное участие в создании метрической системы мер. Круг научных исследований Лагранжа был необычайно широк. Они посвящены механике, геометрии, математическому анализу, алгебре, теории чисел, а также теоретической астрономии. Основным направлением исследований Лагранжа было представление самых различных явлений в механике с единой точки зрения. Он вывел уравнение, описывающее поведение любых систем под действием сил. В области астрономии Лагранж много сделал для решения проблемы устойчивости Солнечной системы; доказал некоторые частные случаи устойчивого движения, в частности для малых тел находящихся в так называемых треугольных точках либрации.

Метод Лагранжа ─ это метод решения задачи условной оптимизации, при котором ограничения, записываемые как неявные функции, объединяются с целевой функцией в форме нового уравнения, называемого лагранжианом .

Рассмотрим частный случай общей задачи нелинейного программирования:

Дана система нелинейных уравнений (1):

(1) gi(x1,x2,…,xn)=bi (i=1..m),

Найти наименьшее (или наибольшее) значение функции (2)

(2) f (х1,х2,…,хn),

если отсутствуют условия неотрицательности переменных и f(х1,х2,…,хn) и gi(x1,x2,…,xn) ─ функции, непрерывные вместе со своими частными производными.

Чтобы найти решение этой задачи, можно применить следующий метод: 1. Вводят набор переменных λ1, λ2,…, λm, называемых множителями Лагранжа, составляют функцию Лагранжа (3)

(3) F(х1,х2,…,хn , λ1,λ2,…,λm) = f(х1,х2,…,хn)+ λi .

2. Находят частные производные от функции Лагранжа по переменным xi и λi и приравнивают их нулю.

3. Решая систему уравнений, находят точки, в которых целевая функция задачи может иметь экстремум.

4.Среди точек, подозрительных не экстремум, находят такие, в которыхдостигается экстремум, и вычисляют значения функции в этих точках.

4. Сравнить полученные значения функции f и выбрать наилучшее.

По плану производства продукции предприятию необходимо изготовить 180 изделий. Эти изделия могут быть изготовлены двумя технологическими способами. При производстве х1 изделия I способом затраты равны 4*х1+х1^2 руб., а при изготовлении х2 изделий II способом они составляют 8*х2+х2^2 руб. Определить, сколько изделий каждым из способов следует изготовить, так чтобы общие затраты на производство продукции были минимальными.

Решение: Математическая постановка задачи состоит в определении наименьшего значения функции двух переменных:

f = 4*x1+x1^2 +8*x2 +x2^2, при условии x1 +x2 = 180.

Составим функцию Лагранжа:

F(x1,x2,λ) = 4*x1+x1^2+8*x2+x2^2+λ*(180-x1-x2).

Вычислим ее частные производные по х1,х2, λ и приравняем их к 0:

Перенесем в правые части первых двух уравнений λ и приравняем их левые части, получим 4 + 2*x1 = 8 + 2*x2, или x1 − x2 = 2.

Решая последнее уравнение совместно с уравнением x1 + x2 = 180, находим x1 = 91, x2 = 89, то есть получили решение, удовлетворяющее условиям:

Найдем значение целевой функции f при этих значениях переменных:

F(x1, x2) = 17278

Эта точка является подозрительной на экстремум. Используя вторые частные производные, можно показать, что в точке (91,89) функция f имеет минимум.

Метод множителей Лагранжа.

Метод множителей Лагранжа является одним из методов, которые позволяют решать задачи нелинейного программирования.

Нелинейное программирование-это раздел математического программирования, изучающий методы решения экстремальных задач с нелинейной целевой функцией и областью допустимых решений, определенной нелинейными ограничениями. В экономике это соответствует тому, что результаты (эффективность) возрастают или убывают непропорционально изменению масштабов использования ресурсов (или, что то же самое, масштабов производства): напр., из-за деления издержек производства на предприятиях на переменные и условно-постоянные; из-за насыщения спроса на товары, когда каждую следующую единицу продать труднее, чем предыдущую и т. д.

Задача нелинейного программирования ставится как задача нахождения оптимума определенной целевой функции

F(x 1 ,…x n), F (x ) → max

при выполнении условий

g j (x 1 ,…x n)≥0, g (x ) ≤ b , x ≥ 0

где x -вектор искомых переменных;

F (x ) -целевая функция;

g (x ) - функция ограничений (непрерывно дифференцируемая);

b - вектор констант ограничений.

Решение задачи нелинейного программирования (глобальный максимум или минимум) может принадлежать либо границе, либо внутренней части допустимого множества.

В отличие от задачи линейного программирования, в задаче программирования нелинейного оптимум не обязательно лежит на границе области, определенной ограничениями. Иначе говоря, задача состоит в выборе таких неотрицательных значений переменных, подчиненных системе ограничений в форме неравенств, при которых достигается максимум (или минимум) данной функции. При этом не оговариваются формы ни целевой функции, ни неравенств. Могут быть разные случаи: целевая функция нелинейная, а ограничения линейны; целевая функция линейна, а ограничения (хотя бы одно из них) нелинейные; и целевая функция, и ограничения нелинейные.

Задача нелинейного программирования встречается в естественных науках, технике, экономике, математике, в сфере деловых отношений и в науке управления государством.



Нелинейное программирование, например, связано с основной экономической задачей. Так в задаче о распределении ограниченных ресурсов максимизируют либо эффективность, либо, если изучается потребитель, потребление при наличии ограничений, которые выражают условия недостатка ресурсов. В такой общей постановке математическая формулировка задачи может оказаться невозможной, но в конкретных применениях количественный вид всех функций может быть определен непосредственно. Например, промышленное предприятие производит изделия из пластмассы. Эффективность производства здесь оценивается прибылью, а ограничения интерпретируются как наличная рабочая сила, производственные площади, производительность оборудования и т.д.

Метод "затраты - эффективность" также укладывается в схему нелинейного программирования. Данный метод был разработан для использования при принятии решений в управлении государством. Общей функцией эффективности является благосостояние. Здесь возникают две задачи нелинейного программирования: первая - максимизация эффекта при ограниченных затратах, вторая - минимизация затрат при условии, чтобы эффект был выше некоторого минимального уровня. Обычно эта задача хорошо моделируется с помощью нелинейного программирования.

Результаты решения задачи нелинейного программирования являются подспорьем при принятии государственных решений. Полученное решение является, естественно, рекомендуемым, поэтому необходимо исследовать предположения и точность постановки задачи нелинейного программирования, прежде чем принять окончательное решение.

Нелинейные задачи сложны, часто их упрощают тем, что приводят к линейным. Для этого условно принимают, что на том или ином участке целевая функция возрастает или убывает пропорционально изменению независимых переменных. Такой подход называется методом кусочно-линейных приближений, он применим, однако, лишь к некоторым видам нелинейных задач.

Нелинейные задачи в определенных условиях решаются с помощью функции Лагранжа: найдя ее седловую точку, тем самым находят и решение задачи. Среди вычислительных алгоритмов Н. п. большое место занимают градиентные методы. Универсального же метода для нелинейных задач нет и, по-видимому, может не быть, поскольку они чрезвычайно разнообразны. Особенно трудно решаются многоэкстремальные задачи.

Одним из методов, которые позволяют свести задачу нелинейного программирования к решению системы уравнений, является метод неопределенных множителей Лагранжа.

С помощью метода множителей Лагранжа по существу устанавливаются необходимые условия, позволяющие идентифицировать точки оптимума в задачах оптимизации с ограничениями в виде ра­венств. При этом задача с ограничениями преобразуется в эквива­лентную задачу безусловной оптимизации, в которой фигурируют некоторые неизвестные параметры, называемые множителями Ла­гранжа.

Метод множителей Лагранжа заключается в сведении задач на условный экстремум к задачам на безусловный экстремум вспомогательной функции - т. н. функции Лагранжа.

Для задачи об экстремуме функции f (х 1 , x 2 ,..., x n ) при условиях (уравнениях связи) φ i (x 1 , x 2 , ..., x n ) = 0, i = 1, 2,..., m , функция Лагранжа имеет вид

L(x 1, x 2… x n ,λ 1, λ 2 ,…λm)=f(x 1, x 2… x n)+∑ i -1 m λ i φ i (x 1, x 2… x n)

Множители λ 1 , λ 2 , ..., λm наз. множителями Лагранжа.

Если величины x 1 , x 2 , ..., x n , λ 1 , λ 2 , ..., λm суть решения уравнений, определяющих стационарные точки функции Лагранжа, а именно, для дифференцируемых функций являются решениями системы уравнений

то при достаточно общих предположениях x 1 , x 2 , ..., x n доставляют экстремум функции f.

Рассмотрим задачу минимизации функции n переменных с учетом одного ограничения в виде равенства:

Минимизировать f(x 1, x 2… x n) (1)

при ограничениях h 1 (x 1, x 2… x n)=0 (2)

В соответствии с методом множителей Лагранжа эта задача преобразуется в следующую задачу безусловной оптимизации:

минимизировать L(x,λ)=f(x)-λ*h(x) (3)

где Функция L(х;λ) называется функцией Лагранжа,

λ - неизвестная постоянная, которая носит название множителя Лагранжа. На знак λ никаких требований не накладывается.

Пусть при заданном значении λ=λ 0 безусловный минимум функции L(x,λ) по х достигается в точке x=x 0 и x 0 удовлетворяет уравнению h 1 (x 0)=0. Тогда, как нетрудно видеть, x 0 минимизирует (1) с учетом (2), поскольку для всех значений х, удовлетворяющих (2), h 1 (x)=0 и L(x,λ)=min f(x).

Разумеется, необходимо подобрать значение λ=λ 0 таким образом, чтобы координата точки безусловного минимума х 0 удовлетворяла равенству (2). Это можно сделать, если, рассматривая λ как переменную, найти безусловный минимум функции (3) в виде функции λ, а затем выбрать значение λ, при котором выполняется равенство (2). Проиллюстрируем это на конкретном примере.

Минимизировать f(x)=x 1 2 +x 2 2 =0

при ограничении h 1 (x)=2x 1 +x 2 -2=0=0

Соответствующая задача безусловной оптимизации записывается в следующем виде:

минимизировать L(x,λ)=x 1 2 +x 2 2 -λ(2x 1 +x 2 -2)

Решение. Приравняв две компоненты градиента L к нулю, получим

→ x 1 0 =λ

→ x 2 0 =λ/2

Для того чтобы проверить, соответствует ли стационарная точка х° минимуму, вычислим элементы матрицы Гессе функции L(х;u), рассматриваемой как функция х,

которая оказывается положительно определенной.

Это означает, что L(х,u) - выпуклая функция х. Следовательно, координаты x 1 0 =λ, x 2 0 =λ/2 определяют точку глобального минимума. Оптимальное значение λ находится путем подстановки значений x 1 0 и x 2 0 в уравнение2x 1 +x 2 =2, откуда 2λ+λ/2=2 или λ 0 =4/5. Таким образом, условный минимум достигается при x 1 0 =4/5 и x 2 0 =2/5 и равен min f(x)=4/5.

При решении задачи из примера мы рассматривали L(х;λ) как функцию двух переменных x 1 и x 2 и, кроме того, предполагали, что значение параметра λ выбрано так, чтобы выполнялось ограни­чение. Если же решение системы

J=1,2,3,…,n

в виде явных функций λ получить нельзя, то значения х и λ находятся путем решения следующей системы, состоящей из n+1 уравнений с n+1 неизвестными:

J=1,2,3,…,n., h 1 (x)=0

Для нахождения всех возможных решений данной системы можно использовать численные методы поиска (например, метод Ньютона). Для каждого из решений () следует вычислить элементы матрицы Гессе функции L, рассматриваемой как функция х, и выяснить, является ли эта матрица положительно определенной (локальный минимум) или отрицательно определенной (локальный максимум).

Метод множителей Лагранжа можно распространить на случай, когда задача имеет несколько ограничений в виде равенств. Рассмотрим общую задачу, в которой требуется

Минимизировать f(x)

при ограничениях h k =0, k=1, 2, ..., К.

Функция Лагранжа принимает следующий вид:

Здесь λ 1 , λ 2 , ..., λk -множители Лагранжа, т.е. неизвестные параметры, значения которых необходимо определить. Приравнивая частные производные L по х к нулю, получаем следующую систему n уравнении с n неизвестными:

Если найти решение приведенной выше системы в виде функций вектора λ оказывается затруднительным, то можно расширить систему путем включения в нее ограничений в виде равенств

Решение расширенной системы, состоящей из n+К уравнений с n+К неизвестными, определяет стационарную точку функции L. Затем реализуется процедура проверки на минимум или максимум, которая проводится на основе вычисления элементов матрицы Гессе функции L, рассматриваемой как функция х, подобно тому, как это было проделано в случае задачи с одним ограничением. Для некоторых задач расширенная система n+К уравнений с n+K неизвестными может не иметь решений, и метод множителей Лагранжа оказывается неприменимым. Следует, однако, отметить, что такие задачи на практике встречаются достаточно редко.

Рассмотрим частный случай общей задачи нелинейного программирования, предполагая, что система ограничений содержит только уравнения, отсутствуют условия неотрицательности переменных и и - функции непрерывные вместе со своими частными производными. Следовательно решив систему уравнений (7), получают все точки, в которых функция (6) может иметь экстремальные значения.

Алгоритм метода множителей Лагранжа

1.Составляем функцию Лагранжа.

2.Находим частные производные от функции Лагранжа по переменным x J ,λ i и приравниваем их нулю.

3.Решаем систему уравнений (7), находим точки, в которых целевая функция задачи может иметь экстремум.

4.Среди точек, подозрительных на экстремум, находим такие, в которых достигается экстремум, и вычисляем значения функции (6) в этих точках.

Пример.

Исходные данные: По плану производства продукции предприятию необходимо изготовить 180 изделий. Эти изделия могут быть изготовлены двумя технологическими способами. При производстве x 1 изделий 1 способом затраты равны 4x 1 +x 1 2 руб., а при изготовлении x 2 изделий 2 способом они составляют 8x 2 +x 2 2 руб. Определить сколько изделий каждым из способов следует изготовить, чтобы затраты на производство продукции были минимальными.

Целевая функция для поставленной задачи имеет вид
®min при условиях x 1 +x 2 =180, x 2 ≥0.
1.Составляем функцию Лагранжа
.
2. Вычисляем частные производные по x 1 , x 2, λ и приравниваем их нулю:

3. Решая полученную систему уравнений, находим x 1 =91,x 2 =89

4.Сделав замену в целевой функции x 2 =180-x 1 , получим функцию от одной переменной, а именно f 1 =4x 1 +x 1 2 +8(180-x 1)+(180-x 1) 2

Вычисляем или 4x 1 -364=0 ,

откуда имеем x 1 * =91, x 2 * =89.

Ответ: Количество изделий изготовленных первым способом равно х 1 =91, вторым способом х 2 =89 при этом значение целевой функции равно 17278 руб.

Рассмотрим задачу условной оптимизации, содержащую только ограничения в виде равенств

min

при наличии ограничений

,
.

Эта задача в принципе может быть решена как задача безусловной оптимизации, полученная путем исключения из целевой функции m независимых переменных с помощью заданных равенств. Наличие ограничений в виде равенств фактически позволяет уменьшить размерность исходной задачи. Новая задача может быть решена с помощью подходящего метода безусловной оптимизации.

Пример . Требуется минимизировать функцию

при ограничении

Исключив переменную с помощью уравнения, получим оптимизационную задачу с двумя переменными без ограничений:

минимизировать ,

которую можно решить одним из методов безусловной оптимизации.

Однако метод исключения переменных применим лишь в тех случаях, когда уравнения, представляющие ограничения, можно разрешить относительно некоторого набора переменных. При наличии большого числа ограничений в виде равенств процесс исключения переменных становится весьма трудоемкой процедурой. Кроме того, возможны ситуации, когда уравнение не удается разрешить относительно переменной. В этом случае целесообразно использовать метод множителей Лагранжа.

С помощью метода множителей Лагранжа по существу устанавливаются необходимые условия, позволяющие идентифицировать точки оптимума в задачах оптимизации с ограничениями в виде равенств.

Рассмотрим задачу

min

при наличии ограничений

,
.

Из курса математического анализа хорошо известно, что точка условного минимума функции совпадает с седловой точкой функции Лагранжа:

,

при этом седловая точка должна обеспечивать минимум по переменным и максимум по параметрам. Эти параметры называются множителями Лагранжа. Приравнивая частные производные функциипои пок нулю, получим необходимые условия стационарной точки:

,
,

,
.

Решение системы
уравнений определяет стационарную точку функции Лагранжа. Достаточные условия существования минимума исходной задачи содержат, кроме выше упомянутых, положительную определенность матрицы Гессе целевой функции.

4.2. Условия куна - таккера

Рассмотрим задачу нелинейного программирования с ограничениями в виде неравенств

min

при ограничениях

,
.

Сведем ограничения в виде неравенств к ограничениям-равенствам добавлением к каждому из них ослабляющих переменных ,
:



.

Сформируем функцию Лагранжа:

Тогда необходимые условия минимума принимают вид

,
;

,
;

,
.

Можно умножить последнее уравнение на и заменить ослабляющие переменные, выразив их из второго уравнения. Второе уравнение можно преобразовать, отбросив ослабляющие переменные и переходя к ограничениям-неравенствам. Следует добавить еще одно условие
, которое должно выполняться в точке условного минимума.

Окончательно получаем необходимые условия существования минимума задачи нелинейного программирования с ограничениями неравенствами, которые называются условиями Куна- Таккера:

,
; (1)

,
; (2)

,
; (3)

,
. (4)

Ограничение в виде неравенства
называется активным в точке, если оно превращается в равенство
, и называется неактивным, если
. Если существует возможность обнаружить до непосредственного решения задачи ограничения, которые неактивны в точке оптимума, то эти ограничения можно исключить из модели и тем самым уменьшить ее размеры.

Уравнение (3) означает, что либо
, либо
. Если
, то
и ограничение является активным и представляет собой ограничение равенство. С другой стороны, если ограничение является строгим неравенством
, то множитель Лагранжа будет иметь вид
т.е. ограничение
является неактивным и им можно пренебречь. Конечно, предварительно не известно какими ограничениями можно пренебречь.