Виды импульсных источников электропитания. Импульсные источники питания


  • Введение
  • Заключение

Введение

Импульсные источники питания в настоящее время уверенно приходят на смену устаревшим линейным. Причина - свойственные данным источникам питания высокая производительность, компактность и улучшенные показатели стабилизации.

При тех стремительных изменениях, которые претерпели принципы питания электронной техники за последнее время, информация о расчете, построении и использовании импульсных источников питания становиться все более актуальной.

В последнее время в среде специалистов в области электроники и радиотехники, а также в промышленном производстве особую популярность завоевали импульсные источники питания. Наметилась тенденция отказа от типовых громоздких трансформаторных и переход на малогабаритные конструкции импульсных блоков питания, преобразователей напряжения, конвертеров, инверторов.

В общем, тема импульсных источников питания достаточно актуальная и интересная, и является одной из важнейших областей силовой электроники. Данное направление электроники перспективное и стремительно развивающееся. И его основной целью является разработка мощных устройств питания, отвечающих современным требованиям надежности, качества, долговечности, минимизации массы, размеров, энерго- и материалоемкости. Необходимо отметить, что практически вся современная электроника, включая всевозможные ЭВМ, аудио-, видеотехнику и другие современные устройства питается от компактных импульсных блоков питания, что еще раз подтверждает актуальность дальнейшего развития указанной области источников питания.

1. Принцип функционирования импульсных источников питания

Импульсный источник питания является инверторной системой. В импульсных источниках питания переменное входное напряжение сначала выпрямляется. Полученное постоянное напряжение преобразуется в прямоугольные импульсы повышенной частоты и определенной скважности, либо подаваемые на трансформатор (в случае импульсных БП с гальванической развязкой от питающей сети) или напрямую на выходной ФНЧ (в импульсных БП без гальванической развязки). В импульсных БП могут применяться малогабаритные трансформаторы - это объясняется тем, что с ростом частоты повышается эффективность работы трансформатора и уменьшаются требования к габаритам (сечению) сердечника, требуемым для передачи эквивалентной мощности. В большинстве случаев такой сердечник может быть выполнен из ферромагнитных материалов, в отличие от сердечников низкочастотных трансформаторов, для которых используется электротехническая сталь.

Рисунок 1 - Структурная схема импульсного источника питания

Напряжение сети поступает на выпрямитель, после чего сглаживается емкостным фильтром. С конденсатора фильтра, напряжение которого возрастает, выпрямленное напряжение через обмотку трансформатора поступает на коллектор транзистора, выполняющего функцию ключа. Устройство управления обеспечивает периодическое включение и выключение транзистора. Для надежного запуска БП используется задающий генератор, выполненный на микросхеме. Импульсы подаются на базу ключевого транзистора и вызывают запуск цикла работы автогенератора. На устройство управления возлагается функция отслеживания уровня выходного напряжения, выработка сигнала ошибки и, часто, непосредственного управления ключом. Питание микросхемы задающего генератора осуществляется цепочкой резисторов непосредственно с входа накопительной емкости, стабилизируя напряжение опорной емкостью. За работу оптопары отвечает задающий генератор и ключевой транзистор вторичной цепи. Чем сильнее открыты транзисторы, отвечающие за работу оптрона, тем меньше амплитуда импульсов обратной связи, тем раньше выключится силовой транзистор и тем меньше энергии накопится в трансформаторе, что вызовет прекращение роста напряжения на выходе источника. Наступил рабочий режим источника питания, где не малую роль отводится оптопаре, как регулировщику и управленцу выходными напряжениями.

Спецификация промышленного источника питания более жесткая, чем у обычного бытового источника питания. Это выражается не только в том, что на входе источника питания действует высокое трехфазное напряжение, но еще и в том, что промышленные источники питания должны сохранять работоспособность при существенном отклонении входного напряжения от номинального значения, включая провалы и броски напряжения, а также пропадание одной или нескольких фаз.

Рисунок 2 - Принципиальная схема импульсного источника питания.

Схема работает следующим образом. Трехфазный вход может быть выполнен по трехпроводной, четырехпроводной схеме или даже однофазным. Трехфазный выпрямитель состоит из диодов D1 - D8.

Резисторы R1 - R4 осуществляют защиту от броска напряжения. Использование защитных резисторов с размыканием при перегрузке делает ненужным использование отдельных вставок плавких. Входное выпрямленное напряжение фильтруется П-образным фильтром, состоящим из С5, С6, С7, С8 и L1.

Резисторы R13 и R15 уравнивают напряжение на входных фильтрующих конденсаторах.

Когда открывается MOSFET микросхемы U1, потенциал истока Q1 понижается, ток затвора обеспечивается резисторами R6, R7 и R8, соответственно емкость переходов VR1… VR3 отпирает Q1. Диод Зенера VR4 ограничивает напряжение исток-затвор приложенное к Q1. Когда MOSFET U1 закрывается, напряжение стока ограничивается на уровне 450 вольт ограничительной цепочкой VR1, VR2, VR3. Любое дополнительное напряжение на конце обмотки будет рассеиваться на Q1. Такое подключение эффективно распределяет суммарное выпрямленное напряжение на Q1 и U1.

Цепочка поглощения VR5, D9, R10, поглощает избыточное напряжение на первичной обмотке, возникающее из-за индукции рассеяния трансформатора во время обратного хода.

Выходное выпрямление осуществляется диодом D1. C2 - выходной фильтр. L2 и C3 формируют вторую ступень фильтра для снижения нестабильности выходного напряжения.

VR6 начинает проводить, когда выходное напряжение превышает падение на VR6 и оптопаре. Изменение выходного напряжения вызывает изменение тока, текущего через диод оптопары U2, который в свою очередь вызывает изменение тока через транзистор оптопары U2. Когда этот ток превышает порог на выводе FB микросхемы U1, следующий рабочий цикл пропускается. Заданный уровень выходного напряжения поддерживается путем регулирования числа пропущенных и совершенных рабочих циклов. Когда рабочий цикл начался, он закончиться, когда ток через микросхему U1 достигнет установленного внутреннего предела. R11 ограничивает ток через оптопару и устанавливает коэффициент усиления обратной связи. Резистор R12 подает смещение на VR6.

Эта схема защищена от обрыва петли обратной связи, КЗ на выходе, перегрузки благодарю функциям, встроенным в U1 (LNK304). Так как микросхема запитывается прямо со своего вывода сток, не требуется отдельная обмотка питания.

В импульсных блоках питания стабилизация напряжения обеспечивается посредством отрицательной обратной связи. Обратная связь позволяет поддерживать выходное напряжение на относительно постоянном уровне вне зависимости от колебаний входного напряжения и величины нагрузки. Обратную связь можно организовать разными способами. В случае импульсных источников с гальванической развязкой от питающей сети наиболее распространенными способами являются использование связи посредством одной из выходных обмоток трансформатора или при помощи оптрона. В зависимости от величины сигнала обратной связи (зависящему от выходного напряжения), изменяется скважность импульсов на выходе ШИМ-контроллера. Если развязка не требуется, то, как правило, используется простой резистивный делитель напряжения. Таким образом, блок питания поддерживает стабильное выходное напряжение.

2. Основные параметры и характеристики импульсных источников питания

Классификация импульсных источников питания (ИИП) производится по нескольким основным критериям:

По виду входного и выходного напряжения;

По типологии;

По форме выходного напряжения;

По типу питающей цепи;

По напряжению на нагрузке;

По мощности нагрузки;

По роду тока нагрузки;

По числу выходов;

По стабильности напряжения на нагрузке.

По виду входного и выходного напряжения

1. AC/DC - это преобразователи переменного напряжения в постоянное. Такие преобразователи применяют в самых разных областях - это промышленная автоматика, телекоммуникационное оборудование, контрольно-измерительное оборудование, оборудование промышленного назначения для обработки данных, средства обеспечения безопасности, а также техника специального назначения.

2. DC/DC - это преобразователи постоянного напряжения. В таких DC/DC конверторах используют импульсные трансформаторы с двумя и более обмотками, причем между входной и выходной цепью связь отсутствует. Импульсные трансформаторы имеют большую разность потенциалов между входом и выходом конвертора. Примером их применения может быть блок питания (БП) для импульсных фотовспышек с напряжением на выходе порядка 400 В.

3. DC/AC - это преобразователи постоянного напряжения в переменное (инвентор). Основная область применения инверторов - работа в подвижном составе железнодорожных и других транспортных средств, имеющих бортовую электросеть постоянного напряжения. Также они могут быть применены в качестве основных преобразователей в составе источников резервного питания.

Высокая перегрузочная способность позволяет осуществлять питание широкого спектра устройств и оборудования, включая конденсаторные двигатели компрессоров холодильных установок и кондиционеров.

По типологии ИИП классифицируются следующим образом:

обратноходовые импульсные преобразователи (flybackconverter);

прямоходовые импульсные преобразователи (forwardconverter);

преобразователи с двухтактным выходом (push-pull);

преобразователи с полумостовым выходом (halfbridgeconverter);

преобразователи с мостовым выходом (fullfbridgeconverter).

По форме выходного напряжения ИИП классифицируются так:

1. C модифицированной синусоидой

2. C синусоидой правильной формы.

Рисунок 3 - Формы выходного сигнала

По типу питающей цепи:

ИИП, использующие электрическую энергию, получаемую от однофазной сети переменного тока;

ИИП, использующие электрическую энергию, получаемую от трехфазной сети переменного тока;

ИИП, использующие электрическую энергию автономного источника постоянного тока.

По напряжению на нагрузке:

По мощности нагрузки:

ИИП малой мощности (до 100 Вт);

ИИП средней мощности (от100 до 1000 Вт);

ИИП большой мощности (свыше 1000 Вт).

По роду тока нагрузки:

ИИП с выходом на переменном токе;

ИИП с выходом на постоянном токе;

ИИП с выходом на переменном и постоянном токе.

По числу выходов:

одноканальные ИИП, имеющие один выход постоянного или переменного тока;

многоканальные ИИП, имеющие два или более выходных напряжений.

По стабильности напряжения на нагрузке:

стабилизированные ИИП;

нестабилизированные ИИП.

3. Основные способы построения импульсных источников питания

На рисунке ниже будет представлен внешний вид импульсного источника питания.

Рисунок 4 - Импульсный источник питания

Итак, для начала в общих чертах обозначим, какие основные модули есть в любом импульсном блоке электропитания. В типовом варианте импульсный блок питания условно можно разделить на три функциональные части. Это:

1. ШИМ-контроллер (PWM), на базе которого собирается задающий генератор обычно с частотой около 30…60 кГц;

2. Каскад силовых ключей, роль которых могут выполнять мощные биполярные, полевые или IGBT (биполярные с изолированным затвором) транзисторы; этот силовой каскад может включать в себя дополнительную схему управления этими самыми ключами на интегральных драйверах или маломощных транзисторах; также важна схема включения силовых ключей: мостовая (фул-бридж), полумостовая (халф-бридж) или со средней точкой (пуш-пул);

3. Импульсный трансформатор с первичной (ыми) и вторичной (ыми) обмоткой (ами) и, соответственно, выпрямительными диодами, фильтрами, стабилизаторами и проч. на выходе; в качестве сердечника обычно выбирается феррит или альсифер; в общем, такие магнитные материалы, которые способны работать на высоких частотах (в некоторых случаях свыше 100 кГц).

Существует три основных способа построения импульсных ИП (см. рис.3): повышающая (выходное напряжение выше входного), понижающая (выходное напряжение ниже входного) и инвертирующая (выходное напряжение имеет противоположную по отношению к входному полярность). Как видно из рисунка, отличаются они лишь способом подключения индуктивности, в остальном, принцип работы остается неизменным, а именно.

импульсный источник питание напряжение

Рисунок 5 - Типовые структурные схемы импульсных источников питания

Ключевой элемент (обычно применяют биполярные или МДП транзисторы), работающий с частотой порядка 20-100 кГц, периодически на короткое время (не более 50% времени) прикладывает к катушке индуктивности полное входное нестабилизированное напряжение. Импульсный ток, протекающий при этом через катушку, обеспечивает накопление запаса энергии в её магнитном поле 1/2LI^2 на каждом импульсе. Запасенная таким образом энергия из катушки передастся в нагрузку (либо напрямую, с использованием выпрямляющего диода, либо через вторичную обмотку с последующим выпрямлением), конденсатор выходного сглаживающего фильтра обеспечивает постоянство выходного напряжения и тока. Стабилизация выходного напряжения обеспечивается автоматической регулировкой ширины или частоты следования импульсов на ключевом элементе (для слежения за выходным напряжением предназначена цепь обратной связи).

Такая, хотя и достаточно сложная, схема позволяет существенно повысить КПД всего устройства. Дело в том, что, в данном случае, кроме самой нагрузки в схеме отсутствуют силовые элементы, рассеивающие значительную мощность. Ключевые транзисторы работают в режиме насыщенного ключа (т.е. падение напряжения на них мало) и рассеивают мощность только в достаточно короткие временные интервалы (время подачи импульса). Помимо этого, за счет повышения частоты преобразования можно существенно увеличить мощность и улучшить массогабаритные характеристики.

Важным технологическим преимуществом импульсных ИП является возможность построения на их основе малогабаритных сетевых ИП с гальванической развязкой от сети для питания самой разнообразной аппаратуры. Такие ИП строятся без применения громоздкого низкочастотного силового трансформатора по схеме высокочастотного преобразователя. Это, собственно, типовая схема импульсного ИП с понижением напряжения, где в качестве входного напряжения используется выпрямленное сетевое напряжение, а в качестве накопительного элемента - высокочастотный трансформатор (малогабаритный и с высоким КПД), со вторичной обмотки которого и снимается выходное стабилизированное напряжение (этот трансформатор обеспечивает также гальваническую развязку с сетью).

К недостаткам импульсных ИП можно отнести: наличие высокого уровня импульсных шумов на выходе, высокую, сложность и низкую надежность (особенно при кустарном изготовлении), необходимость применения дорогостоящих высоковольтных высокочастотных компонентов, которые в случае малейшей неисправности легко выходят из строя "всем скопом" (при этом. как правило, можно наблюдать впечатляющие пиротехнические эффекты). Любителям покопаться во внутренностях устройств с отверткой и паяльником при конструировании сетевых импульсных ИП придется быть крайне осторожными, так как многие элементы таких схем находятся под высоким напряжением.

4. Разновидности схемотехнических решений импульсных источников питания

Схема ИИП 90-х годов показана на рис.6. Источник питания содержит сетевой выпрямитель VD1-VD4, помехоподавляющий фильтр L1C1-СЗ, преобразователь на коммутирующем транзисторе VT1 и импульсном трансформаторе Т1, выходной выпрямитель VD8 с фильтром C9C10L2 и узел стабилизации, выполненный на стабилизаторе DA1 и оптроне U1.

Рисунок 6 - Импульсный источник питания 1990-х годов

Схема ИИП показана на рис.7. Предохранитель FU1 защищает элементы от аварийных ситуаций. Терморезистор RK1 ограничивает импульс зарядного тока конденсатора С2 до безопасного для диодного моста VD1 значения, а совместно с конденсатором С1 образует RC-фильтр, служащий для уменьшения импульсных помех, проникающих из ИИП в сеть. Диодный мост VD1 выпрямляет сетевое напряжение, конденсатор С2 - сглаживающий. Выбросы напряжения первичной обмотки трансформатора Т1 уменьшает демпфирующая цепь R1C5VD2. Конденсатор С4 является фильтром питания, от которого запитаны внутренние элементы микросхемы DA1.

Выходной выпрямитель собран на диоде Шотки VD3, пульсации выходного напряжения сглаживает LC-фильтр C6C7L1C8. Элементы R2, R3, VD4 и U1 обеспечивают совместно с микросхемой DA1 стабилизацию выходного напряжения при изменении тока нагрузки и сетевого напряжения. Цепь индикации включения выполнена на светодиоде HL1 и токоограничивающем резисторе R4.

Рисунок 7 - Импульсный источник питания 2000-х годов

На рис.8 двухтактный импульсный блок питания с полумостовым включением силового оконечного каскада, состоящего из двух мощных MOSFET IRFP460. В качестве ШИМ-контроллера выбрали микросхему К1156ЕУ2Р.

Дополнительно с помощью реле и ограничивающего резистора R1 на входе реализован плавный пуск, позволяющий избежать резких бросков тока. Реле можно применить на напряжение как 12, так и 24 вольта с подбором резистора R19. Варистор RU1 защищает входную цепь от импульсов чрезмерной амплитуды. Конденсаторы С1-С4 и двухобмоточный дроссель L1 образуют сетевой помехоподавляющий фильтр, предотвращающий проникновение высокочастотных пульсаций, создаваемых преобразователем, в питающую сеть.

Подстроечный резистор R16 и конденсатор С12 определяют частоту преобразования.

Для уменьшения ЭДС самоиндукции трансформатора Т2 параллельно каналам транзисторов включены демпферные диоды VD7 и VD8. Диоды Шоттки VD2 и VD3 защищают коммутирующие транзисторы и выходы микросхемы обратного напряжения DA2 от импульсов.

Рисунок 8 - Современный импульсный источник питания

Заключение

В ходе проделанной научно-исследовательской работы мною проведено исследование импульсных источников питания, позволившее проанализировать существующую схемотехнику данных устройств и сделать соответствующие выводы.

Импульсные источники питания обладают гораздо большими преимуществами по сравнению с другими - у них более высокий КПД, они имеют существенно меньшие массу и объём, кроме того они обладают гораздо меньшей себестоимостью, что в конечном итоге приводит к их сравнительно небольшой цене для потребителей и, соответственно, высокому спросу на рынке.

Многие современные электронные компоненты, используемые в современных электронных устройствах и системах, требуют высокого качества питания. Кроме того, выходное напряжение (ток) должно быть стабильным, иметь требуемую форму (например, для инверторов), а также минимальный уровень пульсаций (например, для выпрямителей).

Таким образом, импульсные источники питания являются неотъемлемой частью любых электронных устройств и систем, питающихся как от промышленной сети 220 В, так и других источников энергии. При этом надежность работы электронного устройства напрямую зависит от качества источника питания.

Таким образом, разработка новых усовершенствованных схем импульсных источников питания позволит улучшить технические и эксплуатационные характеристики электронных устройств и систем.

Список используемой литературы

1. Гуревич В.И. Надежность микропроцессорных устройств релейной защиты: мифы и реальность. - Проблемы энергетики, 2008, № 5-6, с.47-62.

2. Источник питания [Электронный ресурс] // Википедия. - Режим доступа: http://ru. wikipedia.org/wiki/Источник_питания

3. Вторичный источник питания [Электронный ресурс] // Википедия. - Режим доступа: http://ru. wikipedia.org/wiki/Вторичный_источник_ питания

4. Высоковольтные источники питания [Электронный ресурс] // ООО "Оптосистемы" - Режим доступа: http://www.optosystems.ru/power _supplies_about. php

5. Ефимов И.П. Источники питания - Ульяновский Государственный Технический Университет, 2001, с.3-13.

6. Области применения силовых источников питания [Электронный ресурс] - Режим доступа: http://www.power2000.ru/apply_obl.html

7. Компьютерные блоки питания [Электронный ресурс] - Режим доступа: http://offline.computerra.ru/2002/472/22266/

8. Эволюция импульсных источников питания [Электронный ресурс] - Режим доступа: http://www.power-e.ru/2008_4_26. php

9. Принцип работы импульсных источников питания [Электронный ресурс] - Режим доступа: http://radioginn. ucoz.ru/publ/1-1-0-1

Подобные документы

    Понятие, назначение и классификация вторичных источников питания. Структурная и принципиальная схемы вторичного источника питания, работающего от сети постоянного тока и выдающего переменное напряжение на выходе. Расчет параметров источника питания.

    курсовая работа , добавлен 28.01.2014

    Источники вторичного электропитания как неотъемлемая часть любого электронного устройства. Рассмотрение полупроводниковых преобразователей, связывающих системы переменного и постоянного тока. Анализ принципов построения схем импульсных источников.

    дипломная работа , добавлен 17.02.2013

    Источник питания как устройство, предназначенное для снабжения аппаратуры электрической энергией. Преобразование переменного напряжения промышленной частоты в пульсирующее постоянное напряжение с помощью выпрямителей. Стабилизаторы постоянного напряжения.

    реферат , добавлен 08.02.2013

    Стабилизация среднего значения выходного напряжения вторичного источника питания. Минимальный коэффициент стабилизации напряжения. Компенсационный стабилизатор напряжения. Максимальный ток коллектора транзистора. Коэффициент сглаживающего фильтра.

    контрольная работа , добавлен 19.12.2010

    Совмещение функций выпрямления с регулированием или со стабилизацией выходного напряжения. Разработка схемы электрической структурной источника питания. Понижающий трансформатор и выбор элементной базы блока питания. Расчет маломощного трансформатора.

    курсовая работа , добавлен 16.07.2012

    Расчёт трансформатора и параметров интегрального стабилизатора напряжения. Принципиальная электрическая схема блока питания. Расчет параметров неуправляемого выпрямителя и сглаживающего фильтра. Подбор выпрямительных диодов, выбор размеров магнитопровода.

    курсовая работа , добавлен 14.12.2013

    Анализ системы вторичных источников электропитания зенитного ракетного комплекса "Стрела-10". Характеристика схематических импульсных стабилизаторов. Анализ работы модернизированного стабилизатора напряжения. Расчет его элементов и основных параметров.

    дипломная работа , добавлен 07.03.2012

    Принцип работы инверторного источника питания сварочной дуги, его достоинства и недостатки, схемы и конструкции. Эффективность эксплуатации инверторных источников питания с точки зрения энергосбережения. Элементная база выпрямителей с инвертором.

    курсовая работа , добавлен 28.11.2014

    Последовательность сбора инвертирующего усилителя, содержащего функциональный генератор и измеритель амплитудно-частотных характеристик. Осциллограмма входного и выходного сигналов на частоте 1 кГц. Схема измерения выходного напряжения, его отклонения.

    лабораторная работа , добавлен 11.07.2015

    Анализ электрической цепи: обозначение узлов, токов. Определение входного и выходного сигналов, передаточной характеристики четырехполюсника. Структурная схема системы управления. Реакции системы на единичное ступенчатое воздействие при нулевых условиях.

ИМПУЛЬСНЫЕ ИСТОЧНИКИ ПИТАНИЯ

Известно, что источники электропитания являются неотъемлемой частью радиотехнических устройств, к которым предъявляется целый ряд требований; они представляют собой комплекс элементов, приборов и аппаратов, вырабатывающих электрическую энергию и преобразующих ее к виду, необходимому для обеспечения требуемых условий работы радиоустройств.

Источники питания подразделяются на две группы: источники первичного и вторичного питания: Первичные источники - это устройства, преобразующие различные виды энергии в электрическую (электромашинные генераторы, электрохимические источники тока, фотоэлектрические и термоэмиссионные преобразователи и др.).

Вторичные устройства питания - это преобразователи одного вида электрической энергии в другой. К ним относятся: преобразователи переменного напряжения в постоянное (выпрямитель); преобразователи величины переменного напряжения (трансформаторы); преобразователи постоянного напряжения в переменное (инверторы).

На долю источников электропитания в настоящее время приходится от 30 до 70% общей массы и объема аппаратуры РЭА. Поэтому проблема создания миниатюрного, легкого и надежного устройства электропитания с хорошими технико-экономическими показателями является важной и актуальной. Данная работа посвящена разработке вторичного источника электропитания (ИВЭ) с минимальными массогабаритными и высокими техническими характеристиками.

Обязательным условием проектирования источников вторичного электропитания является четкое знание предъявляемых к ним требований. Эти требования весьма разнообразны и определяются особенностями эксплуатации тех комплексов РЭА, которые питаются от заданного ИВЭ. Основными требованиями являются: к конструкции - надежность, ремонтопригодность, габаритно-массовые ограничения, тепловые режимы; к технико-экономическим характеристикам - стоимость и технологичность изготовления.

Основные направления улучшения массогабаритных и технико-экономических показателей ИП: использование новейших электротехнических материалов; применение элементной базы с использованием интегрально-гибридной технологии; повышение частоты преобразования электрической энергии; поиски новых эффективных схемотехнических решений. Для выбора схемы ИВЭ был произведен анализ эффективности использования импульсных источников питания (ИИП) по сравнению с силовыми ИП, выполненными по традиционной технологии.

Главные недостатки силовых ИП - это высокие массогабаритные характеристики, а также значительное влияние на другие устройства РЭА сильного магнитного поля силовых трансформаторов. Проблемой ИИП является создание ими высокочастотных помех, и, как следствие этого - электромагнитная несовместимость с некоторыми типами РЭА. Анализ показал, что наиболее полно предъявляемым требованиям отвечают ИИП, что подтверждается их широким использованием в РЭА.

В работе рассмотрен ИИП мощностью 800 Вт, который отличается от других ИИП применением в преобразователе полевых транзисторов и трансформатора с первичной обмоткой, имеющей средний вывод. Полевые транзисторы обеспечивают более высокий КПД и пониженный уровень высокочастотных помех, а трансформатор со средним выводом - вдвое меньший ток через ключевые транзисторы и исключает необходимость в развязывающем трансформаторе в цепях их затворов.

На базе выбранной принципиальной электрической схемы была разработана конструкция и был изготовлен опытный образец ИИП. Вся конструкция представлена в виде модуля, установленного в алюминиевый корпус. После первичных испытаний был выявлен ряд недостатков: ощутимый нагрев радиаторов ключевых транзисторов, сложность отвода тепла от мощных отечественных резисторов и большие габариты.

Конструкция была доработана: изменена конструкция платы управления с использованием компонентов поверхностного монтажа на двухсторонней плате, её перпендикулярная установка на основной плате; применение радиатора со встроенным вентилятором от компьютера; все теплонапряженные элементы схемы были специально расположены с одной стороны корпуса вдоль направления продувки основного вентилятора для наибольшего эффективного охлаждения. В результате доработки габариты ИПП уменьшились в три раза и выявленные в ходе первичных испытаний недостатки были исключены. Доработанный образец имеет следующие характеристики: напряжение питания Uпит=~180-240 В, частота fраб=90 кГц, отдаваемая мощность Pп=800 Вт, кпд=85%, масса =2,1 кг, габаритные размеры 145Х145Х80 мм.

Данная работа посвящена конструкции импульсного источника питания, предназначенного для питания усилителя мощности звуковой частоты, входящего в состав домашней звуковоспроизводящей системы высокой мощности. Создание домашней звуковоспроизводящей системы было начато с выбора схемного решения УМЗЧ. Для этого был произведен анализ схемного решения звуковоспроизводящих устройств. Выбор был остановлен на схеме УМЗЧ высокой верности.

Данный усилитель имеет очень высокие характеристики, содержит в своем составе устройства защиты от перегрузки и коротких замыканий, устройства поддержания нулевого потенциала постоянного напряжения на выходе и устройство компенсации сопротивления проводов, соединяющих усилитель с акустикой. Несмотря на то, что схема УМЗЧ опубликована уже давно, радиолюбители и по сей день повторяют его конструкцию, ссылки на которую есть практически в любой литературе, касающейся сборки устройств для высококачественного воспроизведения музыки. На основе данной статьи было принято решение собрать четырехканальный УМЗЧ, суммарная потребляемая мощность которого составила 800 Вт. Поэтому следующим этапом сборки УМЗЧ стала разработка и сборка конструкции источника питания, обеспечивающего мощность на выходе не менее 800 Вт, малые габариты и массу надежность в работе и защиту от перегрузки и коротких замыканий.

Источники питания строятся в основном по двум схемам: традиционной классической и по схеме импульсных преобразователей напряжения. Поэтому было принято решение собрать и доработать конструкцию импульсного источника питания.

Исследование источников вторичного электропитания. Источники электропитания подразделяются на две группы: источники первичного и вторичного электропитания.

Первичные источники - это устройства, преобразующие различные виды энергии в электрическую (электромашинные генераторы, электрохимические источники тока, фотоэлектрические и термоэмиссионные преобразователи и др.).

Вторичные устройства питания - это преобразователи одного вида электрической энергии в другой. К ним относятся:

  • * преобразователи переменного напряжения в постоянное (выпрямители);
  • * преобразователи величины переменного напряжения (трансформаторы);
  • * преобразователи постоянного напряжения в переменное (инверторы).

Источники вторичного электропитания строятся в основном по двум схемам: традиционной классической и по схеме импульсных преобразователей напряжения. Главный недостаток силовых ИП, выполненных по традиционной классической схеме, в их больших массогабаритных характеристиках, а также значительным влиянием на другие устройства РЭА сильного магнитного поля силовых трансформаторов. Проблемой ИИП является создание ими высокочастотных помех, и как следствие этого - электромагнитная несовместимость с некоторыми типами РЭА. Анализ показал, что наиболее полно предъявляемым требованиям отвечают ИИП, что подтверждается их широким использованием в РЭА.

Трансформаторы импульсных источников питания отличаются, от традиционных следующим: - питанием напряжением прямоугольной формы; усложненной формой обмоток (выводы средней точки) и работой на повышенных частотах (до нескольких десятков кГц). Кроме того, параметры трансформатора оказывают существенное влияние на режим работы полупроводниковых приборов и характеристики преобразователя. Так, индуктивность намагничивания трансформатора увеличивает время переключения транзисторов; индуктивность рассеяния (при быстро меняющемся токе) является причиной возникновения перенапряжений на транзисторах, что может привести к их пробою; ток холостого хода уменьшает к. п. д. преобразователя и ухудшает тепловой режим транзисторов. Отмеченные особенности учитываются при расчете и проектировании трансформаторов ИИП.

В данной работе рассматривается импульсный блок питания мощностью 800 Вт. От описанных ранее он отличается применением в преобразователе полевых транзисторов и трансформатора с первичной обмоткой со средним выводом. Первое обеспечивает более высокий КПД и пониженный уровень высокочастотных помех, а второе - вдвое меньший ток через ключевые транзисторы и исключает необходимость в развязывающем трансформаторе в цепях их затворов.

Недостаток такого схемного решения — высокое напряжение на половинах первичной обмотки, что требует применения транзисторов с соответствующим допустимым напряжением. Правда, в отличие от мостового преобразователя, в данном случае достаточно двух транзисторов вместо четырех, что упрощает конструкцию и повышает КПД устройства.

В импульсных блоках питания (ИБП) используют одно- и двухтактные высокочастотные преобразователи. КПД первых ниже, чем вторых, поэтому однотактные ИБП мощностью более 40...60 Вт конструировать нецелесообразно. Двухтактные преобразователи позволяют получать значительно большую выходную мощность при высоком КПД. Они делятся на несколько групп, характеризующихся способом возбуждения выходных ключевых транзисторов и схемой включения их в цепь первичной обмотки трансформатора преобразователя. Если говорить о способе возбуждения, то можно выделить две группы: с самовозбуждением и внешним возбуждением.

Первые пользуются меньшей популярностью из-за трудностей в налаживании. При конструировании мощных (более 200 Вт) ИБП сложность их изготовления неоправданно возрастает, поэтому для таких источников питания они малопригодны. Преобразователи с внешним возбуждением хорошо подходят для создания ИБП повышенной мощности и порой почти не требуют налаживания. Что касается подключения ключевых транзисторов к трансформатору, то здесь различают три схемы: так называемую полумостовую (рис.1, а), мостовую (рис. 1, б). На сегодняшний день наибольшее распространение получил полумостовой преобразователь.

Для него необходимы два транзистора с относительно невысоким значением напряжения Uкэmax. Как видно из рис.1а, конденсаторы С1 и С2 образуют делитель напряжения, к которому подключена первичная (I) обмотка трансформатора Т2. При открывании ключевого транзистора амплитуда импульса напряжения на обмотке достигает значения Uпит/2 - Uкэ нac. Мостовой преобразователь аналогичен полумостовому, но в нем конденсаторы заменены транзисторами VT3 и VT4 (рис. 1б), которые открываются парами по диагонали. Этот преобразователь имеет несколько более высокий КПД за счет увеличения напряжения, подаваемого на первичную обмотку трансформатора, а следовательно, уменьшения тока, протекающего через транзисторы VT1—VT4. Амплитуда напряжения на первичной обмотке трансформатора в этом случае достигает значения Uпит - 2Uкэ нас.

Особо стоит отметить преобразователь по схеме рис.1в, отличающийся наибольшим КПД. Достигается это за счет уменьшения тока первичной обмотки и, как следствие, уменьшения рассеиваемой мощности в ключевых транзисторах, что чрезвычайно важно для мощных ИБП. Амплитуда напряжения импульсов в половине первичной обмотки возрастает до значения Uпит - Uкэ нас.

Следует также отметить, что в отличие от остальных преобразователей для него не нужен входной развязывающий трансформатор. В устройстве по схеме на рис.1в необходимо использовать транзисторы с высоким значением Uкэ mах. Поскольку конец верхней (по схеме) половины первичной обмотки соединен с началом нижней, при протекании тока в первой из них (открыт VT1) во второй создается напряжение, равное (по модулю) амплитуде напряжения на первой, но противоположное по знаку относительно Uпит. Иными словами, напряжение на коллекторе закрытого транзистора VT2 достигает 2Uпит. поэтому его Uкэ mах должно быть больше 2Uпит. В предлагаемом ИБП применен двухтактный преобразователь с трансформатором, первичная обмотка которого имеет средний вывод. Он имеет высокий КПД, низкий уровень пульсации и слабо излучает помехи в окружающее пространство.

Сфера применения импульсных блоков питания в быту постоянно расширяется. Такие источники применяются для питания всей современной бытовой и компьютерной аппаратуры, для реализации источников бесперебойного электропитания, зарядных устройств для аккумуляторов различного назначения, реализации низковольтных систем освещения и для других нужд.

В некоторых случаях покупка готового источника питания мало приемлема с экономической или технической точки зрения и сборка импульсного источника собственными руками является оптимальным выходом из такой ситуации. Упрощает такой вариант и широкая доступность современной элементной базы по низким ценам.

Наиболее востребованными в быту являются импульсные источники с питанием от стандартной сети переменного тока и мощным низковольтным выходом. Структурная схема такого источника показана на рисунке.

Сетевой выпрямитель СВ преобразует переменное напряжение питающей сети в постоянное и осуществляет сглаживание пульсаций выпрямленного напряжения на выходе. Высокочастотный преобразователь ВЧП осуществляет преобразование выпрямленного напряжения в переменное или однополярное , имеющее форму прямоугольных импульсов необходимой амплитуды.

В дальнейшем такое напряжение либо непосредственно, либо после выпрямления (ВН) поступает на сглаживающий фильтр, к выходу которого подключается нагрузка. Управление ВЧП осуществляется системой управления, получающей сигнал обратной связи от выпрямителя нагрузки.

Такая структура устройства может быть подвергнута критике из-за наличия нескольких звеньев преобразования, что снижает КПД источника. Однако, при верном выборе полупроводниковых элементов и качественном расчете и изготовлении моточных узлов, уровень потерь мощности в схеме мал, что позволяет получать реальные значения КПД выше 90%.

Принципиальные схемы импульсных блоков питания

Решения структурных блоков включают не только обоснование выбора вариантов схемной реализации, но и практические рекомендации по выбору основных элементов.

Для выпрямления сетевого однофазного напряжения используют одну из трех классических схем изображенных на рисунке:

  • однополупериодную;
  • нулевую (двухполупериодную со средней точкой);
  • двхполупериодную мостовую.

Каждой из них присущи достоинства и недостатки, которые определяют область применения.

Однополупериодная схема отличается простотой реализации и минимальным количеством полупроводниковых компонентов. Основными недостатками такого выпрямителя являются значительная величина пульсации выходного напряжения (в выпрямленном присутствует лишь одна полуволна сетевого напряжения) и малый коэффициент выпрямления.

Коэффициент выпрямления Кв определяется соотношением среднего значения напряжения на выходе выпрямителя Udк действующему значению фазного сетевого напряжения .

Для однополупериодной схемы Кв=0.45.

Для сглаживания пульсации на выходе такого выпрямителя требуются мощные фильтры.

Нулевая, или двухполупериодная схема со средней точкой , хоть и требует удвоенного числа выпрямительных диодов, однако, этот недостаток в значительной мере компенсируется более низким уровнем пульсаций выпрямленного напряжения и ростом величины коэффициента выпрямления до 0.9.

Основным недостатком такой схемы для использования в бытовых условиях является необходимость организации средней точки сетевого напряжения, что подразумевает наличие сетевого трансформатора. Его габариты и масса оказываются несовместимыми с идеей малогабаритного самодельного импульсного источника.

Двухполупериодная мостовая схема выпрямления имеет те же показатели по уровню пульсации и коэффициенту выпрямления, что и нулевая схема,но не требует наличия сетевого . Это компенсирует и главный недостаток – удвоенное количество выпрямительных диодов как с точки зрения КПД, так и по стоимости.

Для сглаживания пульсаций выпрямленного напряжения наилучшим решением является использование емкостного фильтра. Его применение позволяет поднять величину выпрямленного напряжения до амплитудного значения сетевого (при Uф=220В Uфм=314В). Недостатками такого фильтра принято считать большие величины импульсных токов выпрямительных элементов, но критичным этот недостаток не является.

Выбор диодов выпрямителя осуществляется по величине среднего прямого тока Ia и максимального обратного напряжения U BM .

Приняв величину коэффициента пульсации выходного напряжения Кп=10%, получим среднее значение выпрямленного напряжения Ud=300В. С учетом мощности нагрузки и КПД ВЧ преобразователя (для расчета принимается 80%, но на практике получится выше, это позволит получить некоторый запас).

Ia – средний ток диода выпрямителя, Рн- мощность нагрузки, η – КПД ВЧ преобразователя.

Максимальное обратное напряжение выпрямительного элемента не превышает амплитудного значения напряжения сети (314В), что позволяет использовать компоненты с величиной U BM =400В со значительным запасом. Использовать можно как дискретные диоды, так и готовые выпрямительные мосты от различных производителей.

Для обеспечения заданной (10%) пульсации на выходе выпрямителя емкость конденсаторов фильтра принимается из расчета 1мкФ на 1Вт выходной мощности. Используются электролитические конденсаторы с максимальным напряжением не менее 350В. Емкости фильтров для различных мощностей приведены в таблице.

Высокочастотный преобразователь: его функции и схемы

Высокочастотный преобразователь представляет собой однотактный или двухтактный ключевой преобразователь (инвертор) с импульсным трансформатором. Варианты схем ВЧ преобразователей приведены на рисунке.

Однотактная схема . При минимальном количестве силовых элементов и простоте реализации имеет несколько недостатков.

  1. Трансформатор в схеме работает по частной петле гистерезиса, что требует увеличения его размеров и габаритной мощности;
  2. Для обеспечения мощности на выходе необходимо получить значительную амплитуду импульсного тока, протекающего через полупроводниковый ключ.

Схема нашла наибольшее применение в маломощных устройствах, где влияние указанных недостатков не столь значительно.

Чтобы самостоятельно поменять или установить новый счетчик, не требуется особых навыков. Выбор правильной обеспечит корректный учет потребляемого тока и повысит безопасность домашней электросети.

В современных условиях обеспечения освещения как внутри помещений, так и на улице все чаще используют датчики движения. Это придает не только комфорт и удобства в наши жилища, но и позволяет существенно экономить. Узнать практические советы по выбору места установки, схем подключения можно .

Двухтактная схема со средней точкой трансформатора (пушпульная) . Получила свое второе название от английского варианта (push-pull) описания работы. Схема свободна от недостатков однотактного варианта, но имеет собственные – усложненная конструкция трансформатора (требуется изготовление идентичных секций первичной обмотки) и повышенные требования к максимальному напряжению ключей. В остальном решение заслуживает внимания и широко применяется в импульсных источниках питания, изготавливаемых своими руками и не только.

Двухтактная полумостовая схема . По параметрам схема аналогична схеме со средней точкой, но не требует сложной конфигурации обмоток трансформатора. Собственным недостатком схемы является необходимость организации средней точки фильтра выпрямителя, что влечет четырехкратное увеличение количества конденсаторов.

Благодаря простоте реализации схема наиболее широко используется в импульсных источниках питания мощностью до 3 кВт. При больших мощностях стоимость конденсаторов фильтра становится неприемлемо высокой по сравнению с полупроводниковыми ключами инвертора и наиболее выгодной оказывается мостовая схема.

Двухтактная мостовая схема . По параметрам аналогична другим двухтактным схемам, но лишена необходимости создания искусственных «средних точек». Платой за это становится удвоенное количество силовых ключей, что выгодно с экономической и технической точек зрения для построения мощных импульсных источников.

Выбор ключей инвертора осуществляется по амплитуде тока коллектора (стока) I КМАХ и максимальному напряжению коллектор-эмиттер U КЭМАХ. Для расчета используются мощность нагрузки и коэффициент трансформации импульсного трансформатора.

Однако, прежде необходимо рассчитать сам трансформатор. Импульсный трансформатор выполняется на сердечнике из феррита, пермаллоя или витого в кольцо трансформаторного железа. Для мощностей до единиц кВт вполне подойдут ферритовые сердечники кольцевого или Ш-образного типа. Расчет трансформатора ведется исходя из требуемой мощности и частоты преобразования. Для исключения появления акустического шума частоту преобразования желательно вынести за пределы звукового диапазона (сделать выше 20 кГц).

При этом необходимо помнить, что при частотах близких к 100 кГц значительно возрастают потери в ферритовых магнитопроводах. Сам расчет трансформатора не составляет труда и легко может быть найден в литературе. Некоторые результаты для различных мощностей источников и магнитопроводов приведены в таблице ниже.

Расчет произведен для частоты преобразования 50 кГц. Стоит обратить внимание, что при работе на высокой частоте имеет место эффект вытеснения тока к поверхности проводника, что приводит к снижению эффективной площади обмотки. Для предотвращения подобного рода неприятностей и снижения потерь в проводниках необходимо выполнять обмотку из нескольких жил меньшего сечения. При частоте 50 кГц допустимый диаметр провода обмотки не превышает 0.85 мм.

Зная мощность нагрузки и коэффициент трансформации можно рассчитать ток в первичной обмотке трансформатора и максимальный ток коллектора силового ключа. Напряжение на транзисторе в закрытом состоянии выбирается выше, чем выпрямленное напряжение, поступающее на вход ВЧ-преобразователя с некоторым запасом (U КЭМАХ >=400В). По этим данным производится выбор ключей. В настоящее время наилучшим вариантом является использование силовых транзисторов IGBT или MOSFET.

Для диодов выпрямителя на вторичной стороне необходимо соблюдать одно правило – их максимальная рабочая частота должна превышать частоту преобразования. В противном случае КПД выходного выпрямителя и преобразователя в целом значительно снизятся.

Видео о изготовлении простейшего импульсного питающего устройства

СТАБИЛИЗАЦИЯ ВЫХОДНЫХ НАПРЯЖЕНИЙ
ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ

СТАТЬЯ ПОДГОТОВЛЕНА НА ОСНОВЕ КНИГИ А. В. ГОЛОВКОВА и В. Б ЛЮБИЦКОГО "БЛОКИ ПИТАНИЯ ДЛЯ СИСТЕМНЫХ МОДУЛЕЙ ТИПА IBM PC-XT/AT" ИЗДАТЕЛЬСТВА «ЛАД и Н»

Схема стабилизации выходных напряжений в рассматриваемом классе ИБП представляет собой замкнутую петлю автоматического регулирования (рис. 31). Эта петля включает в себя:
схему управления 8;
согласующий предусилительный каскад 9;
управляющий трансформатор DT;
силовой каскад 2;
силовой импульсный трансформатор РТ;
выпрямительный блок 3;
дроссель межканальной связи 4;
блок фильтров 5;
делитель напряжения обратной связи 6;
делитель опорного напряжения 7.
В составе схемы управления 8 имеются следующие функциональные узлы:
усилитель сигнала рассогласования 8.1 с цепью коррекции Zk;
ШИМ-компаратор (модулятор) 8.2;
генератор пилообразного напряжения (осциллятор) 8.3;
источник опорного стабилизированного напряжения Uref 8.4.
В процессе работы усилитель сигнала рассогласования 8.1 сравнивает выходной сигнал делителя напряжения б с опорным напряжением делителя 7. Усиленный сигнал рассогласования поступает на широтно-импульсный модулятор 8.2, управляющий предоконечным каскадом усилителя мощности 9, который, в свою очередь, подает модулированный управляющий сигнал на силовой каскад преобразователя 2 через управляющий трансформатор DT. Питание силового каскада производится по бестрансформаторной схеме. Переменное напряжение питающей сети выпрямляется сетевым выпрямителем 1 и подается на силовой каскад, где сглаживается конденсаторами емкостной стойки. Часть выходного напряжения стабилизатора сравнивается с постоянным опорным напряжением и затем осуществляется усиление полученной разности (сигнала рассогласования) с введением соответствующей компенсации. Широтно-импульсный модулятор 8.2 преобразует аналоговый сигнал управления в широтно-модулированный сигнал с переменным коэффициентом заполнения импульса. В рассматриваемом классе ИБП схема модулятора осуществляет сравнение сигнала, поступающего с выхода усилителя сигнала рассогласования с напряжением пилообразной формы, которое получается от специального генератора 8.3.

Рисунок 31. Контур регулирования типового импульсного блока питания на основе управляющей микросхемы TL494.


Рисунок 32. Регулировка уровня выходных напряжений ИБП PS-200B.


Рисунок 33. Регулировка уровня выходных напряжений ИБП LPS-02-150XT.


Рисунок 34. Регулировка уровня выходных напряжений ИБП "Appis".


Рисунок 35. Регулировка уровня выходных напряжений ИБП GT-200W.

Однако наиболее распространенным является случай, когда регулировка, позволяющая воздействовать на выходные напряжения блока, отсутствует. В этом случае напряжение на любом из входов 1 или 2 выбирается произвольным в пределах от +2,5 до +5 В, а напряжение на оставшемся входе подбирается с помощью высокоом-ного шунтирующего резистора таким, чтобы блок выдавал оговоренные в паспорте выходные напряжения в номинальном нагрузочном режиме. Рис. 35 иллюстрирует случай подбора уровня опорного напряжения, рис. 34 - показывает случай подбора уровня сигнала обратной связи. Ранее было отмечено, что значение нестабильности выходного напряжения при воздействии любых дестабилизирующих факторов (изменение тока нагрузки, напряжения питающей сети и температуры окружающей среды) можно было бы уменьшить, увеличивая коэффициент усиления цепи обратной связи (коэффициент усиления усилителя DA3).
Однако максимальное значение коэффициента усиления DA3 ограничивается условием обеспечения устойчивости. Поскольку как ИБП, так и нагрузка содержат реактивные элементы (индуктивность или емкость), накапливающие энергию, то в переходных режимах происходит перераспределение энергии между этими элементами. Это обстоятельство может привести к тому, что при определенных параметрах элементов переходный процесс установления выходных напряжений ИБП примет характер незатухающие колебаний, или же величина перерегулирования в переходном режиме будет достигать недопустимых значений.


Рисунок 36. Переходные процессы (колебательный и апериодический) выходного напряжения ИБП при скачкообразном изменении тока нагрузки (а) и входного напряжения (б).

На рис. 36 изображены переходные процессы выходного напряжения при скачкообразном изменении тока нагрузки и входного напряжения. ИБП работает устойчиво, если выходное напряжение вновь принимает установившееся значение после прекращения действия возмущения, выведшего его из первоначального состояния (рис. 37,а).


Рисунок 37. Переходные процессы выходного напряжения ИБП в устойчивой (а) и неустойчивой (б) системах.

Если это условие не соблюдается, то система является неустойчивой (рис.37,6). Обеспечение устойчивости импульсного блока питания является необходимым условием его нормального функционирования. Переходный процесс в зависимости от параметров ИБП носит колебательный или апериодический характер, при этом выходное напряжение ИБП имеет определенное значение перерегулирования и время переходного процесса. Отклонение выходного напряжения от номинального значения выявляется в измерительном элементе цепи обратной связи (в рассматриваемых ИБП в качестве измерительного элемента используется резистивный делитель, подключаемый к шине выходного напряжения +5В). Из-за инерционности петли регулирования номинальное значение выходного напряжения устанавливается с определенным запаздыванием. При этом схема управления по инерции некоторое время еще будет продолжать свое воздействие в том же направлении. В результате этого имеет место перерегулирование, т.е. отклонение выходного напряжения от его номинального значения в направлении, противоположном первоначальному отклонению. Схема управления вновь изменяет выходное напряжение в противоположную сторону и т.д. Для того чтобы обеспечить устойчивость петли регулирования выходных напряжений ИБП при минимальной длительности переходного процесса, амплитудно-частотная характеристика усилителя ошибки DA3 подвергается коррекции. Это делается с помощью RC-цепочек, включаемых как цепи отрицательной обратной связи, охватывающей усилитель DA3. Примеры таких корректирующих цепочек показаны на рис. 38.


Рисунок 38. Примеры конфигурвции корректирующих RC-цепочек для усилителя ошибки по напряжению DA3.

Для уменьшения уровня помехообразования на вторичной стороне импульсного блока питания устанавливаются апериодические RC-цепочки. Остановимся подробнее на принципе их действия.
Переходный процесс тока через диоды выпрямителя в моменты коммутации происходит в виде ударного возбуждения (рис. 39,а).


Рисунок 39. Временные диаграммы напряжения на диоде восстановления обратного сопротивления:
а) - без RC-цепочки; б) - при наличии RC-цепочки.

ОСНОВНЫЕ ПАРАМЕТРЫ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ ДЛЯ IBM Рассматриваются основные параметры импульсных блоков питания, приведена цоколевка разъема, принцип работы от напряжения сети 110 и 220 вольт,
Подробно расписана микросхема TL494, схема включения и варианты использования для управления силовыми ключами импульсных блоков питания.
УПРАВЛЕНИЕ СИЛОВЫМИ КЛЮЧАМИ ИМПУЛЬСНОГО БЛОКА ПИТАНИЯ ПРИ ПОМОЩИ TL494 Описаны основные способы управления базовыми цепями силовых транзисторов импульсных блоков питания, варианты построения выпрямителей вторичного питания.
СТАБИЛИЗАЦИЯ ВЫХОДНЫХ НАПРЯЖЕНИЙ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ Описаны варианты использования усилителей ошибки TL494 для стабилизации выходных напряжений, описан принцип работы дросселя групповой стабилизации.
СХЕМЫ ЗАЩИТЫ Описаны несколько вариантов построения систем защиты импульсных болков питания от перегрузки
СХЕМА "МЕДЛЕННОГО ПУСКА" Описаны принципы формирования мягкого старта и выработки напряжения POWER GOOD
ПРИМЕР ПОСТРОЕНИЯ ОДНОГО ИЗ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ Полное описание принципиальной схемы и ее работы импульсного блока питания
В статье речь об импульсных блоках питания (далее ИБП), которые сегодня получили самое широкое применение во всех современных радиоэлектронных устройствах и самоделках.
Основной принцип заложенный в основу работы ИБП заключается в преобразовании сетевого переменного напряжения (50 Герц) в переменное высокочастотное напряжение прямоугольной формы, которое трансформируется до требуемых значений, выпрямляется и фильтруется.
Преобразование осуществляется с помощью мощных транзисторов, работающих в режиме ключа и импульсного трансформатора, вместе образующих схему ВЧ преобразователя. Что касается схемного решения, то здесь возможны два варианта преобразователей: первый - выполняется по схеме импульсного автогенератора и второй - с внешним управлением (используется в большинстве современных радиоэлектронных устройств).
Поскольку частота преобразователя обычно выбирается в среднем от 20 до 50 килогерц, то размеры импульсного трансформатора, а, следовательно, и всего блока питания достаточно минимизируются, что является очень важным фактором для современной аппаратуры.
Упрощенная схема импульсного преобразователя с внешним управлением смотрите ниже:

Преобразователь выполнен на транзисторе VT1 и трансформаторе Т1. Сетевое напряжение через сетевой фильтр (СФ) подается на сетевой выпрямитель (СВ), где оно выпрямляется, фильтруется конденсатором фильтра Сф и через обмотку W1 трансформатора Т1 подается на коллектор транзистора VT1. При подаче в цепь базы транзистора прямоугольного импульса, транзистор открывается и через него протекает нарастающий ток Iк. Этот же ток будет протекать и через обмотку W1 трансформатора Т1, что приведет к тому, что в сердечнике трансформатора увеличивается магнитный поток, при этом во вторичной обмотке W2 трансформатора наводится ЭДС самоиндукции. В конечном итоге на выходе диода VD появиться положительное напряжение. При этом если мы будем увеличивать длительность импульса приложенного к базе транзистора VT1, во вторичной цепи будет увеличиваться напряжение, т.к энергии будет отдаваться больше, а если уменьшать длительность, соответственно напряжение будет уменьшаться. Таким образом, изменяя длительность импульса в цепи базы транзистора, мы можем изменять выходные напряжения вторичной обмотки Т1, а следовательно осуществлять стабилизацию выходных напряжений БП.
Единственное что для этого необходимо - схема, которая будет формировать импульсы запуска и управлять их длительность (широтой). В качестве такой схемы используется ШИМ контроллер. ШИМ - это широтно-импульсная модуляция. В состав ШИМ контроллера входит задающий генератор импульсов (определяющий частоту работы преобразователя), схемы защиты, контроля и логическая схема, которая и управляет длительностью импульса.
Для стабилизации выходных напряжений ИБП, схема ШИМ контроллера «должна знать» величину выходных напряжений. Для этих целей используется цепь слежения (или цепь обратной связи), выполненная на оптопаре U1 и резисторе R2. Увеличение напряжения во вторичной цепи трансформатора T1 приведет к увеличению интенсивности излучения светодиода, а следовательно уменьшению сопротивления перехода фототранзистора (входящих в состав оптопары U1). Что в свою очередь, приведет к увеличению падения напряжения на резисторе R2, который включен последовательно фототранзистору и уменьшению напряжения на выводе 1 ШИМ контроллера. Уменьшение напряжения заставляет логическую схему, входящую в состав ШИМ контроллера, увеличивать длительность импульса до тех пор, пока напряжение на 1-м выводе не будет соответствовать заданным параметрам. При уменьшении напряжения - процесс обратный.
В ИБП используются 2 принципа реализации цепей слежения - «непосредственный» и «косвенный». Выше описанный способ называется «непосредственный», так как напряжение обратной связи снимается непосредственно с вторичного выпрямителя. При «косвенном» слежении напряжение обратной связи снимается с дополнительной обмотки импульсного трансформатора:

Уменьшение или увеличение напряжения на обмотке W2, приведет к изменению напряжения и на обмотке W3, которое через резистор R2 также приложено к выводу 1 ШИМ контроллера.
С цепью слежения я думаю, разобрались, теперь давайте рассмотрим такую ситуацию как короткое замыкание (КЗ) в нагрузке ИБП. В этом случае вся энергия, отдаваемая во вторичную цепь ИБП, будет теряться и напряжение на выходе будет практически равно нулю. Соответственно схема ШИМ контроллера будет пытаться увеличить длительность импульса для того, что бы поднять уровень этого напряжения до соответствующего значения. В итоге транзистор VT1 будет все дольше и дольше находиться в открытом состоянии, и через него будет увеличиваться протекающий ток. В конце концов, это приведет к выходу из строя этого транзистора. В ИБП предусмотрена защита транзистора преобразователя от перегрузок по току в таких нештатных ситуациях. Основу ее составляет резистор Rзащ, включенный последовательно в цепь, по которой протекает ток коллектора Iк. Увеличение тока Iк протекающего через транзистор VT1, приведет к увеличению падения напряжения на этом резисторе, а, следовательно, напряжение, подаваемое на вывод 2 ШИМ контроллера также будет уменьшаться. Когда это напряжение снизится до определенного уровня, который соответствует максимально допустимому току транзистора, логическая схема ШИМ контроллера прекратит формирование импульсов на выводе 3 и блок питания перейдет в режим защиты или другими словами отключится.
В заключении темы хотелось бы более подробно описать преимущества ИБП. Как уже упоминалось, частота импульсного преобразователя достаточно высока, в связи с чем, габаритные размеры импульсного трансформатора уменьшены, а значит, как это не парадоксально звучит, стоимость ИБП меньше традиционного БП, так как меньше расход металла на магнитопровод и меди на обмотки, даже не смотря на то, что количество деталей в ИБП увеличивается. Еще одним из достоинств ИБП является малая, по сравнению с обычным БП, емкость конденсатора фильтра вторичного выпрямителя. Уменьшение емкости стало возможным за счет увеличения частоты. И, наконец, КПД импульсного блока питания доходит до 85 %. Связано это с тем, что ИБП потребляет энергию электрической сети только во время открытого транзистора преобразователя, при его закрытии энергия в нагрузку отдается за счет разряда конденсатора фильтра вторичной цепи.
К минусам можно отнести усложнение схемы ИБП и увеличение импульсных помех излучаемым самим ИБП. Увеличение помех связано с тем, что транзистор преобразователя работает в ключевом режиме. В таком режиме транзистор является источником импульсных помех, возникающих в моменты переходных процессов транзистора. Это является недостатком любого транзистора работающего в ключевом режиме. Но если транзистор работает с малыми напряжениями (например, транзисторная логика с напряжением в 5 вольт) это не страшно, в нашем же случае напряжение, приложенное к коллектору транзистора, составляет, примерно 315 вольт. Для борьбы с этими помехами в ИБП используются более сложные схемы сетевых фильтров, чем в обычном БП.