Солнечные батареи с высоким кпд. Современные солнечные батареи с высоким кпд

Невысокий КПД солнечных батарей – один из основных недостатков современных гелиосистем. На сегодняшний день один квадратный метр фотоэлемента способен вырабатывать около 15-20 % от мощности падающего на него излучения.

Такая выработка требует установку батарей больших размеров для полноценного электроснабжения. Более того, чтобы достичь необходимого выходного напряжения, соединяются между собой последовательно или параллельно. Их площадь при этом может достигать от нескольких квадратных метров.

КПД солнечных панелей зависит от целого ряда причин:

  • материал фотоэлемента;
  • плотность солнечного потока;
  • время года;
  • температура;
  • и др.

Давайте подробнее поговорим о каждом факторе.

Материал фотоэлемента

Делятся на три вида, в зависимости от метода образования атома кремния:

  • поликристаллические;
  • монокристаллические;
  • панели из аморфного кремния.

Поликристаллические панели изготовлены из чистого кремния и отличаются сравнительно высоким КПД – 14-17%.

Монокристаллические панели менее эффективны в преобразовании солнечной энергии. Их коэффициент полезного действия около 10-12 %. Но невысокие энергозатраты на изготовление таких преобразователей делает их более доступными.

Панели из аморфного кремния (или тонкопленочные) просты и недороги в производстве, как следствие, доступны по цене. Однако, эффективность их значительно ниже, чем у предыдущих двух видов – 5-6%. К тому же элементы тонкопленочных преобразователей из кремния со временем утрачивают свои свойства.

Тонкопленочные батареи также изготавливают с нанесением частиц меди, индия, галлия и селена. Это немного увеличивает их производительность.

Работа в любую погоду

График зависимости мощности от погодных условий Данный показатель зависит от географического расположения панели: чем ближе к экватору, тем выше плотность солнечного излучения.

Зимой производительность фотоэлементов может снизиться от 2 до 8 раз. Это объясняется, прежде всего, скоплением на них снега, сокращением продолжительности и количества солнечных дней.

Важно помнить: в зимнее время следить за наклоном панелей т. к. солнце находится ниже обычного.

Условия эффективной работы

Чтобы батарея работала эффективно, нужно учесть несколько нюансов:

  • угол наклона батареи к солнцу;
  • температуру;
  • отсутствие тени.

Угол между рабочей поверхностью преобразователя и солнечными лучами должен быть близок к прямому. В таком случае эффективность фотоэлементов при прочих равных условиях будет максимальна. Чтобы увеличить КПД дополнительно к ним устанавливают систему слежения за солнцем, которая меняет наклон относительно положения светила. Но подобное встречается нечасто из-за дороговизны оборудования.

Мне интересно встречаться с людьми, которые находятся в постоянном поиске. Среди них, мой коллега Александр, фанат электромобилей. Информацию о его разработках и становлении парка электромобилей в Украине вы найдете здесь. Но, как ни странно, кроме электрокара его еще интересуют солнечные панели с высоким КПД.

После заданного им вопроса, мне пришлось немного попотеть, и вот что из этого вышло.

Кремниевые кристаллические фотомодули

Коэффициент полезного действия ячеек кремниевых модулей на сегодня порядка 15 – 20% (поликристаллы — монокристаллы). Этот показатель скоро может быть увеличен на несколько процентов. Например, компания SunTech Power, один из крупнейших мировых производителей модулей из кристаллического кремния, заявила о своем намерении в течение двух лет выпустить на рынок фотомодули с КПД 22%.

Существующие же лабораторные образцы монокристаллических ячеек показывают производительность 25%, поликристаллических – 20,5%. Теоретический максимальный КПД у кремниевых однопереходных (p-n) элементов – 33,7%. Пока он не достигнут, и основная задача производителей, кроме увеличения эффективности ячеек – усовершенствование технологии производства, удешевление фотомодулей.

Отдельно позиционируются фотомодули компании Sanyo, произведенные по технологии HIT (Heterojunction with Intrinsic Thin layer) с использованием нескольких слоев кремния, аналогично тандемным многослойным ячейкам. КПД таких элементов из монокристаллического C-Si и нескольких слоев нано кристаллического nc-Si — 23%. Это самый высокий на сегодня КПД ячеек серийных кристаллических модулей.

Тонкопленочные солнечные батареи

Под таким названием разработано несколько различных технологий, о производительности которых можно сказать следующее.

Сегодня существует три основных типа неорганических пленочных солнечных элементов – кремниевые пленки на основе аморфного кремния (a-Si), пленки на основе теллурида кадмия (CdTe) и пленки селенида меди-индия-галлия (CuInGaSe2, или CIGS).

КПД современных тонкопленочных солнечных батарей на основе аморфного кремния около 10%, фотомодулей на основе теллурида кадмия — 10-11% (производитель компания First Solar), на основе селенида меди-индия-галлия – 12-13% (японские солнечные модули SOLAR FRONTIER). Показатели эффективности серийных элементов: CdTe имеют КПД 15.7% (модули MiaSole), а CIGS элементов, производимых в Швейцарии — 18,7% (ЕМРА).

КПД отдельных тонкопленочных солнечных батарей значительно выше, например, данные по производительности лабораторных образцов элементов из аморфного кремния – 12,2% (компания United Solar), CdTe элементов – 17,3% (First Solar), CIGS элементов – 20,5% (ZSW). Пока солнечные преобразователи на основе тонких пленок аморфного кремния лидируют по объемам производства среди других тонкопленочных технологий – объем мирового рынка тонкопленочных Si элементов около 80%, солнечных ячеек на основе теллурида кадмия – около 18% рынка, и селенид меди-индия-галлия – 2% рынка.

Это связано, в первую очередь, со стоимостью и доступностью сырья, а так же более высокой стабильностью характеристик, чем в многослойных структурах. Отметим, что кремний – один из самых распространенных элементов в земной коре, индий же (элементы CIGS) и теллур (элементы CdTe) рассеяны и добываются в малом количестве. Кроме того, кадмий (элементы CdTe) токсичен, хотя большинство производителей таких солнечных панелей гарантируют полную утилизацию своей продукции.

Дальнейшее развитие фотоэлектрических преобразователей на основе неорганических тонких пленок связано с усовершенствованием технологии производства и стабилизации их параметров.

И все-таки, исходя из стабильности характеристик и относительно недорогой цены, предпочтение отдается солнечным батареям, изготавливаемые на основе аморфного кремния. Но КПД как мы видим, у них не более 12,2%.

Более высокие результаты достигнуты пока в лабораторных условиях. В качестве примера можно привести разработку инженеров из Швейцарской национальной лаборатории материалов, наук и технологий EMPA, которым удалось достигнуть высокого показателя КПД (20,4%) работая с новым поколением тонкопленочных солнечных панелей. В основе новых панелей лежат гибкие полимеры из комплексного соединения CIGS или copper indium gallium (di)selenid (медь-индий-галлий-(ди) селенид).

Ежедневно на нашу планету поступают миллиарды киловатт солнечной энергии. Люди уже давно начали использовать эту энергию для своих нужд. С течением прогресса для преобразования энергии солнечного света стали использовать солнечные батареи. Но эффективны ли эти приборы? Сколько составляет КПД солнечных батарей, и от чего он зависит? Каков их срок окупаемости и как можно вычислить рентабельность использования солнечных батарей? Эти вопросы волнуют каждого, кто планирует или уже решил приобрести солнечные панели, поэтому этой актуальной теме посвящена настоящая статья.

Давайте вкратце разберем, на чем основан принцип действия солнечных панелей. В основе лежит физическое свойство полупроводников. Вследствие выбивания фотонами света электронов с внешней орбиты атомов, образуется достаточно большое количество свободных электронов. После замыкания цепи и возникает электрический ток. Но, как правило, одного-двух фотоэлементов для получения достаточной мощности не хватает, поэтому, в состав солнечных модулей чаще всего входит несколько солнечных батарей. Чем больше фотоэлементов соединяют вместе, то есть чем больше площадь солнечных панелей, тем больше и производимая ими мощность. Помимо площади панелей ощутимое влияние на производимую мощность оказывают интенсивность солнечного света и угол падения лучей.

Разбираем понятие КПД

Значение КПД панели получают путем деления мощности электрической энергии на мощность солнечного света, падающего на панель. На сегодняшний день среднее значение этого показателя на практике составляет 12-25%, в теории же эта цифра приближается к 80-85%. В чем же причина такой большой разницы? В первую очередь, это зависит от используемых для изготовления солнечных панелей материалов. Как уже известно, основной элемент, входящий в состав панелей, это кремний. Один из главных недостатков этого вещества – способность поглощать лишь инфракрасное излучение, то есть энергия ультрафиолетовых лучей тратится впустую. Поэтому одно из основных направлений, в котором работают ученые, пытающиеся увеличить КПД солнечных панелей – это разработка многослойных модулей.

Многослойные батареи представляют собой конструкцию, состоящую из слоев различных материалов. Их подбирают в расчете на кванты разной энергии. То есть один слой поглощает энергию зеленого цвета, второй – синего, третий – красного. В теории различные комбинации этих слоев могут дать значение КПД 87%. Но это, к сожалению, лишь теория. Как показывает практика, изготовление подобных конструкций в производственных масштабах очень трудоемкое занятие, да и стоимость таких модулей очень высока.

На КПД солнечных модулей влияет и вид используемого кремния. Панели, изготовленные из монокристаллического кремния, имеют более высокий коэффициент полезного действия, нежели панели из поликристаллического кремния. Но и цена монокристаллических батарей выше.

Основное правило: при более высоком КПД для генерации электроэнергии заданной мощности потребуется модуль меньшей площади, то есть в состав солнечной панели будет включено меньшее количество фотоэлементов.

Как быстро окупятся солнечные батареи?

Стоимость солнечных батарей сегодня достаточно высока. А с учетом небольшого значения КПД панелей, вопрос их окупаемости очень актуален. Срок службы батарей, работающих от солнечной энергии, составляет порядка 25 и более лет. О том, чем обусловлен столь долгий срок эксплуатации, мы поговорим чуть позже, а пока выясним озвученный выше вопрос.

На срок окупаемости влияют:

  • Тип выбранного оборудования. Однослойные фотоэлементы имеют более низкий КПД в сравнении с многослойными, но и гораздо меньшую цену.
  • Географическое положение, то есть чем больше солнечного света в Вашей местности, тем быстрее окупится установленный модуль.
  • Стоимость оборудования. Чем больше средств Вы потратили на приобретение и монтаж элементов, входящих в состав солнечной системы энергосбережения, тем длиннее срок окупаемости.
  • Стоимость энергоресурсов в Вашем регионе.

Средние цифры срока окупаемости для стран Южной Европы составляют 1,5-2 года, для стран Средней Европы – 2,5-3,5 года, а в России срок окупаемости равен примерно 2-5 годам. В ближайшем будущем эффективность солнечных батарей значительно увеличится, связано это с разработкой более совершенных технологий, позволяющих увеличивать КПД и снижать себестоимость панелей. А как следствие уменьшится и срок, в течение которого система энергосбережения на солнечной энергии окупит себя.

Сколько прослужат солнечные батареи?

В состав солнечных панелей не входят механические подвижные части, поэтому они достаточно надежны и долговечны. Как уже упоминалось выше, срок их службы составляет более 25 лет. При правильной эксплуатации они могут прослужить и 50 лет. Большим плюсом является то, что столь долгий срок службы обходится без крупных поломок, достаточно лишь систематически очищать зеркала фотоэлементов от пыли и других загрязнений. Это необходимо для лучшего поглощения энергии, а, следовательно, и для более высокого показателя КПД.

Долгий период службы является одним из главных критериев при принятии решения «приобретать или нет солнечные батареи». После того как батареи окупят сами себя, получаемая Вами электрическая энергия, будет абсолютно бесплатной. Даже если период окупаемости будет максимальным (порядка 6 лет), Вы как минимум 20-25 лет не будете платить за энергоресурсы.

Последние разработки, увеличивающие показатель КПД

Чуть ли не каждый день ученые по всему миру заявляют о разработке нового метода, позволяющего увеличить коэффициент полезного действия солнечных модулей. Познакомимся с самыми интересными из них. В прошлом году компания Sharp представила общественности солнечный элемент, эффективность которого составила 43,5%. Этой цифры они смогли добиться с помощью установки линзы для фокусировки энергии непосредственно в элементе.

Не отстают от компании Sharp и немецкие физики. В июне 2013 года они представили свой фотоэлемент площадью всего в 5,2 кв. мм, состоящий из 4-х слоев полупроводниковых элементов. Такая технология позволила добиться КПД в 44,7%. Максимальная эффективность в данном случае также достигается за счет помещения вогнутого зеркала в фокус.

В октябре 2013 года были опубликованы результаты работ ученых из Стэнфорда. Они разработали новый жаропрочный композит, способный увеличить производительность фотоэлементов. Теоретическое значение КПД составляет около 80%. Как мы писали выше, полупроводники, в состав которых входит кремний, способны поглощать лишь ИК-излучение. Так вот действие нового композитного материала направлено на перевод высокочастотного излучения в инфракрасное.

Следующими стали английский ученые. Они разработали технологию, способную увеличить эффективность элементов на 22%. Они предложили на гладкой поверхности тонкопленочных панелей разместить наношипы из алюминия. Этот металл был выбран по причине того, что солнечный свет им не поглощается, а, наоборот, рассеивается. Следовательно, увеличивается количество поглощаемой солнечной энергии. Отсюда и рост производительности солнечной батареи.

Здесь приведены лишь основные разработки, но дело ими не ограничивается. Ученые борются за каждую десятую долю процента, и пока им это удается. Будем надеяться, что в ближайшем будущем показатели эффективности солнечных батарей будут на должном уровне. Ведь тогда и выгода от использования панелей будет максимальной.

Статью подготовила Абдуллина Регина

В Москве уже применяют новые технологии освещения улиц и парков, я думаю, там экономическая эффективность была просчитана:

Самые эффективные солнечные батареи для дома сегодня — это не что-то сверхнеобычное и новое, а просто отличный альтернативный источник энергии. Но чем больше устройств такого типа появляется на рынке, тем чаще люди задаются вопросом: а какое из них стоит выбрать? Эффективность какой солнечной панели максимально высокая? Но для каждого это понятие звучит словно по-разному, так как характеризуется оно целым рядом отдельных потребностей, об этом и будем говорить дальше.

Начнем с того, что главным вопросом должен быть не «Какие естьсамые эффективные солнечные панели?», а «Где оптимальное сочетание цены и качества? » Скажем, на крыше вашего дома или предприятия имеется свободное пространство, на котором можно поместить около десятка солнечных панелей, а сами вы предстали перед выбором: покупать устройства с первым классом энергоэффективности, то есть «А», или отдать предпочтение более дешевым, но менее эффективным панелям класса «В»? Возможно, ответ вас удивит, но более целесообразным в большинстве случаев будет как раз второй вариант. Если говорить проще, то основная наша задача заключается сейчас в том, чтобы определить, какой из солнечных источников энергии наиболее выгодно использовать в той или иной ситуации.

Модели самых энергоэффективных солнечных батарей

  • Sharp . Показатель эффективности у моделей данной фирмы составляет 44,4 %. Производитель Sharp считается абсолютным мировым лидером по производству солнечных панелей. Эти устройства довольно сложно устроены, солнечные модули здесь трехслойные, на разработку технологии их создания производители потратили несколько лет, за такой период проведя множество исследований и испытаний собственной продукции. Есть и другие, упрощенные модели. Технология создания некоторых панелей Sharp обеспечивает им КПД величиной 37,9 %, что тоже немало. Цена устройств ниже за счет того, что в них не используются технические приспособления для концентрации солнечного света на модуль.
  • Панели от испанского исследовательского института (IES) . Эффективность их работы составляет 32,6 %. Такие современные солнечные батареи с высоким КПД представляют собой устройства с двухслойными модулями, стоимость такого энергоисточника по сравнению с предыдущим производителем низкая, но для обычных жилых домов все равно это чересчур дорого и в каком-то роде бессмысленно.

На самом деле этот список можно продолжать долго, беря во внимание все более и более дешевые модели с понижающимся показателем КПД. Но все остается стандартно: высокая эффективность — соответствующая цена, низкая эффективность — стоит дешево. Случается, что по бешеной стоимости предлагают довольно простенькие модели, вы заметите это при выборе, но вернемся к нашей теме.

Знаменитые фирмы по выпуску солнечных модулей

Бытует мнение, что сегодня изучению работы солнечных панелей посвящается все меньше времени, а на передний план вышло исследование неких фотоэлементов, которые являются главными составными любой альтернативной батареи. Но в этом и суть, что никого не заинтересуют панели со слабыми солнечными модулями, на это ведь в первую очередь обращают внимание большинство покупателей. На давно устоявшемся рынке этих самых модулей уже определились лидеры, стоит сказать и о них.

  1. Одними из первых вспомним устройства, имеющие КПД 36 %, их выпускает фирма Amonix , продукция которой есть практически в каждом магазине с товарами такого рода. Для бытовых целей подобные модули фирмы Amonix обычно не применяются, так как производят их с использованием специальных концентрирующих устройств.
  2. Нельзя пройти мимо солнечных модулей с показателем энергоэффективности 21,5 %, их производителем является известная американская марка Sun Power , существующая на рынке уже довольно давно. В какой-то степени этому предприятию удалось установить своеобразный рекорд эффективности. Например, модель Sun Power SPR-327NE-WHT-D была признана лучшей после полевых испытаний. Причем следующие две позиции в рейтинге списка лучших тоже заняла продукция этой фирмы.
  3. Вспомним и о тонкопленочных модулях с КПД 17,4 % - продукт от Q-Cells . Устройства этой немецкой компании в какой-то момент перестали быть популярными и востребованными, Q-Cells разорилась, но потом ее выкупило корейское предприятие Hanwha и сегодня модули марки снова набирают обороты в плане продаж.
  4. Движемся дальше, то есть к солнечным модулям с меньшей эффективностью. 16,1 % нам дают устройства от First Solar , их производят на основе особенного кадмий-теллурового преобразования. На жилых домах приспособления такого типа не устанавливают, однако это ни в коей мере не влияет на обороты компании, а они очень широкие. First Solar в большей степени популярна на американском рынке: сама компания родом из США. Модули данного бренда используются во многих отраслях промышленности, так что фирма имеет отличные обороты и получила всеобщее признание, ведь создает реально надежный продукт.
  5. В качестве последнего из примеров здесь станут солнечные модули с КПД 15,5 % от фирмы под названием MiaSole . Устройства этой марки признаны лучшими среди гибких модулей. Да, именного такого типа устройства порой просто необходимы для установки в тех или иных сооружениях.

Когда вы ищете мощные солнечные батареидля дома или большого производственного цеха, ориентируйтесь не только на соотношение цена/качество, но и на марку. Производителям, которые зарекомендовали себя как лучшие, стоит доверять в таких серьезных вопросах. Если вы не специалист в сборке и установке солнечных панелей, то с какой тщательностью к выбору ни подходи, исследовать каждую модель на прочность, долговечность, экономность и прочие параметры невозможно, поэтому лучше доверять имени.

На сегодняшний день также было проведено множество экспериментов, их результаты однозначно смогут вам помочь. При поиске солнечных батарей ориентируйтесь также на собственные потребности и платежеспособность - ни к чему устанавливать на жилой дом устройство, разработка которого была сделана для НАСА.