Что такое lcd. Технологии создания дисплеев: виды матриц и их особенности

Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Простые приборы (электронные часы , телефоны, плееры , термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей . Многоцветное изображение формируется с помощью 2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на канал), 24-битность эмулируется мерцанием с дизерингом .

Устройство ЖК-монитора

Субпиксел цветного ЖК-дисплея

Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами , и двух поляризационных фильтров , плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны , поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света - ячейку можно считать прозрачной. Если же к электродам приложено напряжение - молекулы стремятся выстроиться в направлении поля , что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение , можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени - жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток , или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отражённым от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют , кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Технические характеристики ЖК-монитора

Важнейшие характеристики ЖК-мониторов:

  • Разрешение : Горизонтальный и вертикальный размеры, выраженные в пикселах . В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией .

Фрагмент матрицы ЖК монитора (0,78х0,78 мм), увеличеный в 46 раз.

  • Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
  • Соотношение сторон экрана (формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.
  • Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
  • Контрастность : отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
  • Яркость : количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
  • Время отклика : минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
  • Тип матрицы: технология, по которой изготовлен ЖК-дисплей.
  • Входы: (напр, DVI , HDMI и пр.).

Технологии

Часы с ЖКИ-дисплеем

Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.

Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода . Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.

Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.

TN+film (Twisted Nematic + film)

Часть «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

TN + film - самая простая технология.

Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.

IPS (In-Plane Switching)

Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB - 24 бита, по 8 бит на канал. TN-матрицы почти всегда имеют 6-бит, как и часть MVA.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика . Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT , контрастность все равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20", LG.Philips , NEC остаются единственными производителями панелей по данной технологии.

AS-IPS - технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации LG.Philips.

A-TW-IPS - Advanced True White IPS (Расширенная IPS с настоящим белым), разработано LG.Philips для корпорации году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК , на матрицах производства Hitachi Displays.

*VA (Vertical Alignment)

MVA - Multi-domain Vertical Alignment. Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176-178 градусов), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Достоинствами технологии MVA являются глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.

Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения, большее время отклика.

Аналогами MVA являются технологии:

  • PVA (Patterned Vertical Alignment ) от Samsung.
  • Super PVA от Samsung.
  • Super MVA от CMO.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам.

Преимущества и недостатки

Искажение изображения на ЖК-мониторе при большом угле обзора

Макрофотография типичной жк-матрицы. В центре можно увидеть два дефектных субпикселя (зелёный и синий).

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ . У ЖК-мониторов, в отличие от ЭЛТ , нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих современных (2007) мониторах для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более Герц . Светодиодная подсветка в основном используется в небольших дисплеях, хотя в последние годы она все шире применяется в ноутбуках и даже в настольных мониторах. Несмотря на технические трудности её реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват.

С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

  • В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320x200) вообще не могут быть отображены на многих мониторах.
  • Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах).
  • Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
  • Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки).
  • Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев . Технология overdrive решает проблему скорости лишь частично.
  • Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
  • Массово производимые ЖК-мониторы более уязвимы, чем ЭЛТ. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей .
  • Вопреки расхожему мнению пикселы ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения.

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED -дисплеи. С другой стороны, эта технология встретила сложности в массовом производстве, особенно для матриц с большой диагональю.

См. также

  • Видимая область экрана
  • Антибликовое покрытие
  • en:Backlight

Ссылки

  • Информация о флюоресцентных лампах, используемых для подсветки ЖК-матрицы
  • Жидкокристаллические дисплеи (технологии TN + film, IPS, MVA, PVA)

Литература

  • Артамонов О. Параметры современных ЖК-мониторов
  • Мухин И. А. Как выбрать ЖК-монитор? . «Компьютер-бизнес-маркет», № 4 (292), январь 2005, стр. 284-291.
  • Мухин И. А. Развитие жидкокристаллических мониторов . «BROADCASTING Телевидение и радиовещение»: 1 часть - № 2(46) март 2005, с.55-56; 2 часть - № 4(48) июнь-июль 2005, с.71-73.
  • Мухин И. А. Современные плоскопанельные отображающие устройства ."BROADCASTING Телевидение и радиовещение": № 1(37), январь-февраль 2004, с.43-47.
  • Мухин И. А., Украинский О. В. Способы улучшения качества телевизионного изображения, воспроизводимого жидкокристаллическими панелями . Материалы доклада на научно-технической конференции «Современное телевидение», Москва, март 2006.

Жидкокристаллические телевизоры на рынке появились довольно давно и все уже успели к ним привыкнуть. Однако с каждым годом появляются все новые и новые модели, отличающиеся внешним видом, диагональю экрана, интерфейсом и не только. Кроме того, существуют и такие модели жидкокристаллических дисплеев, которые отличаются особой скоростью обновления, видами светодиодов и подсветки. Однако, обо всем по очереди. Для начала предлагаю разобраться с тем, что же это такое – ЖК мониторы.


Наверное, многие из вас слышали такое понятия, как LCD панели. LCD это аббревиатура, которая расшифровывается, как: Liquid Crystal Display. В переводе на русский это означает жидкокристаллический дисплей, а значит, LCD и ЖК панели это одно и то же.

Технология отображения картинки основывается на использовании кристаллов в жидком виде и их удивительных свойств. Подобные панели обладают огромным количеством положительных качеств, благодаря использованию данной технологии. Поэтому давайте разберемся, как это работает.

Как устроен LCD монитор

Кристаллы, которые используются для создания данных мониторов, называются цианофенилами. Когда они находятся в жидком состоянии, у них появляются уникальные оптические и другие свойства, в том числе умение правильно располагаться в пространстве.

Состоит такой экран из пары прозрачных отполированных пластин, на которые наносятся прозрачные электроды. Между этими двумя пластинами и располагаются цианофенилы в определенном порядке. Через электроды на пластинах подается напряжение, которое поступает к участкам матрицы экрана. Также возле пластин имеются два расположенные параллельно друг другу фильтра.

Получающейся матрицей можно управлять, заставляя кристаллы пропускать луч света или не пропускать. Для того чтоб получались разные цвета, перед кристаллами устанавливают фильтры трех базовых цветов: зеленого, синего и красного. Свет от кристалла проходит через один из этих фильтров и образуется соответствующий цвет пикселя. Определенная комбинация цветов, позволяет создавать другие оттенки, которые будут соответствовать движущейся картинке.

Виды матриц

В ЖК мониторах может использоваться несколько видов матриц, которые отличаются друг от друга своей технологией.

TN+ film . Это одна из самых простых стандартных технологий, которая отличается своей популярностью и небольшой стоимостью. Такой тип модуля обладает низким потреблением электроэнергии и сравнительно небольшой частотой обновления. Особенно часто можно встретить подобный модуль в старых моделях панелей. «+film» в названии значит, что использовался еще один слоя пленки, который должен сделать угол обзора больше. Однако, так как сегодня ее применяют везде, название матрицы может быть сокращено до TN.

Подобный ЖК монитор имеет большое количество недостатков. Во-первых, у них плохая цветопередача из-за использования для каждого цветового канала только 6 бит. Большинство оттенков при этом получается при смешивании основных цветов. Во-вторых, контрастность ЖК мониторов и угол обзора также оставляет желать лучшего. А если у вас перестанут работать какие-то сабпиксели или пиксели, то скорей всего они будут постоянно светиться, что мало кого порадует.

IPS . Такие матрицы отличаются от других видов тем, что имеют наилучшую передачу оттенков и большой угол обзора. Контрастность в таких матрицах также не самая лучшая, а частота обновления меньше, чем даже у TN матрицы. Это значит, что при быстром движении за картинкой может появляться заметный шлейф, что будет мешать смотреть телевизор. Однако если на такой матрице сгорит пиксель, он не будет светиться, а, наоборот, останется черным навсегда.

На основе данной технологии существуют и другие типы матрицы, которые также нередко используются в мониторах, дисплеях, экранах телевизоров и т.д.

  • S-IPS. Такой модуль появился в 1998 году и отличался только меньшей частотой обновления отклика.
  • AS-IPS. Следующий тип матрицы, в котором кроме скорости обновления улучшили еще и контрастность.
  • A-TW-IPS. Это, по сути, та же S-IPS матрица, к которой был добавлен цветовой фильтр под названием «Настоящий белый». Чаще всего такой модуль использовали в мониторах, предназначенных для издательств или фотолабораторий, так как он делал белый цвет более реалистичным и увеличивал спектр его оттенков. Минус такой матрицы заключался в том, что черный цвет обладал при этом фиолетовым оттенком.
  • H-IPS. Появился этот модуль в 2006 году и отличался однородностью экрана и улучшенным контрастом. У него нет такой неприятной засветки черного цвета, правда и угол обзора стал меньше.
  • E-IPS. Появился в 2009 году. Такая технология помогла улучшить угол обзора, яркость и контрастность ЖК мониторов. Кроме того, было уменьшено время обновления экрана до 5 миллисекунд и уменьшено количество потребляемой энергии.
  • P-IPS. Данный тип модуля появился относительно недавно, в 2010 году. Это наиболее усовершенствованная матрица. Она обладает 1024 градациями для каждого сабпикселя, благодаря чему появляется 30-битный цвет, чего не могла достичь ни одна другая матрица.

VA . Это самый первый вид матриц для ЖК дисплеев, который представляет собой компромиссное решение между предыдущими двумя видами модулей. Такие матрицы лучше всего передают контрастность изображения и его цвета, но при определенном угле обзора могут пропадать некоторые детали и изменяться цветовой баланс белого.

У такого модуля также существует несколько производных версий, отличающихся друг от друга по своим характеристикам.

  • MVA – одна из первых и наиболее популярных матриц.
  • PVA – данный модуль был выпущен компанией Samsung и отличается улучшенной контрастностью видео.
  • S- PVA – также была изготовлена компанией Samsung для жидкокристаллических панелей.
  • S-MVA
  • P-MVA, A-MVA – производства AU Optronics. Все дальнейшие матрицы отличаются только компаниями-производителями. Все улучшение основываются только на уменьшении скорости отклика, которая достигается благодаря подачи более высокого напряжения в самом начале изменения положения сабпикселей и использовании полноценной 8-битной системы, которая кодирует цвет на каждом канале.

Также имеется и еще несколько видов ЖК матриц, которые также используются в некоторых моделях панелей.

  • IPS Pro – их используют в телевизорах компании Panasonik.
  • AFFS – матрицы от компании Samsung. Используются только в некоторых специализированных устройствах.
  • ASV - матрицы от корпорации Sharp для жидкокристаллических телевизоров.

Виды подсветки

Жидкокристаллические дисплеи различаются также видами подсветки.

  • Плазменные или газоразрядные лампы. Изначально все LSD мониторы обладали подсветкой из одной или нескольких ламп. В основном такие лампы обладали холодным катодом и имели название CCFL. Позднее начали использовать лампы EEFL. Источником света в таких лампах является плазма, которая появляется в результате электрического разряда проходящего через газ. При этом не нужно путать ЖК ТВ с плазменными, в которых каждый из пикселей является самостоятельным источником света.
  • Светодиодная подсветка или LED. Такие ТВ появились относительно недавно. Такие дисплеи обладают одним или несколькими светодиодами. Однако стоит заметить, что это только тип подсветки, а не сам дисплей, которые состоит из этих миниатюрных диодов.

Быстрота отклика и необходимое значение для просмотра видео в формате 3D

Быстрота отклика – это то, сколько кадров в секунду может показывать телевизор. Этот параметр влияет на качество изображения и его плавность. Для того чтоб было достигнуто данное качество, частота обновления должна составлять 120 Гц. Для того чтоб достичь такой частоты, в телевизорах используют видеокарту. Кроме того, такая частота смены кадров не создает мерцания экрана, что в сою очередь лучше влияет на глаза.

Для просмотра фильмов в 3D формате такой частоты обновления будет вполне достаточно. При этом во многих ТВ устанавливают подсветку, которая обладает частотой обновления 480 Гц. Достигается она при помощи использования специальных TFT транзисторов.

Другие характеристики ЖК телевизоров

Яркость, глубина черного и контрастность Яркость у таких ТВ находится на довольно высоком уровне, но контрастность оставляет желать лучшего. Это связано с тем, что при эффекте поляризации глубина черного цвета будет такой, насколько это позволит лампа подсветки. Из-за недостаточного уровня глубины черного цвета и контрастности, темные оттенки могут сливаться в один цвет.
Диагональ экрана На сегодняшний день можно с легкостью найти ЖК панели как с большой диагональю, которые можно использовать в качестве домашнего кинотеатра, так и модели с довольно маленькой диагональю.
Угол обзора Современные модели ТВ обладают довольно хорошим углом обзора, который может достигать 180 градусов. Но старые модели имеют недостаточный угол, из-за чего при взгляде на экран с определенного ракурса он может выглядеть довольно темным или цвета будут искажены.
Цветопередача Цветопередача у таких дисплеев не всегда довольно хорошего качества. Это опять-таки касается в основном старых моделей экранов. Но и современные модели нередко уступают другим видам ТВ.
Энергоэффективность Жидкокристаллические дисплеи потребляют на 40% меньше электроэнергии, чем другие виды.
Габариты и вес Такие ТВ имеют довольно небольшой вес и толщину, однако на сегодняшний день существуют панели и с меньшей толщиной и весом.

TFT (Thin film transistor) переводится с английского как тонкопленочный транзистор. Так что TFT - это такая разновидность жидкокристаллического дисплея, в котором используется активная матрица, управляемая этими самими транзисторами. Такие элементы изготавливаются из тонкой пленки, толщина которых примерно 0,1 микрона.

Помимо небольших размеров, TFT-дисплеи обладают быстродействием. У них высокая контрастность и четкость изображения, а также хороший угол обзора. У таких дисплеев отсутствует мерцание экрана, поэтому глаза устают не так сильно. У TFT-дисплеев также отсутствуют дефекты фокусировки лучей, помехи от магнитных полей, проблемы с качеством и четкостью изображения. Энергопотребление таких дисплеев на 90% определяется мощностью светодиодной матрицы подсветки или ламп подсветки. В сравнении с теми же ЭЛТ, энергопотребление TFT-дисплеев примерно в пять раз ниже.

Все эти преимущества существуют благодаря тому, что данная технология обновляет изображение на более высокой частоте. Это объясняется тем, что точки дисплея управляются отдельными тонкопленочными транзисторами. Количество таких элементов в TFT-дисплеях в три раза больше, чем число пикселей. То есть, на одну точку приходится три цветных транзистора, которые соответствуют основным цветам RGB – красный, зеленый и синий. К примеру, в дисплее с разрешением 1280 на 1024 пикселей количество транзисторов будет в три раза больше, а именно – 3840х1024. Именно в этом и заключается основной принцип работы TFT-технологии.

Недостатки матриц TFT

TFT-дисплеи, в отличии от ЭЛТ, могут показывать четкое изображение лишь в одном «родном» разрешении. Остальные разрешения достигаются интерполяцией. Также существенным минусом является сильная зависимость контраста от угла обзора. По сути, если смотреть на такие дисплеи сбоку, сверху или снизу - изображение будет сильно искажаться. В ЭЛТ дисплеях этой проблемы никогда и не существовало.

Кроме того, транзисторы любого пикселя могут выйти из строя, что приведет к появлению битых пикселей. Такие точки, как правило, ремонту не подлежат. И получится так, что где-то посредине экрана (или в углу) может быть маленькая, но заметная точка, которая сильно раздражает во время работы за компьютером. Также у TFT-дисплеев матрица не защищена стеклом, и возможна необратимая деградация при сильном нажатии на дисплей.

Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Простые приборы (электронные часы , телефоны, плееры , термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей . Многоцветное изображение формируется с помощью 2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на канал), 24-битность эмулируется мерцанием с дизерингом .

Устройство ЖК-монитора

Субпиксел цветного ЖК-дисплея

Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами , и двух поляризационных фильтров , плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны , поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света - ячейку можно считать прозрачной. Если же к электродам приложено напряжение - молекулы стремятся выстроиться в направлении поля , что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение , можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени - жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток , или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным - отражённым от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют , кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.

Технические характеристики ЖК-монитора

Важнейшие характеристики ЖК-мониторов:

  • Разрешение : Горизонтальный и вертикальный размеры, выраженные в пикселах . В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией .

Фрагмент матрицы ЖК монитора (0,78х0,78 мм), увеличеный в 46 раз.

  • Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
  • Соотношение сторон экрана (формат): Отношение ширины к высоте, например: 5:4, 4:3, 5:3, 8:5, 16:9, 16:10.
  • Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
  • Контрастность : отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
  • Яркость : количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
  • Время отклика : минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
  • Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.
  • Тип матрицы: технология, по которой изготовлен ЖК-дисплей.
  • Входы: (напр, DVI , HDMI и пр.).

Технологии

Часы с ЖКИ-дисплеем

Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.

Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода . Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.

Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal - плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.

TN+film (Twisted Nematic + film)

Часть «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно - от 90° до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

TN + film - самая простая технология.

Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.

IPS (In-Plane Switching)

Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.

На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB - 24 бита, по 8 бит на канал. TN-матрицы почти всегда имеют 6-бит, как и часть MVA.

Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.

При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.

IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика . Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT , контрастность все равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20", LG.Philips , NEC остаются единственными производителями панелей по данной технологии.

AS-IPS - технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации LG.Philips.

A-TW-IPS - Advanced True White IPS (Расширенная IPS с настоящим белым), разработано LG.Philips для корпорации году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК , на матрицах производства Hitachi Displays.

*VA (Vertical Alignment)

MVA - Multi-domain Vertical Alignment. Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176-178 градусов), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Достоинствами технологии MVA являются глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.

Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения, большее время отклика.

Аналогами MVA являются технологии:

  • PVA (Patterned Vertical Alignment ) от Samsung.
  • Super PVA от Samsung.
  • Super MVA от CMO.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам.

Преимущества и недостатки

Искажение изображения на ЖК-мониторе при большом угле обзора

Макрофотография типичной жк-матрицы. В центре можно увидеть два дефектных субпикселя (зелёный и синий).

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ . У ЖК-мониторов, в отличие от ЭЛТ , нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight - задний свет) ЖК-матрицы. Во многих современных (2007) мониторах для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более Герц . Светодиодная подсветка в основном используется в небольших дисплеях, хотя в последние годы она все шире применяется в ноутбуках и даже в настольных мониторах. Несмотря на технические трудности её реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват.

С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:

  • В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320x200) вообще не могут быть отображены на многих мониторах.
  • Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах).
  • Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
  • Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки).
  • Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев . Технология overdrive решает проблему скорости лишь частично.
  • Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
  • Массово производимые ЖК-мониторы более уязвимы, чем ЭЛТ. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей .
  • Вопреки расхожему мнению пикселы ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения.

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED -дисплеи. С другой стороны, эта технология встретила сложности в массовом производстве, особенно для матриц с большой диагональю.

См. также

  • Видимая область экрана
  • Антибликовое покрытие
  • en:Backlight

Ссылки

  • Информация о флюоресцентных лампах, используемых для подсветки ЖК-матрицы
  • Жидкокристаллические дисплеи (технологии TN + film, IPS, MVA, PVA)

Литература

  • Артамонов О. Параметры современных ЖК-мониторов
  • Мухин И. А. Как выбрать ЖК-монитор? . «Компьютер-бизнес-маркет», № 4 (292), январь 2005, стр. 284-291.
  • Мухин И. А. Развитие жидкокристаллических мониторов . «BROADCASTING Телевидение и радиовещение»: 1 часть - № 2(46) март 2005, с.55-56; 2 часть - № 4(48) июнь-июль 2005, с.71-73.
  • Мухин И. А. Современные плоскопанельные отображающие устройства ."BROADCASTING Телевидение и радиовещение": № 1(37), январь-февраль 2004, с.43-47.
  • Мухин И. А., Украинский О. В. Способы улучшения качества телевизионного изображения, воспроизводимого жидкокристаллическими панелями . Материалы доклада на научно-технической конференции «Современное телевидение», Москва, март 2006.

Что это - LCD? Если говорить коротко и ясно, это жидкокристаллический экран. Простые приборы, которые имеют такое оснащение, могут работать либо с черно-белым изображением, либо с 2-5 цветами. На данный момент описываемые экраны используются для отображения графической или текстовой информации. Их устанавливают в компьютеры, ноутбуки, телевизоры, телефоны, фотоаппараты, планшеты. Большинство электронных устройств на данный момент работает именно с таким экраном. Одной из популярных разновидностей такой техники является жидкокристаллический дисплей с активной матрицей.

История

Впервые жидкие кристаллы были открыты в 1888 году. Сделал это австриец Рейнитцер. В 1927 году русский физик Фредерикс открыл переход, который был назван в его честь. На данный момент он широко используется при создании жидкокристаллических дисплеев. В 1970 году компания RCA представила первый экран подобного типа. Его сразу стали применять в часах, калькуляторах и других приборах.

Чуть позже был создан матричный дисплей, который работал с черно-белым изображением. Цветной жидкокристаллический экран появился в 1987 году. Его создатель - компания Sharp. Диагональ этого прибора составляла 3 дюйма. Отзывы о LCD-экране такого типа были положительными.

Устройство

Рассматривая LCD-экраны, необходимо упомянуть о конструкции технологии.

Состоит данное устройство из ЖК-матрицы, источников света, которые обеспечивают непосредственно саму подсветку. Имеется пластиковый корпус, обрамленный металлической рамкой. Она необходима для придания жесткости. Также используются контактные жгуты, которые являются проводами.

ЖК-пиксели состоят из двух электродов прозрачного типа. Между ними размещается слой молекул, а также имеется два поляризационных фильтра. Их плоскости перпендикулярны. Следует отметить один нюанс. Он заключается в том, что если бы жидких кристаллов между вышеуказанными фильтрами не существовало, то свет, проходящий через один из них, блокировался бы сразу же вторым.

Поверхность электродов, которая соприкасается с жидкими кристаллами, покрыта специальной оболочкой. За счет этого молекулы движутся в одном направлении. Как уже было сказано выше, в основном они располагаются перпендикулярно. При отсутствии напряжения все молекулы имеют винтовую структуру. За счет этого свет преломляется и проходит через второй фильтр без потерь. Теперь любой человек должен понимать что это - LCD с точки зрения физики.

Преимущества

Если сравнивать с электронно-лучевыми приборами, то здесь выигрывает. Он имеет небольшие размеры и массу. ЖК-устройства не мерцают, у них нет проблем с фокусировкой, а также со сведением лучей, не появляются помехи, которые возникают от магнитных полей, нет никаких проблем с геометрией картинки и ее четкостью. Можно прикрепить дисплей LCD на кронштейнах к стене. Сделать это очень просто. При этом картинка не потеряет своих качеств.

Сколько потребляет ЖК-монитор, полностью зависит от настроек изображения, модели самого прибора, а также от характеристик подачи сигнала. Поэтому этот показатель может как совпадать с потреблением тех же лучевых устройств и плазменных экранов, так и быть гораздо ниже. На данный момент известно, что трата электроэнергии ЖК-мониторов будет определяться мощностью установленных ламп, которые обеспечивают подсветку.

Необходимо также сказать о малогабаритных дисплеях LCD. Что это, чем они отличаются? Большая часть таких приборов не имеет подсветки. Эти экраны используются в калькуляторах, часах. Такие устройства отличаются совершенно низким энергопотреблением, поэтому они могут работать до нескольких лет автономно.

Недостатки

Однако эти приборы имеют и минусы. К сожалению, много недостатков являются трудноустранимыми.

Если сравнивать с электронно-лучевой техникой, то четкое изображение на ЖК-дисплее можно получить лишь при штатном разрешении. Чтобы добиться хорошей характеристики других картинок, придется использовать интерполяцию.

ЖК-мониторы имеют средний контраст, а также плохую глубину черного цвета. Если захочется увеличить первый показатель, то нужно сделать больше яркость, что не всегда обеспечивает комфортный просмотр. Эта проблема заметна в устройствах LCD от Sony.

Скорость смены кадров у ЖК-дисплеев намного меньше, если сравнивать с плазменными экранами или электронно-лучевыми. На данный момент разработана технология Overdrive, однако она не решает проблемы скорости.

С углами обзора также имеются некоторые нюансы. Они полностью зависят от контрастности. У электронно-лучевой техники такой неприятности нет. ЖК-мониторы не защищены от механических повреждений, матрица не покрыта стеклом, поэтому при сильном нажатии можно деформировать кристаллы.

Подсветка

Поясняя, что это такое - LCD, следует сказать и об этой характеристике. Сами кристаллы не светятся. Поэтому для того чтобы изображение стало видимым, необходимо иметь источник света. Он может быть внешним или внутренним.

В качестве первого следует использовать солнечные лучи. Во втором варианте применяется искусственный источник.

Как правило, лампы со встроенной подсветкой устанавливаются сзади всех слоев жидких кристаллов, за счет чего они просвечиваются насквозь. Также встречается боковая подсветка, которая используется в часах. В телевизорах LCD (что это - ответ выше) такой тип конструкции не применяется.

Что касается внешнего освещения, то, как правило, черно-белые дисплеи часов и мобильных телефонов работают при наличии такого источника. Позади слоя с пикселями находится специальная матовая отражающая поверхность. Она позволяет отбивать солнечный свет или же излучение от ламп. Благодаря этому можно использовать такие устройства в темноте, так как производители встраивают боковую подсветку.

Дополнительная информацция

Есть дисплеи, в которых объединены внешний источник и дополнительно встроенные лампы. Ранее в некоторых часах, где был установлен ЖК-экран монохромного типа, использовалась специальная лампа накаливания небольшого размера. Однако из-за того что она потребляет слишком много энергии, такое решение не является выгодным. Подобные устройства уже не используются в телевизорах, так как они выделяют большое количество тепла. Из-за этого жидкие кристаллы разрушаются и перегорают.

В начале 2010 года стали распространенными LCD-телевизоры (что это такое, мы рассмотрели выше), которые имели Такие дисплеи не стоит путать с действительно настоящими LED-экранами, где каждый пиксель светится самостоятельно, являясь светодиодом.