Венгерский метод решения. Венгерский метод решения задач о назначениях

Алгоритм решения:

1. Решаемзадачу на минимум. Цель данного шага - получение максимально возможного числа нулей в матрице С. Для этого находим в матрице С в каждой строке минимальный элемент и вычитаем его из каждого элемента соответствующей строки. Аналогично в каждом столбце вычитаем соответствующий минимальный элемент.

Если задана не квадратная матрица, то делаем её квадратной, проставляя стоимости равными максимальному числу в заданной матрице.

2. Если после выполнения первого шага можно произвести назначения, то есть в каждой строке и столбце выбрать нулевой элемент, то полученное решение будет оптимальным. Если назначения провести не удалось, то переходим к третьему шагу.

3. Минимальным числом прямых вычёркиваем все нули в матрице и среди не вычеркнутых элементов выбираем минимальный, его прибавляем к элементам, стоящим на пересечении прямых и отнимаем от всех не вычеркнутых элементов. Далее переходим к шагу 2.

Венгерский метод наиболее эффективен при решении транспортных задач с целочисленными объемами производства и потребления.

Пример

Задача о назначениях является частным случаем транспортной задачи, в которой ai = bj = 1. Поэтому ее можно решать алгоритмами транспортной задачи. Рассмотрим другой метод, который является более эффективным, учитывающим специфику математической модели. Этот метод называется венгерским алгоритмом.

Он состоит из следующих шагов:

1) преобразования строк и столбцов матрицы ;

2) определение назначения;

3) модификация преобразованной матрицы.

1-й шаг . Цель данного шага — получение максимально возможного числа нулевых элементов в матрице С. Для этого из всех элементов каждой строки вычитаем минимальный элемент соответствующей строки, а из всех элементов каждого столбца вычитаем минимальный элемент соответствующего столбца.

2-й шаг. Если после выполнения 1-го шага в каждой строке и каждом столбце матрицы С можно выбрать по одному нулевому элементу, то полученное решение будет оптимальным назначением.

3-й шаг . Если допустимое решение, состоящее из нулей, не найдено, то проводим минимальное число прямых через некоторые столбцы и строки так, чтобы все нули оказались вычеркнутыми. Выбираем наименьший невычеркнутый элемент. Этот элемент вычитаем из каждого невычеркнутого элемента и прибавляем к каждому элементу, стоящему на пересечении проведенных прямых.

Если после проведения 3-го шага оптимальное решение не достигнуто, то процедуру проведения прямых следует повторять до тех пор, пока не будет получено допустимое решение.

Пример .

Распределить ресурсы по объектам.

Решение. 1-й шаг. Значения минимальных элементов строк 1, 2, 3 и 4 равны 2, 4, 11 и 4 соответственно. Вычитая из элементов каждой строки соответствующее минимальное значение, получим


Значения минимальных элементов столбцов 1, 2, 3 и 4 равны 0, 0, 5, 0 соответственно. Вычитая из элементов каждого столбца соответствующее минимальное значение, получим

2-й шаг. Ни одно полное назначение не получено, необходимо провести модификацию матрицы стоимостей.

3-й шаг. Вычеркиваем столбец 1, строку 3, строку 2 (или столбец 2). Значение минимального невычеркнутого элемента равно 2:

Вычитаем его из всех невычеркнутых элементов и, складывая его со всеми элементами, расположенными на пересечении двух линий, получим

Ответ. Первый ресурс направляем на 3-й объект, второй — на 2-й объект, четвертый — на 1-й объект, третий ресурс — на 4-й объект. Стоимость назначения: 9 + 4 + 11 + 4 = 28.

Примечания. 1. Если исходная матрица не является квадратной, то нужно ввести фиктивные ресурсы или фиктивные объекты, чтобы матрица стала квадратной.

Задача о назначениях

Алгоритм решения задачи о назначении на узкие места

Задача о назначении на узкие места

ЛЕКЦИЯ 13. Задачи о назначении. Венгерский алгоритм

Эта задача решается описанным выше алгоритмом. Вот ее постановка.

Имеется n рабочих мест на некотором конвейере и n рабочих, которых нужно на эти рабочие места расставить; известна производительность c ij рабочего i на рабочем месте j . Тот факт, что при некотором распределении на рабочие места рабочий i k попадает на рабочее место j k можно описать следующей таблицей:

Имея способ s назначения на рабочие места, можно найти конкретную для этого способа минимальную производительность и заметить, что именно эта минимальная производительность и определяет скорость и производительность конвейера. То рабочее место, на котором реализуется минимальная производительность и называют узким местом в назначении.

Задача состоит в том, чтобы максимизировать

Шаг 0. Фиксируем матрицу производительностей и любое назначение на рабочие места. Пусть s - минимальная производительность при этом назначении. Построим рабочую таблицу тех же размеров, что и матрица C ; в клетку с номером (ij ) в этой таблице проставим символ «´», если ; в противном случае эту клетку оставим пустой.

Шаг 1. Рассматривая рабочую таблицу, построенную на предыдущем шагу, как рабочую таблицу в алгоритме для выбора наибольшего паросочетания в двудольном графе, найдем соответствующее наибольшее паросочетание. Если в нем окажется n ребер, то по ним восстанавливается новое назначение на рабочие места и с новой, более высокой, минимальной производительностью. Обозначим ее снова через s и вернемся к Шагу 0. Если же число ребер окажется меньше n , то имеющееся назначение на рабочие места уже оптимально.

Постановки задачи:

Пример 13.1 . Требуется распределить m работ (или исполнителей) по n станкам. Работа i (i =1,...,m ), выполняемая на станке j (j=1,...,n ), связана с затратами. Задача состоит в таком распределении работ по станкам (одна работа выполняется на одном станке), которое соответствует минимизации суммарных затрат c ij .

Пример 13.2. C= (c ij ) – стоимость производства детали i на станке j нужно найти распределение станков так чтобы суммарная стоимость производства была минимальной.

Пример 13.3. Транспортная задача. Заданы пункты производства товара, пункты потребления товара. Требуется определить оптимальное взаимно-однозначное соответствие между пунктами производства и пунктами потребления, исходя из матрицы стоимостей перевозок C между соответствующими пунктами (т.е. минимизировать суммарную стоимость перевозки).

Здесь работы представляют «исходные пункты», а станки – «пункты назначения». Предложение в каждом исходном пункте равно 1. Аналогично спрос в каждом пункте назначения равен 1. Стоимость «перевозки» (прикрепления) работы i к станку j равна c ij . Если какую-либо работу нельзя выполнять на некотором станке, то соответствующая стоимость берется равной очень большому числу.

Прежде чем решать такую задачу необходимо ликвидировать дисбаланс, добавив фиктивные работы или станки в зависимости от начальных условий. Поэтому без потери общности можно положить m = n .

Пусть = 0, если j -я работа не выполняется на i -м станке, = 1, если j -я работа выполняется на i -м станке. Таким образом, решение задачи может быть записано в виде двумерного массива . Допустимое решение называется назначением . Допустимое решение строится путем выбора ровно одного элемента в каждой строке матрицы и ровно одного элемента в каждом столбце этой матрицы.

Замечание 1. Для заданного значения n существует n ! допустимых решений.

Математическая модель задачи:

Минимизировать функцию , при ограничениях:

, (12.1)

, (12.2)

Ограничения (12.1) необходимы для того, чтобы каждая работа выполнялась ровно один раз. Ограничения (12.2) гарантируют, что каждому станку будет приписана ровно одна работа.

Пример 13.4. Для иллюстрации задачи о назначениях рассмотрим таблицу с тремя работами и тремя станками. Стоимость производства детали i на станке j :

Нужно найти распределение станков так чтобы суммарная стоимость производства была минимальной.

Специфическая структура задачи о назначениях позволяет использовать эффективный метод для ее решения.

Замечание 2 . Оптимальное решение задачи не изменится, если из любой строки или столбца матрицы стоимостей вычесть произвольную постоянную величину.

Приведенное замечание 2 показывает, что если можно построить новую матрицу с нулевыми элементами и эти нулевые элементы или их подмножество соответствуют допустимому решению, то такое решение будет оптимальным.

.

Оптимальное назначение: , , , остальные , .

К сожалению, не всегда удается определить решение так просто. Для таких случаев рассмотрим следующий алгоритм.

Шаг 1. (Редукция строк и столбцов). Цель данного шага состоит в получении максимально возможного числа нулевых элементов в матрице стоимостей. Для этого из всех элементов каждой строки вычитают минимальный элемент соответствующей строки, а затем из всех элементов каждого столбца полученной матрицы вычитают минимальный элемент соответствующего столбца. В результате получают редуцированную матрицу стоимостей и переходят к поиску назначений.

Шаг 2. (Определение назначений). На этом шаге можно использовать алгоритм поиска «наибольшего паросочетания с матрицей двудольного графа (существуют и другие возможности), если все =0 матрицы заменить на «1», а >0 на «0».

Если нельзя найти полного назначения, то необходима дальнейшая модификация матрицы стоимостей, т.е. перейти к шагу 3.

Шаг 3 . (Модификация редуцированной матрицы). Для редуцированной матрицы стоимостей:

а) Вычислить число нулей в каждой невычеркнутой строке и каждом невычеркнутом столбце.

б) Вычеркнуть строку или столбец с максимальным числом нулей.

в) Выполнять пункты а) и б) до тех пор, пока не будут вычеркнуты все нули.

г) Из всех невычеркнутых элементов вычесть минимальный невычеркнутый элемент и прибавить его к каждому элементу, расположенному на пересечении двух линий.

Перейти к шагу 2.

Замечание 3 .Если исходная задача является задачей максимизации, то все элементы матрицы стоимостей следует умножить на (-1) и сложить их с достаточно большим числом так, чтобы матрица не содержала бы отрицательных элементов. Затем задачу следует решать как задачу минимизации.

Пример 13.5. Покажем работу венгерского алгоритма на примере задачи о назначениях со следующей матрицей стоимостей:

.

Итерация 1

Шаг 1 . Редукция строк и столбцов.

Значения минимальных элементов строк 1, 2, 3 и 4 равны 2, 4, 11 и 4 соответственно. Вычитая из элементов каждой строки соответствующее минимальное значение, получим следующую матрицу:

.

Значения минимальных элементов столбцов 1, 2, 3 и 4 равны 0, 0, 5 и 0 соответственно. Вычитая из элементов каждого столбца соответствующее минимальное значение, получим следующую матрицу.

Содержательная постановка задачи. В объединении находится n автомобилей, способных каждый перевозить в месяц Q i тонн груза (i = 1,2,…, n). С их помощью необходимо обеспечить перевозку грузов (пиломатериал, шурупы и т.д.) от поставщиков к потребителям по n маршрутам в количестве R j тонн в месяц (j = 1,2,…, n).
Задача заключается в том, чтобы перевезти все грузы с минимальными издержками, для этого надо каждый автомобиль пустить по одному и только его маршруту. Если возможность автомобиля в перевозке груза ниже потребности потребителя этого груза, то на данный маршрут автомобиль не может быть назначен. Поэтому составляется матрицу С, характеризующую издержки i-го автомобиля, в случае, если он будет назначен на j-й маршрут.

Венгерский метод решения задач о назначениях

Алгоритм венгерского метода .

Задача о назначениях является частным случаем транспортной задачи , поэтому для ее решения можно воспользоваться любым алгоритмом линейного программирования, однако более эффективным является венгерский метод .

Специфические особенности задач о назначениях послужили поводом к появлению эффективного венгерского метода их решения. Основная идея венгерского метода заключается в переходе от исходной квадратной матрицы стоимости С к эквивалентной ей матрице Сэ с неотрицательными элементами и системой n независимых нулей, из которых никакие два не принадлежат одной и той же строке или одному и тому же столбцу. Для заданного n существует n! допустимых решений. Если в матрице назначения X расположить n единиц так, что в каждой строке и столбце находится только по одной единице, расставленных в соответствии с расположенными n независимыми нулями эквивалентной матрицы стоимости Сэ, то получим допустимые решения задачи о назначениях.

Следует иметь в виду, что для любого недопустимого назначения соответствующая ему стоимость условно полагается равной достаточно большому числу М в задачах на минимум. Если исходная матрица не является квадратной, то следует ввести дополнительно необходимое количество строк или столбцов, а их элементам присвоить значения, определяемые условиями задачи, возможно после редукции, а доминирующие альтернативы дорогие или дешевые исключить.

ВЕНГЕРСКИЙ МЕТОД

Венгерский метод является одним из интереснейших и наиболее распространенных методов решения транспортных задач.

Рассмотрим сначала основные идеи венгерского метода на примере решения задачи выбора (задачи о назначениях), которая является частным случаем Т-задачи, а затем обобщим этот метод для произвольной Т-задачи.

Венгерский метод для задачи о назначениях

Постановка задачи. Предположим, что имеется различных работ и механизмов , каждый из которых может выполнять любую работу, но с неодинаковой эффективностью. Производительность механизма при выполнении работы обозначим , и = 1,...,n; j = 1,...,n . Требуется так распределить механизмы по работам, чтобы суммарный эффект от их использования был максимален. Такая задача называется задачей выбора или задачей о назначениях.

Формально она записывается так. Необходимо выбрать такую последовательность элементов из матрицы

чтобы сумма была максимальна и при этом из каждой строки и столбца С был выбран только один элемент.

Введем следующие понятия.

Нулевые элементы матрицы С называются независимыми нулями, если для любого строка и столбец, на пересечении которых расположен элемент , не содержат другие такие элементы .

Две прямоугольные матрицы С и D называются эквивалентными (C ~ D ), если для всех i,j . Задачи о назначениях, определяемые эквивалентными матрицами, являются эквивалентными (т.е. оптимальные решения одной из них будут оптимальными и для второй, и наоборот).

Описание алгоритма венгерского метода

Алгоритм состоит из предварительного этапа и не более чем (n -2) последовательно проводимых итераций. Каждая итерация связана с эквивалентными преобразованиями матрицы, полученной в результате проведения предыдущей итерации, и с выбором максимального числа независимых нулей. Окончательным результатом итерации является увеличение числа независимых нулей на единицу. Как только количество независимых нулей станет равным n , проблему выбора оказывается решенной, а оптимальный вариант назначений определяется позициями независимых нулей в последней матрице.

Предварительный этап. Разыскивают максимальный элемент в j - м столбце и все элементы этого столбца последовательно вычитают из максимального. Эту операцию проделывают над всеми столбцами матрицы С . В результате образуется матрица с неотрицательными элементами, в каждом столбце которой имеется, по крайней мере, один нуль.

Далее рассматривают i - ю строку полученной матрицы, разыскивают ее минимальный элемент a i и из каждого элемента этой строки вычитают минимальный. Эту процедуру повторяют со всеми строками. В результате получим матрицу С 0 (С 0 ~ C ), в каждой строке и столбце которой имеется, по крайней мере, один нуль. Описанный процесс преобразования С в С 0 называется приведением матрицы.

Находим произвольный нуль в первом столбце и отмечаем его звездочкой. Затем просматриваем второй столбец, и если в нем есть нуль, расположенный в строке, где нет нуля со звездочкой, то отмечаем его звездочкой. Аналогично просматриваем один за другим все столбцы матрицы С 0 и отмечаем, если возможно, следующие нули знаком "*". Очевидно, что нули матрицы С 0 , отмеченные звездочкой, являются независимыми. На этом предварительный этап заканчивается.

(k +1)-ая итерация. Допустим, что k -я итерация уже проведена и в результате получена матрица С k . Если в ней имеется ровно n нулей со звездочкой, то процесс решения заканчивается. В противном случае переходим к (k +1) - й итерации.

Каждая итерация начинается первым и заканчивается вторым этапом. Между ними может несколько раз проводиться пара этапов: третий - первый. Перед началом итерации знаком "+" выделяют столбцы матрицы С k , которые содержат нули со звездочками.

Первый этап. Просматривают невыделенные столбцы С k . Если среди них не окажется нулевых элементов, то переходят к третьему этапу. Если же невыделенный нуль матрицы С k обнаружен, то возможен один из двух случаев: 1) строка, содержащая невыделенный нуль, содержит также и нуль со звездочкой; 2) эта строка не содержит нуля со звездочкой.

Во втором случае переходим сразу ко второму этапу, отметив этот нуль штрихом.

В первом случае этот невыделенный нуль отмечают штрихом и выделяют строку, в которой он содержится (знаком "+" справа от строки). Просматривают эту строку, находят нуль со звездочкой и уничтожают знак "+" выделения столбца, в котором содержится данный нуль.

Далее просматривают этот столбец (который уже стал невыделенным) и отыскивают в нем невыделенный нуль (или нули), в котором он находится. Этот нуль отмечают штрихом и выделяют строку, содержащую такой нуль (или нули). Затем просматривают эту строку, отыскивая в ней нуль со звездочкой.

Этот процесс за конечное число шагов заканчивается одним из следующих исходов:

1) все нули матрицы С k выделены, т.е. находятся в выделенных строках или столбцах. При этом переходят к третьему этапу;

2) имеется такой невыделенный нуль в строке, где нет нуля со звездочкой. Тогда переходят ко второму этапу, отметив этот нуль штрихом.

Второй этап. На этом этапе строят следующую цепочку из нулей матрицы С k : исходный нуль со штрихом, нуль со звездочкой, расположенный в одном столбце с первым нулем со штрихом в одной строке с предшествующим нулем со звездочкой и т.д. Итак, цепочка образуется передвижением от 0 " к 0 * по столбцу, от 0 * к 0 " по строке и т.д.

Можно доказать, что описанный алгоритм построения цепочки однозначен и конечен, при этом цепочка всегда начинается и заканчивается нулем со штрихом.

Далее над элементами цепочки, стоящими на нечетных местах (0 ") -, ставим звездочки, уничтожая их над четными элементами (0 *). Затем уничтожаем все штрихи над элементами С k и знаки выделения "+". Количество независимых нулей будет увеличено на единицу. На этом (k+ 1) -я итерация закончена.

Третий этап. К этому этапу переходят после первого, если все нули матрицы С k выделены. В таком случае среди невыделенных элементов С k выбирают минимальный и обозначают его h (h >0). Далее вычитают h из всех элементов матрицы С k , расположенных в невыделенных строках и прибавляют ко всем элементам, расположенным в выделенных столбцах. В результате получают новую матрицу С " k , эквивалентную С k . Заметим, что при таком

преобразовании, все нули со звездочкой матрицы С k остаются нулями и в С " k , кроме того, в ней появляются новые невыделенные нули. Поэтому переходят вновь к первому этапу. Завершив первый этап, в зависимости от его результата либо переходят ко второму этапу, либо вновь возвращаются к третьему этапу.

После конечного числа повторений очередной первый этап обязательно закончится переходом на второй этап. После его выполнения количество независимых нулей увеличится на единицу и (k+ 1)- я итерация будет закончена.

Пример 3.4. Решить задачу о назначениях с матрицей

При решении задачи используем следующие обозначения:

Знак выделения "+", подлежащий уничтожению, обводим кружком; цепочку, как и ранее, указываем стрелками.

Предварительный этап. Отыскиваем максимальный элемент первого столбца - 4. Вычитаем из него все элементы этого столбца. Аналогично для получения второго, третьего, четвертого и пятого столбцов новой матрицы вычитаем все элементы этих столбцов от п"яти, трех, двух и трех соответственно. Получим матрицу С " (C " ~C ). Так как в каждой строке С " есть нуль, то С " = С 0 и процесс приведения матрицы заканчивается. Далее ищем и отмечаем знаком "*" независимые нули в С 0 , начиная с первой строки.

Первая итерация . Первый этап. Выделяем знаком "+" первый, второй, и четвертый столбцы матрицы С 0 , которые содержат 0 * .

Просматриваем невыделенный третий столбец, находим в нем невыделенный нуль С 23 = 0, отмечаем его штрихом и выделяем знаком "+" вторую строку. Просматриваем эту строку, находим в ней элемент С 22 = 0 * и уничтожаем знак выделения второго столбца, содержащего 0 * . Затем просматриваем второй столбец - в нем нет невыделенных элементов. Переходим к последнему невыделенному столбцу (пятому), ищем в нем невыделенные нули. Поскольку невыделенных нулей нет, то переходим к третьему этапу.

Третий этап. Находим минимальный элемент в невыделенной части матрицы С 0 (т.е. элементы, которые лежат в столбцах и строках, не отмеченных знаком "+"). Он равен h = 1.

Вычтем h = 1 из всех элементов невыделенных строк (т.е. всех, кроме второго) и прибавим ко всем элементам выделенных столбцов (первого и четвертого). Получим матрицу С " 1 и перейдем к первому этапу.

Первый этап. Перед его началом вновь выделяем знаком "+" первый, второй и четвертый столбцы. Просматриваем невыделенный третий столбец, находим в нем невыделенный нуль С 23 = 0, отмечаем его знаком штрих. Поскольку во второй строке есть 0 * (элемент С 22), то выделяем знаком "+" вторую строку, далее уничтожаем знак выделения второго столбца, где лежит 0 * . Потом просмотрим второй столбец, находим в нем невыделенный нуль С 12 = 0, отмечаем его знаком штрих. Поскольку в первой строке есть нуль со звездочкой С 14 = 0 * , то выделяем его знаком "+", и уничтожаем знак выделения четвертого столбца, где находился этот знак 0 * . Затем пересматриваем четвертый столбец и находим в нем невыделенный нуль С 54 = 0. Так как в строке, где он находится, нет нуля со звездочкой, то отметив этот 0 штрихом, переходим ко второму этапу.

Рассмотрим следующий пример. Пусть для выполнения пяти различных работ имеется пять человек. Из отчетных данных известно, какое время требуется каждому из них для выполнения каждой работы. Эти данные приведены в таблице.

исполнители

потребности

В данном случае величины представляют собой затраты времени каждого работника на выполнение каждой из работ, а величины равны либо 1, либо 0, причем равен 1, если работник i назначен на работу j, и 0 во всех остальных случаях. Таким образом задача сводится к минимизации функции. стоимость маршрут линейный программирование

при следующих ограничениях.

Ясно, что если отбросить последнее условие и заменить его условием

То получается транспортная задача, в которой все потребности и все ресурсы равны единице. В оптимальном решении все равны либо целому числу, либо нулю, причем единственным возможным целым является единица. Таким образом, решение транспортной задачи при этих условиях всегда приводит к равенству.

Однако вследствие вырожденности методы решения транспортных задач в случае задачи о назначении оказываются малоэффективными. При любом назначении всегда автоматически совпадают поставки по строке со спросом по столбцу и поэтому вместо 2n-1 получаем n ненулывых значений. В связи с этим необходимо заполнить матрицу n-1 величинами е, и может оказаться, что ненулевые значения определяют оптимальное решение, однако проверка его не обнаруживает, так как величины е расставлены неверно.

Метод решения задачи о назначении основан на двух довольно очевидных теоремах. Первая из них утверждает, что решение не изменится, если прибавить к любому столбцу или строке матрицы некоторую константу или вычесть ее из них. Эта теорема точно формулируется следующим образом:

Теорема 1.

Если минимизирует

по всем, таким что и

то минимизирует также функционал

где при всех

Теорема 2.

Если все и можно отыскать набор такой, что

то это решение оптимально.

Вторая теорема очевидна. Для доказательства первой теоремы заметим, что

Вследствие того что величины, вычитаемые из Z с целью получения, не зависят от, достигает минимума всегда, когда минимизируется Z, и наоборот.

Разработанный метод решения сводится к прибавлению констант к строкам и столбцам и вычитанию их из строк и столбцов до тех пор, пока достаточное число величин не обращается в нуль, что дает решение, равное нулю.

Отыскание решения начинают, вычитая наименьший элемент из каждой строки, а затем из каждого столбца. В таблице даны результаты для приведенного выше примера.

Таблица А)

исполнители

вычитается

Таблица Б)

исполнители

вычитается

Из столбцов и строк было вычтено всего 10 единиц. Поэтому для правильной оценки любого решения, получаемого при использовании таблицы (Б), необходимо прибавить к результату 10 единиц

Прежде всего стремятся отыскать решение, включающее лишь те клетки таблицы (Б),в которых стоят нулевые элементы, поскольку такое решение, если его удается найти, будет наилучшим из всех возможных. Однако встречаются случаи, когда несколько решений имеют одинаковое качество. Допустимое решение помечено в таблице (Б) скобками. Однако, для того чтобы определить, возможно ли улучшение решения, применяется следующий алгоритм.

Заметим предварительно, что любое дальнейшее вычитание из строки или столбца, хотя и может приводить к появлению новых нулей, неизбежно приводит в появлению отрицательных элементов, так что нулевое решение теперь не обязательно будет оптимальным. Однако отрицательные элементы можно исключить, прибавляя соответствующие числа к строкам или столбцам. Так например, если вычесть 2 из столбца 1 в таблице (Б), то в строке 1 появится элемент - 2. Если теперь прибавить 2 к строке 1, то вновь получим матрицу с неотрицательными элементами. Задача заключается в том, чтобы получать новые нули указанным способом, но вместе с тем в конечном счете получить матрицу, содержащую решение среди одних нулей. Можно доказать, что описываемый ниже алгоритм обеспечивает решение этой задачи.

1. Провести минимальное число горизонтальных и вертикальных прямых, пересекающих по крайней мере один раз все нули. Выполнение этого шага для таблицы (Б) дает результат в таблице 1.

Таблица 1

Заметим, что в данном случае используется только четыре линии, а следовательно, нулевые клетки не содержат оптимального решения.

  • 2. Выбрать наименьший элемент, через который не проведена линия. В примере это 1 в клетке (5,2).
  • 3. Вычесть это число из всех элементов, через которые не проведена ни одна линия, и прибавить его ко всем элементам, через которые проведены две линии. В данном примере получается результат, показанный в таблице 2.

Таблица 2

Этот шаг должен приводить к появлению нуля в клетке, где его ранее не было. В рассматриваемом примере это клетка (5,2).

4. Определить, имеется ли решение среди нового набора нулей. Если решение не обнаруживается (в данном примере оно отсутствует), то вернуться к шагу 1 и выполнить все последующие шаги, пока не будет найдено решение. продолжая рассматривать данный пример, получаем результат, приведенный в таблице 3.

Таблица 3

В этой таблице уже содержится решение, помеченное скобками и имеющее значение 13, что на 1 лучше исходного допустимого решения. , .

Пример 2.

Представлено четыре студента и четыре вида работ. Следующая таблица соответствует матрице стоимостей для этой задачи.

Выполним первый шаг алгоритма.

Теперь вычтем минимальные стоимости из элементов соответствующих строк.

На втором шаге алгоритма находим минимальные значения по столбцам и вычитаем их из элементов соответствующих столбцов. В результате получим матрицу, представленную в следующей таблице.

В последней матрице расположение нулевых элементов не позволяет назначить каждому ребенку одну работу. Например, если мы назначим Даше уборку гаража, из дальнейшего рассмотрения исключается первый столбец и тогда, в строке Аллы не окажется нулевых элементов.

  • 1) В последней матрице проведем минимальное число горизонтальных и вертикальных прямых по строкам и столбцам с тем, чтобы вычеркнуть все нулевые элементы.
  • 2) Найдем наименьший невычеркнутый элемент и вычтем его из остальных невычеркнутых элементов и прибавим к элементам, стоящим на пересечении проведенных прямых.

В задаче данного примера требуется провести три прямых, это приводит к следующей таблице:

Наименьший невычеркнутый элемент равен 1. Этот элемент вычитаем из остальных невычеркнутых элементов и прибавляем к элементам, стоящим на пересечении прямых. В результате получим матрицу, представленную в следующей таблице.

Оптимальное решение, показанное в таблице, предлагает Даше убрать гараж, Кате стричь газоны, Алле мыть машины, а Саше выгуливать собак. Соответствующее значение целевой функции равно 1+10+5+5=21. Такое же значение можно получить путем суммирования значений и и значения элемента, наименьшего среди всех невычеркнутых.