Методы аутентификации пользователей информационных систем. Выбираем и настраиваем сетевую аутентификацию

Здравствуйте, уважаемые читатели блога сайт. Хочу продолжить тему толкования простыми словами распространенных терминов, которые можно повсеместно встретить в наш компьютерный век. Чуть ранее мы уже , а так же про и про .

Сегодня у нас на очереди аутентификация . Что означает это слово? Отличается ли сие понятие от авторизации или идентификации? Какие методы аутентификации существуют, насколько сильно они защищены, почему могут возникать ошибки и почему двухфакторная аутентификация лучше однофакторной?

Интересно? Тогда продолжим, а я постараюсь вас не разочаровать.

Что такое аутентификация?

На самом деле, это та процедура, которая хорошо знакома не только нам (современным жителям), но и нашим далеким предкам (практически испокон веков).

Если говорить кратко, то аутентификация — это процесс проверки подлинности ( подлинность). Причем не важно каким способом (их существует как минимум несколько типов). Простейший пример. Вы заходите в свою квартиру открывая замок ключом. И если дверь таки открылась, то значит вы успешно прошли аутентификацию.

Разложим в этом примере все по полочкам:

  1. Ключ от замка — это ваш идентификатор (вставили и повернули — прошли идентификацию). В компьютерном мире это аналог того, что вы сообщили системе свое .
  2. Процесс открывания (совпадения ключа и замка) — это аутентификация. В компьютерном мире — это аналог прохождения этапа проверки подлинности (сверке введенного пароля).
  3. Открывание двери и вход в квартиру — это уже авторизация (получение доступа). В сети — это вход на сайт, сервис, программу или приложение.

Как вы уже, наверное, поняли — двухфакторной аутентификации в данном примере будет отвечать наличие на двери второго замка (либо наличие собаки в доме, которая уже проведет свою собственную аутентификацию опираясь на биометрические признаки — запах, внешний вид, наличие вкусняшек у вас в кармане).

Еще один пример. Печать на документе (в паспорте, сургучная печать на старинных письмах).

Как видите — все предельно просто. Но сегодня под этим термином чаще всего понимают именно электронную аутентификацию , т.е. процесс входа на сайты, сервисы, в системы, программы и даже подключение к домашней WiFi сети. Но по сути, тут мало отличий от приведенного примера.

В электронном варианте у вас так же будет идентификатор (в простейшем случае ) и пароль (аналог замка), необходимый для аутентификации (входа в систему, получение доступа к интернету, входа в онлайн-сервис и т.п.).

Как я уже говорил выше, существует несколько типов аутентифаторов :

Как видите, нет идеала. Поэтому зачастую для усиления безопасности используют так называемую двухфакторную (двухэтапную) аутентификацию. Давайте рассмотрим на примере.

Двухфакторная (2FA — двухэтапная) аутентификация

Например, во , и прочих сервисах связанных с доступом к деньгам, двухфакторная аутентификация сводится к следующему:


Что это дает? Существенное повышение безопасности и снижение риска аутентификации вместо вас мошенников. Дело в том, что перехватить одноразовый пароль намного сложенее, чем узнать пароль многоразовый. К тому же, получить доступ к мобильному телефону (да и просто узнать его номер) намного сложнее, чем покопаться у вас на компьютере или в электронной почте.

Но это лишь один из примеров двухфакторной аутентификации (2FA) . Возьмем уже упоминавшиеся выше банковские карты. Тут тоже используется два этапа — проверка подлинности с помощью устройства (идентификационного кода на карте) и с помощью ввода личного пароля (пинкода).

Еще пример из фильмов, когда сначала вводят код доступа, а потом идет проверка сетчатки глаза или отпечатка пальца. По идее, можно сделать и три этапа, и четыре, и пять. Все определяется целесообразностью соблюдения между обострившейся паранойей и разумным числом проверок, которые в ряде случаев приходится проходить довольно часто.

В большинстве случаев хватает совмещения двух факторов и при этом не доставляет очень уж больших неудобств при частом использовании.

Ошибки аутентификации

При использовании любого из упомянутых выше типов аутентификаторов (паролей, устройств и биометрии) возможны ошибки. Откуда они берутся и как их можно избегать и разрешать? Давайте посмотрим на примере.

Допустим, что вы хотите подключить компьютер или смартфон к имеющейся у вас в квартире беспроводной сети. Для этого от вас потребуют ввести название сети (идентификатор) и пароль доступа (аутентификатор). Если все введено правильно, то вас авторузует и вы получите доступ с подключаемого устройства в интернет.

Но иногда вам при этом может выдаваться сообщении об ошибке аутентификации . Что в этом случае вам сделать?

  1. Ну, во-первых, проверить правильность вводимых данных. Часто при вводе пароль закрывается звездочками, что мешает понять причину ошибки.
  2. Часто используются пароли с символами в разных регистрах (с большими и маленькими буквами), что не все учитывают при наборе.
  3. Иногда причиной ошибки может быть не совсем очевидная двухфакторная система проверки подлинности. Например, на роутере может быть включена блокировка доступа по . В этом случае система проверяет не только правильность ввода логина и пароля, но и совпадение Мак-адреса устройства (с которого вы осуществляете вход) со списком разрешенных адресов. В этом случае придется лезть в настройки роутера (через браузер с подключенного по Lan компьютера) и добавлять адрес этого устройства в настройках безопасности беспроводной сети.

Системы биометрии тоже могут выдавать ошибки при распознавании в силу их несовершенства или в силу изменения ваших биометрических данных (охрипли, опухли, глаза затекли, палец порезали). То же самое может случиться и с приложениями, используемыми для двухфакторной аутентификации. Именно для этаких случаев предусматривают систему получения доступа по резервным кодам . По сути, это одноразовые пароли, которые нужно будет распечатать и хранить в ящике стола (сейфе).

Если обычным способом аутентифицироваться не получается (выдается ошибка), то резервные коды дадут возможность войти. Для следующего входа нужно будет использовать уже новый резервный код. Но у этой палочки-выручалочки есть и обратная сторона медали — если у вас эти резервные коды украдут или выманят (как это было со мной, ), то они сработают как мастер-ключ (универсальная отмычка) и вся защита пойдет прахом.

Удачи вам! До скорых встреч на страницах блога сайт

посмотреть еще ролики можно перейдя на
");">

Вам может быть интересно

Аутентичный - это какой, что означает аутентичность Яндекс Аккаунт - регистрация и как пользоваться сервисом Как удалить свою страницу на Одноклассниках
Как восстановить страницу в Контакте (при утере доступа, удалении или блокировке)
Как поставить пароль на папку (заархивировать или другим способом запаролить ее в Windows) Почему не загружается ВК и браузер не заходит во Вконтакте Идентификация - что это такое и как подтверждается идентичность

Как известно, практически в любых компьютерных системах существует необходимость аутентификации. В ходе этой процедуры компьютерная система проверяет, действительно ли пользователь тот, за кого себя выдает. Для того, чтобы получить доступ к компьютеру, в Интернет, к системе удаленного управления банковским счетом и т. д., пользователю необходимо убедительно доказать компьютерной системе, что "он есть та самая персона", а не кто-либо еще. Для этого он должен предъявить системе некую аутентификационную информацию, на основании которой модуль аутентификации данной системы выносит решение о предоставлении ему доступа к требуемому ресурсу (доступ разрешен/нет).

В настоящее время для такой проверки применяется информация трех видов.

Первый - уникальная последовательность символов , которую пользователь должен знать для успешного прохождения аутентификации. Простейший пример - парольная аутентификация, для которой достаточно ввести в систему свой идентификатор (например, логин) и пароль.

Второй вид информации - уникальное содержимое или уникальные характеристики предмета. Простейший пример - ключ от любого замка. В случае же компьютерной аутентификации в этом качестве выступают любые внешние носители информации: смарт-карты, электронные таблетки iButton, USB-токены и т. д.

И, наконец, третий вид аутентификации - по биометрической информации , которая неотъемлема от пользователя. Это может быть отпечаток пальца, рисунок радужной оболочки глаза, форма лица, параметры голоса и т. д.

Очень часто комбинируют несколько видов информации, по которой проводится аутентификация. Типичный пример: аутентификационная информация хранится на смарт-карте, для доступа к которой нужно ввести пароль (PIN-код). Такая аутентификация называется двухфакторной . Существуют реальные системы и с трехфакторной аутентификацией.

В ряде случаев требуется и взаимная аутентификация - когда оба участника информационного обмена проверяют друг друга. Например, перед передачей удаленному серверу каких-либо важных данных пользователь должен убедиться, что это именно тот сервер, который ему необходим.

Удаленная аутентификация

В случае удаленной аутентификации (скажем, пользователь намерен получить доступ к удаленному почтовому серверу для проверки своей электронной почты) существует проблема передачи аутентификационной информации по недоверенным каналам связи (через Интернет или локальную сеть). Чтобы сохранить в тайне уникальную информацию, при пересылке по таким каналам используется множество протоколов аутентификации. Рассмотрим некоторые из них, наиболее характерные для различных применений.

Доступ по паролю

Простейший протокол аутентификации - доступ по паролю (Password Access Protocol, PAP): вся информация о пользователе (логин и пароль) передается по сети в открытом виде (рис. 1). Полученный сервером пароль сравнивается с эталонным паролем данного пользователя, который хранится на сервере. В целях безопасности на сервере чаще хранятся не пароли в открытом виде, а их хэш-значения.

Рисунок 1 - Схема протокола PAP

Данная схема имеет весьма существенный недостаток: любой злоумышленник, способный перехватывать сетевые пакеты, может получить пароль пользователя с помощью простейшего анализатора пакетов типа sniffer. А получив его, злоумышленник легко пройдет аутентификацию под именем владельца пароля.

По сети в процессе аутентификации может передаваться не просто пароль, а результат его преобразования - скажем, тот же хэш пароля. К сожалению, это не устраняет описанный выше недостаток - злоумышленник с тем же успехом может перехватить хэш пароля и применять его впоследствии.

Недостатком данной схемы аутентификации можно считать и то, что любой потенциальный пользователь системы должен предварительно зарегистрироваться в ней - как минимум ввести свой пароль для последующей аутентификации. А описанные ниже более сложные протоколы аутентификации типа "запрос-ответ" позволяют в принципе расширить систему на неограниченное количество пользователей без их предварительной регистрации.

Запрос-ответ

В семейство протоколов, называемых обычно по процедуре проверки "запрос-ответ", входит несколько протоколов, которые позволяют выполнить аутентификацию пользователя без передачи информации по сети. К протоколам семейства "запрос-ответ" относится, например, один из наиболее распространенных - протокол CHAP (Challenge-Handshake Authentication Protocol).

Процедура проверки включает как минимум четыре шага (рис. 2):

  • · пользователь посылает серверу запрос на доступ, включающий его логин;
  • · сервер генерирует случайное число и отправляет его пользователю;
  • · пользователь шифрует полученное случайное число симметричным алгоритмом шифрования на своем уникальном ключе, результат зашифрования отправляется серверу;
  • · сервер расшифровывает полученную информацию на том же ключе и сравнивает с исходным случайным числом. При совпадении чисел пользователь считается успешно аутентифицированным, поскольку признается владельцем уникального секретного ключа.

Рисунок 2 - Схема протокола аутентификации типа "запрос-ответ".

Аутентифицирующей информацией в данном случае служит ключ, на котором выполняется шифрование случайного числа. Как видно из схемы обмена, данный ключ никогда не передается по сети, а лишь участвует в вычислениях, что составляет несомненное преимущество протоколов данного семейства.

Основной недостаток подобных систем аутентификации - необходимость иметь на локальном компьютере клиентский модуль, выполняющий шифрование. Это означает, что, в отличие от протокола PAP, для удаленного доступа к требуемому серверу годится только ограниченное число компьютеров, оснащенных таким клиентским модулем.

Однако в качестве клиентского компьютера может выступать и смарт-карта либо аналогичное "носимое" устройство, обладающее достаточной вычислительной мощностью, например, мобильный телефон. В таком случае теоретически допустима аутентификация и получение доступа к серверу с любого компьютера, оснащенного устройством чтения смарт-карт, с мобильного телефона или КПК.

Протоколы типа "запрос-ответ" легко "расширяются" до схемы взаимной аутентификации (рис. 3). В этом случае в запросе на аутентификацию пользователь (шаг 1) посылает свое случайное число (N1). Сервер на шаге 2, помимо своего случайного числа (N2), должен отправить еще и число N1, зашифрованное соответствующим ключом. Тогда перед выполнением шага 3 пользователь расшифровывает его и проверяет: совпадение расшифрованного числа с N1 указывает, что сервер обладает требуемым секретным ключом, т. е. это именно тот сервер, который нужен пользователю. Такая процедура аутентификации часто называется рукопожатием.


Рисунок 3 - Схема протокола взаимной аутентификации

Как видно, аутентификация будет успешна только в том случае, если пользователь предварительно зарегистрировался на данном сервере и каким-либо образом обменялся с ним секретным ключом.

Заметим, что вместо симметричного шифрования в протоколах данного семейства может применяться и асимметричное шифрование, и электронная цифровая подпись. В таких случаях схему аутентификации легко расширить на неограниченное число пользователей, достаточно применить цифровые сертификаты в рамках инфраструктуры открытых ключей.

Протокол Kerberos

Протокол Kerberos, достаточно гибкий и имеющий возможности тонкой настройки под конкретные применения, существует в нескольких версиях. Мы рассмотрим упрощенный механизм аутентификации, реализованный с помощью протокола Kerberos версии 5 (рис. 4):

Рисунок 4 - Схема протокола Kerberos

Прежде всего, стоит сказать, что при использовании Kerberos нельзя напрямую получить доступ к какому-либо целевому серверу. Чтобы запустить собственно процедуру аутентификации, необходимо обратиться к специальному серверу аутентификации с запросом, содержащим логин пользователя. Если сервер не находит автора запроса в своей базе данных, запрос отклоняется. В противном случае сервер аутентификации формирует случайный ключ, который будет использоваться для шифрования сеансов связи пользователя с еще одним специальным сервером системы: сервером предоставления билетов (Ticket-Granting Server, TGS). Данный случайный ключ (обозначим его Ku-tgs) сервер аутентификации зашифровывает на ключе пользователя (Kuser) и отправляет последнему. Дополнительная копия ключа Ku-tgs с рядом дополнительных параметров (называемая билетом) также отправляется пользователю зашифрованной на специальном ключе для связи серверов аутентификации и TGS (Ktgs). Пользователь не может расшифровать билет, который необходим для передачи серверу TGS на следующем шаге аутентификации.

Следующее действие пользователя - запрос к TGS, содержащий логин пользователя, имя сервера, к которому требуется получить доступ, и тот самый билет для TGS. Кроме того, в запросе всегда присутствует метка текущего времени, зашифрованная на ключе Ku-tgs. Метка времени нужна для предотвращения атак, выполняемых повтором перехваченных предыдущих запросов к серверу. Подчеркнем, что системное время всех компьютеров, участвующих в аутентификации по протоколу Kerberos, должно быть строго синхронизировано.

В случае успешной проверки билета сервер TGS генерирует еще один случайный ключ для шифрования сеансов связи между пользователем, желающим получить доступ, и целевым сервером (Ku-serv). Этот ключ шифруется на ключе Kuser и отправляется пользователю. Кроме того, аналогично шагу 2, копия ключа Ku-serv и необходимые целевому серверу параметры аутентификации (билет для доступа к целевому серверу) посылаются пользователю еще и в зашифрованном виде (на ключе для связи TGS и целевого сервера - Kserv).

Теперь пользователь должен послать целевому серверу полученный на предыдущем шаге билет, а также метку времени, зашифрованную на ключе Ku-serv. После успешной проверки билета пользователь наконец-то считается аутентифицированным и может обмениваться информацией с целевым сервером. Ключ Ku-serv, уникальный для данного сеанса связи, часто применяется и для шифрования пересылаемых в этом сеансе данных.

В любой системе может быть несколько целевых серверов. Если пользователю необходим доступ к нескольким из них, он снова формирует запросы к серверу TGS - столько раз, сколько серверов нужно ему для работы. Сервер TGS генерирует для каждого из таких запросов новый случайный ключ Ku-serv, т. е. все сессии связи с различными целевыми серверами защищены при помощи разных ключей.

Процедура аутентификации по протоколу Kerberos выглядит достаточно сложной. Однако не стоит забывать, что все запросы и зашифровывание их нужными ключами автоматически выполняет ПО, установленное на локальном компьютере пользователя. Вместе с тем необходимость установки достаточно сложного клиентского ПО - несомненный недостаток данного протокола. Впрочем, сегодня поддержка Kerberos встроена в наиболее распространенные ОС семейства Windows, начиная с Windows 2000, что нивелирует данный недостаток.

Второй недостаток - необходимость в нескольких специальных серверах (доступ к целевому серверу обеспечивают как минимум еще два, сервер аутентификации и TGS). Однако в системах с небольшим числом пользователей все три сервера (аутентификации, TGS и целевой) могут физически совмещаться на одном компьютере.

Вместе с тем следует подчеркнуть, что сервер аутентификации и TGS должны быть надежно защищены от несанкционированного доступа злоумышленников. Теоретически злоумышленник, получивший доступ к TGS или серверу аутентификации, способен вмешаться в процесс генерации случайных ключей или получить ключи всех пользователей и, следовательно, инициировать сеансы связи с любым целевым сервером от имени любого легального пользователя.

Несмотря на то, что многие не знают, что такое аутентификация, каждый пользователь глобальной сети ежедневно встречается с процедурой её прохождения. Одни начинают свой рабочий день с этой операции, другие – включая компьютер, третьи – проверяя почту и посещая страницы интернет, четвертые – в процессе подключения сети.

Что это такое

Аутентификация – основа безопасности любой системы на программном уровне. Доступ к информации защищается идентификатором и паролем. В роли первого может выступать логин, имя пользователя, электронный ящик или сгенерированный код.

Таким образом, пользователь, который проходит регистрацию на сервере или в любой другой системе, получает уникальный id. Он есть только у него (это цифровое значение, которое может быть обычным порядковым номером). Идентификация – это представление пользователем данных, а аутентификация – принятие этой информации сервером. Эти две процедуры и условия их выполнения связаны друг с другом.

Вместо термина аутентификация часто используют более простые выражения, которые можно назвать синонимами:

  • проверка подлинности;
  • авторизация.

Видео: Биометрическая аутентификация

Виды

Как правило, методы проверки подлинности разделяют по используемым во время процесса средствам и их количеству.

Виды аутентификации по таким признакам делят на несколько групп:

  • информационная составляющая (когда вы знаете то, что никому другому неизвестно, например, пароль);
  • предмет или средство (в случае использования карточки, ключа-марки, жетона, специальной USB-флешки);
  • биометрика (доступ по сетчатке глаза, отпечатку пальца, группе крови);
  • пользовательская информация (доступ к определенной информации в зависимости от места нахождения, языка, информации из кэша браузера).

Парольная защита

Самый известный и распространенный способ – это парольная защита. При прохождении процесса авторизации и вводе пароля система производит его сравнение с определенным идентификатором, который хранится в базе данных.

Существует два вида паролей:

  • постоянные;
  • динамические.

Постоянный пароль выдается сервером при регистрации (в случае подключения для доступа к общей информации) или задается самим пользователем (в случае хранения личной информации).

Динамический пароль выдается сервером. И в зависимости от настроек прекращает свое существование, спустя некоторое время или сразу после выхода из системы.

Защита динамическим паролем более безопасная. Но взломщики умудряются обходить и её, используя основную уязвимость – человеческий фактор, потому как для авторизации пользователя существует необходимость передачи ему нового пароля.

Уникальные предметы

Наиболее широко используемый способ защиты банковских систем и помещений ограниченного доступа осуществляется при помощи пластиковых карт с электронным чипом, содержащим уникальную информацию.

Также этот вариант нередко используется для контролируемого физического доступа к отдельным серверным машинам или важным клиентским персональным компьютерам (usb флешка с программой-ключом и уникальным идентификатором пользователя).

Этот метод безопасности идеален для защиты от удаленного взлома . Но у него есть свои недостатки. Ведь каждый предмет может быть утерян или украден злоумышленниками.

Биометрика

Самый дорогой, но самый надежный способ аутентификации – это биометрика. Для авторизации в системе используется метод сканирования, где полученное изображение сравнивается с сохраненной копией в базе данных.

Современные методы позволяют каждый раз сравнивать разные участки или точки, а также определять пользователя по чертам лица и мимике.

Данная система самая надежная в смысле безопасности. Однако в ней имеются и недостатки. Чтобы она функционировала нормально, должны быть либо резервные коды «супервизора», либо назначено ответственное за защиту лицо. Это делается на тот случай, если с пользователем что-либо случится, но этот факт сильно нарушает идеальность системы.

Пользовательские данные

Пользовательские данные могут быть абсолютно разные и уникальные, например:

  • год рождения;
  • девичья фамилия матери;
  • кличка любимого животного;
  • мобильный номер;
  • место жительства.

Данная информация может использоваться в нескольких случаях и разных целях:


  1. для сортировки информации, которая отображается пользователю (например, реклама предприятий в Москве не будет отображаться для жителей Киргизстана);
  2. для прохождения усиленного вида защиты, который называется двухсторонняя аутентификация. Такой вид используется в крайне защищенных системах и выглядит как диалог пользователя с сервером. После того как вы прошли предварительный уровень и ввели правильный пароль, вам могут предложить выбрать одну из дат рождения.

Технология и алгоритм аутентификации

Разобрав виды аутентификации, можно понять, что ни одна из них не идеальная, и в каждой существуют свои погрешности. Поэтому чаще всего используется двухуровневая проверка подлинности.

Это означает, что для того, чтобы получить полный доступ к информации, вам необходимо сначала пройти базовую проверку: к примеру, ввести логин и пароль в системе. Вслед за этим нужно подтвердить личность более строгой идентификацией (предметом, вопросами, биометрикой, подписью).

Технология проверки подлинности почтовым сервером

Самый простой способ рассмотреть работу пошагово и понять, что такое двухфакторная аутентификация – разобрать процесс получения почты:

  1. вторым фактором является ip адрес. В случае если вы впервые заходите с нового ip, вас могут попросить подтвердить личность при помощи номера мобильного телефона (sms сообщением) – это второй уровень защиты;
  2. на почтовых серверах также существует сквозная проверка подлинности. В этом случае вам не нужно вводить пароль каждый раз, пока вы пользуетесь одним и тем же компьютером и IP адресом. Данные авторизации не просто сохраняются в браузере, они подгружаются в файлы cookie, и при каждом обращении к серверу он пропускает вас «на лету».

Алгоритм аутентификации на примере авторизации в локальной сети

Для идентификации компьютеров в рабочей локальной сети и разграничения доступа к ресурсам существуют доменные сети. Процесс авторизации может осуществляться одновременно на нескольких уровнях и с использованием разных факторов. В одной локальной сети можно увидеть практически все типы аутентификации.

Для выхода в сеть может использоваться имя компьютера или ip адрес, привязанный к домену. В то же время нужно ввести имя пользователя и пароль (это уже два фактора идентификации).

Следующим типом аутентификации тут является отношение пользователя, диапазона адресов или конкретно компьютера к группе с разграничением прав доступа.

Чем интересно использование доменной сети, это возможностью администрировать и разграничивать доступ абсолютно к любой информации, как в локальной, так и глобальной сети за счет многофакторной проверки подлинности.

Если возникли ошибки, что делать?

Больше всего ошибок возникает из-за неправильно введенных данных: логина, пароля, имени сервера или ip-адреса.

При использовании того или иного ресурса можно увидеть сообщение о том, что авторизация или аутентификация на сервере временно недоступна. Если это один из сервисов в интернете, то следует просто подождать или попробовать обратиться в службу технической поддержки.

Если же возник сбой одного из серверов или сетевых аппаратов (маршрутизаторов), находящихся у вас дома, на работе или в одной локальной сети, можно в зависимости от ситуации:

  • проверить устройство самостоятельно;
  • обратиться к провайдеру;
  • позвонить системному администратору.

Каждый пользуется проверкой подлинности незаметно для себя множество раз в день, авторизируясь в операционной системе, на сервере, в социальной сети или получая почту.

Аутентификация пользователя в системе – задача несложная и повседневная. Немного разобравшись в процессе и алгоритме действия самостоятельно, можно более точно указать на проблему при обращении в службу поддержки или к администратору сети, указав, на каком уровне возникает ошибка.

Основой любых систем защиты информационных систем являются идентификация и аутентификация, так как все механизмы защиты информации рассчитаны на работу с поименованными субъектами и объектами АС. Напомним, что в качестве субъектов АС могут выступать как пользователи, так и процессы, а в качестве объектов АС – информация и другие информационные ресурсы системы.

Присвоение субъектам и объектам доступа личного идентификатора и сравнение его с заданным перечнем называется идентификацией. Идентификация обеспечивает выполнение следующих функций:

Установление подлинности и определение полномочий субъекта при его допуске в систему,

Контролирование установленных полномочий в процессе сеанса работы;

Регистрация действий и др.

Аутентификацией (установлением подлинности) называется проверка принадлежности субъекту доступа предъявленного им идентификатора и подтверждение его подлинности. Другими словами, аутентификация заключается в проверке: является ли подключающийся субъект тем, за кого он себя выдает.

Общая процедура идентификации и аутентификации пользователя при его доступе в АС представлена на рис. 2.10. Если в процессе аутентификации подлинность субъекта установлена, то система защиты информации должна определить его полномочия (совокупность прав). Это необходимо для последующего контроля и разграничения доступа к ресурсам.

По контролируемому компоненту системы способы аутентификации можно разделить на аутентификацию партнеров по общению и аутентификацию источника данных. Аутентификация партнеров по общению используется при установлении (и периодической проверке) соединения во время сеанса. Она служит для предотвращения таких угроз, как маскарад и повтор предыдущего сеанса связи. Аутентификация источника данных – это подтверждение подлинности источника отдельной порции данных.

По направленности аутентификация может быть односторонней (пользователь доказывает свою подлинность системе, например при входе в систему) и двусторонней (взаимной).

Рис. 2.10. Классическая процедура идентификации и аутентификации

Обычно методы аутентификации классифицируют по используемым средствам. В этом случае указанные методы делят на четыре группы:

1. Основанные на знании лицом, имеющим право на доступ к ресурсам системы, некоторой секретной информации – пароля.

2. Основанные на использовании уникального предмета: жетона, электронной карточки и др.

3. Основанные на измерении биометрических параметров человека – физиологических или поведенческих атрибутах живого организма.

4. Основанные на информации, ассоциированной с пользователем, например, с его координатами.

Рассмотрим эти группы.

1. Наиболее распространенными простыми и привычными являются методы аутентификации, основанные на паролях – секретных идентификаторах субъектов. Здесь при вводе субъектом своего пароля подсистема аутентификации сравнивает его с паролем, хранящимся в базе эталонных данных в зашифрованном виде. В случае совпадения паролей подсистема аутентификации разрешает доступ к ресурсам АС.

Парольные методы следует классифицировать по степени изменяемости паролей:

Методы, использующие постоянные (многократно используемые) пароли,

Методы, использующие одноразовые (динамично изменяющиеся) пароли.

В большинстве АС используются многоразовые пароли. В этом случае пароль пользователя не изменяется от сеанса к сеансу в течение установленного администратором системы времени его действительности. Это упрощает процедуры администрирования, но повышает угрозу рассекречивания пароля. Известно множество способов вскрытия пароля: от подсмотра через плечо до перехвата сеанса связи. Вероятность вскрытия злоумышленником пароля повышается, если пароль несет смысловую нагрузку (год рождения, имя девушки), небольшой длины, набран на одном регистре, не имеет ограничений на период существования и т. д. Важно, разрешено ли вводить пароль только в диалоговом режиме или есть возможность обращаться из программы.

В последнем случае, возможно запустить программу по подбору паролей – «дробилку».

Более надежный способ – использование одноразовых или динамически меняющихся паролей.

Известны следующие методы парольной защиты, основанные на одноразовых паролях:

Методы модификации схемы простых паролей;

Методы «запрос-ответ»;

Функциональные методы.

В первом случае пользователю выдается список паролей. При аутентификации система запрашивает у пользователя пароль, номер в списке которого определен по случайному закону. Длина и порядковый номер начального символа пароля тоже могут задаваться случайным образом.

При использовании метода «запрос-ответ» система задает пользователю некоторые вопросы общего характера, правильные ответы на которые известны только конкретному пользователю.

Функциональные методы основаны на использовании специальной функции парольного преобразования . Это позволяет обеспечить возможность изменения (по некоторой формуле) паролей пользователя во времени. Указанная функция должна удовлетворять следующим требованиям:

Для заданного пароля x легко вычислить новый пароль ;

Зная х и y, сложно или невозможно определить функцию .

Наиболее известными примерами функциональных методов являются: метод функционального преобразования и метод «рукопожатия».

Идея метода функционального преобразования состоит в периодическом изменении самой функции . Последнее достигается наличием в функциональном выражении динамически меняющихся параметров, например, функции от некоторой даты и времени. Пользователю сообщается исходный пароль, собственно функция и периодичность смены пароля. Нетрудно видеть, что паролями пользователя на заданных -периодах времени будут следующие: x, f(x), f(f(x)), ..., f(x)n-1.

Метод «рукопожатия» состоит в следующем. Функция парольного преобразования известна только пользователю и системе защиты. При входе в АС подсистема аутентификации генерирует случайную последовательность x, которая передается пользователю. Пользователь вычисляет результат функции y=f(x) и возвращает его в систему. Система сравнивает собственный вычисленный результат с полученным от пользователя. При совпадении указанных результатов подлинность пользователя считается доказанной.

Достоинством метода является то, что передача какой-либо информации, которой может воспользоваться злоумышленник, здесь сведена к минимуму.

В ряде случаев пользователю может оказаться необходимым проверить подлинность другого удаленного пользователя или некоторой АС, к которой он собирается осуществить доступ. Наиболее подходящим здесь является метод «рукопожатия», так как никто из участников информационного обмена не получит никакой конфиденциальной информации.

Отметим, что методы аутентификации, основанные на одноразовых паролях, также не обеспечивают абсолютной защиты. Например, если злоумышленник имеет возможность подключения к сети и перехватывать передаваемые пакеты, то он может посылать последние как собственные.

2. В последнее время получили распространение комбинированные методы идентификации, требующие, помимо знания пароля, наличие карточки (token) – специального устройства, подтверждающего подлинность субъекта.

Карточки разделяют на два типа:

Пассивные (карточки с памятью);

Активные (интеллектуальные карточки).

Самыми распространенными являются пассивные карточки с магнитной полосой, которые считываются специальным устройством, имеющим клавиатуру и процессор. При использовании указанной карточки пользователь вводит свой идентификационный номер. В случае его совпадения с электронным вариантом, закодированным в карточке, пользователь получает доступ в систему. Это позволяет достоверно установить лицо, получившее доступ к системе и исключить несанкционированное использование карточки злоумышленником (например, при ее утере). Такой способ часто называют двухкомпонентной аутентификацией.

Иногда (обычно для физического контроля доступа) карточки применяют сами по себе, без запроса личного идентификационного номера.

К достоинству использования карточек относят то, что обработка аутентификационной информации выполняется устройством чтения, без передачи в память компьютера. Это исключает возможность электронного перехвата по каналам связи.

Недостатки пассивных карточек следующие: они существенно дороже паролей, требуют специальных устройств чтения, их использование подразумевает специальные процедуры безопасного учета и распределения. Их также необходимо оберегать от злоумышленников, и, естественно, не оставлять в устройствах чтения. Известны случаи подделки пассивных карточек.

Интеллектуальные карточки кроме памяти имеют собственный микропроцессор. Это позволяет реализовать различные варианты парольных методов защиты: многоразовые пароли, динамически меняющиеся пароли, обычные запрос-ответные методы. Все карточки обеспечивают двухкомпонентную аутентификацию.

К указанным достоинствам интеллектуальных карточек следует добавить их многофункциональность. Их можно применять не только для целей безопасности, но и, например, для финансовых операций. Сопутствующим недостатком карточек является их высокая стоимость.

Перспективным направлением развития карточек является наделение их стандартом расширения портативных систем PCMCIA (PC Card). Такие карточки являются портативными устройствами типа PC Card, которые вставляются в разъем PC Card и не требуют специальных устройств чтения. В настоящее время они достаточно дороги.

3. Методы аутентификации, основанные на измерении биометрических параметров человека (см. таблицу 2.6), обеспечивают почти 100 % идентификацию, решая проблемы утраты паролей и личных идентификаторов. Однако такие методы нельзя использовать при идентификации процессов или данных (объектов данных), так как они только начинают развиваться (имеются проблемы со стандартизацией и распространением), требуют пока сложного и дорогостоящего оборудования. Это обусловливает их использование пока только на особо важных объектах и системах.

Примерами внедрения указанных методов являются системы идентификации пользователя по рисунку радужной оболочки глаза, отпечаткам ладони, формам ушей, инфракрасной картине капиллярных сосудов, по почерку, по запаху, по тембру голоса и даже по ДНК.

Таблица 2.6

Примеры методов биометрии

Физиологические методы

Поведенческие методы

Снятие отпечатков пальцев

Сканирование радужной оболочки глаза

Сканирование сетчатки глаза

Геометрия кисти руки

Распознавание черт лица

Анализ клавиатурного почерка

Новым направлением является использование биометрических характеристик в интеллектуальных расчетных карточках, жетонах-пропусках и элементах сотовой связи. Например, при расчете в магазине предъявитель карточки кладет палец на сканер в подтверждение, что карточка действительно его.

Назовем наиболее используемые биометрические атрибуты и соответствующие системы.

· Отпечатки пальцев. Такие сканеры имеют небольшой размер, универсальны, относительно недороги. Биологическая повторяемость отпечатка пальца составляет 10-5 %. В настоящее время пропагандируются правоохранительными органами из-за крупных ассигнований в электронные архивы отпечатков пальцев.

· Геометрия руки. Соответствующие устройства используются, когда из-за грязи или травм трудно применять сканеры пальцев. Биологическая повторяемость геометрии руки около 2 %.

· Радужная оболочка глаза. Данные устройства обладают наивысшей точностью. Теоретическая вероятность совпадения двух радужных оболочек составляет 1 из 1078.

· Термический образ лица . Системы позволяют идентифицировать человека на расстоянии до десятков метров. В комбинации с поиском данных по базе данных такие системы используются для опознания авторизованных сотрудников и отсеивания посторонних. Однако при изменении освещенности сканеры лица имеют относительно высокий процент ошибок.

· Голос. Проверка голоса удобна для использования в телекоммуникационных приложениях. Необходимые для этого 16-разрядная звуковая плата и конденсаторный микрофон стоят менее 25 $. Вероятность ошибки составляет 2 – 5%. Данная технология подходит для верификации по голосу по телефонным каналам связи, она более надежна по сравнению с частотным набором личного номера. Сейчас развиваются направления идентификации личности и его состояния по голосу – возбужден, болен, говорит правду, не в себе и т.д.

· Ввод с клавиатуры. Здесь при вводе, например, пароля отслеживаются скорость и интервалы между нажатиями.

· Подпись. Для контроля рукописной подписи используются дигитайзеры.

4. Новейшим направлением аутентификации является доказательство подлинности удаленного пользователя по его местонахождению. Данный защитный механизм основан на использовании системы космической навигации, типа GPS (Global Positioning System). Пользователь, имеющий аппаратуру GPS, многократно посылает координаты заданных спутников, находящихся в зоне прямой видимости. Подсистема аутентификации, зная орбиты спутников, может с точностью до метра определить месторасположение пользователя. Высокая надежность аутентификации определяется тем, что орбиты спутников подвержены колебаниям, предсказать которые достаточно трудно. Кроме того, координаты постоянно меняются, что сводит на нет возможность их перехвата.

Аппаратура GPS проста и надежна в использовании и сравнительно недорога. Это позволяет ее использовать в случаях, когда авторизованный удаленный пользователь должен находиться в нужном месте.

Суммируя возможности средств аутентификации, ее можно классифицировать по уровню информационной безопасности на три категории:

1. Статическая аутентификация;

2. Устойчивая аутентификация;

3. Постоянная аутентификация.

Первая категория обеспечивает защиту только от НСД в системах, где нарушитель не может во время сеанса работы прочитать аутентификационную информацию. Примером средства статической аутентификации являются традиционные постоянные пароли. Их эффективность преимущественно зависит от сложности угадывания паролей и, собственно, от того, насколько хорошо они защищены.

Для компрометации статической аутентификации нарушитель может подсмотреть, подобрать, угадать или перехватить аутентификационные данные и т. д.

Устойчивая аутентификация использует динамические данные аутентификации, меняющиеся с каждым сеансом работы. Реализациями устойчивой аутентификации являются системы, использующие одноразовые пароли и электронные подписи. Усиленная аутентификация обеспечивает защиту от атак, где злоумышленник может перехватить аутентификационную информацию и пытаться использовать ее в следующих сеансах работы.

Однако устойчивая аутентификация не обеспечивает защиту от активных атак, в ходе которых маскирующийся злоумышленник может оперативно (в течение сеанса аутентификации) перехватить, модифицировать и вставить информацию в поток передаваемых данных.

Постоянная аутентификация обеспечивает идентификацию каждого блока передаваемых данных, что предохраняет их от несанкционированной модификации или вставки. Примером реализации указанной категории аутентификации является использование алгоритмов генерации электронных подписей для каждого бита пересылаемой информации.

Нередко при подключении компьютера, ноутбука или планшета к интернету посредством Wi-Fi система выдает сообщение об ошибки аутентификации. Рассмотрим, что она собой представляет и по каким причинам возникает, а также дадим рекомендации по их устранению.

Ошибка аутентификации: понятие

Процедура аутентификации всегда предполагает проверку подлинности пользователя. Аутентификация предусматривает ввод определенного пароля. Если пароль указан неправильно, то выдается ошибка аутентификации.

Ошибка аутентификации: причины и решения

Разобрав, что такое ошибка аутентификации, следует остановиться на причинах ее возникновения. Как уже было сказано выше, ошибка обычно возникает из-за неправильно введённого пароля при подключении беспроводной сети. Вам потребуется убедиться в том, что вы указали его верно - была использована нужная раскладка и язык. Если после этого вы все равно не сможете пройти аутентификацию, это значит, что произошёл сбой в настройках сети, и ее нужно удалить. Необходимо выполнить следующее:

  1. Зайдите в меню вашего роутера и выберите раздел «Настройки».
  2. В открывшемся списке кликните на пункт «Беспроводные сети», напротив него нажмите на кнопку «Удалить сеть».
  3. Кликните на пункт «Обновить список сетей», после чего используемая сеть снова будет доступной.
  4. Выполните перезапуск своего маршрутизатора.
  5. Откройте окно аутентификации и введите правильный пароль.
  6. После таких действий ваш компьютер должен будет подключиться к Wi-Fi.

Если при прохождении аутентификации пароль сохраняется, но появляется сообщение о защите WPA\WPA2 под именем сети, к которой вы пытаетесь подключиться, то нужно изменить настройки роутера. Делается это следующим образом:

  1. Зайдите в меню роутера и выберите пункт «Режим работы сети».
  2. В открывшейся вкладке измените режим «Only» на «Auto» и сохраните внесенные изменения.
  3. Отключите беспроводное соединение на устройстве и перезагрузите роутер.
  4. Проверьте правильность введённого пароля для подключения сети Wi-Fi и ее режим.

Если после этого все равно появляется ошибка аутентификации, то нужно поменять режимы работы маршрутизатора. Действуйте следующим образом:

  1. Зайдите во вкладку «Настройки» в главном меню роутера.
  2. Среди открывшегося списка выберите раздел «Беспроводная сеть».
  3. В загрузившемся окне установите напротив опции Mode такую команду: 11bgn mixed.
  4. Сохраните изменения, нажав на соответствующую кнопку.
  5. Перезагрузите роутер и попробуйте пройти аутентификацию.

Если система опять выдаст ошибку, то тогда вновь зайдите в раздел «Беспроводная сесть» и в нем укажите эту команду: 11bg mixed. В случае повторной ошибки потребуется напротив опции Mode ввести 11g only. Обязательно сохраняйте внесенные изменения и перезапускайте маршрутизатор, перед тем как вновь проходить аутентификацию.

Чтобы у вас не возникало проблем с аутентификацией, используйте пароль, состоящий только из цифр. Обязательно его записывайте. В таком случае потом не потребуется проходить процедуру по восстановлению пароля или сбрасывать его.

Обращайте внимание на настройки параметров безопасности роутера. Нередко они становятся причиной проблем с прохождением аутентификации. Лучше, если они будут выглядеть следующим образом:

  • Версия: WPA-PSK
  • PSK Пароль - восемь цифр/символов
  • WPA/WPA2 — Personal (Recommended)