Для чего нужен ранг матрицы. Найти ранг матрицы: способы и примеры

>>Ранг матрицы

Ранг матрицы

Определение ранга матрицы

Рассмотрим прямоугольную матрицу. Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k-го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А. Очевидно, что матрица А обладает минорами любого порядка от 1 до наименьшего из чисел m и n. Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r , то это означает, что в матрице А имеется отличный от нуля минор порядка r , но всякий минор порядка, большего чем r , равен нулю. Ранг матрицы А обозначается через r(A). Очевидно, что выполняется соотношение

Вычисление ранга матрицы с помощью миноров

Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований. При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор D k-го порядка матрицы А, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D, т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен k .

Пример 1. Найти методом окаймления миноров ранг матрицы

.

Решение. Начинаем с миноров 1-го порядка, т.е. с элементов матрицы А. Выберем, например, минор (элемент) М 1 = 1, расположенный в первой строке и первом столбце. Окаймляя при помощи второй строки и третьего столбца, получаем минор M 2 = , отличный от нуля. Переходим теперь к минорам 3-го порядка, окаймляющим М 2 . Их всего два (можно добавить второй столбец или четвертый). Вычисляем их: = 0. Таким образом, все окаймляющие миноры третьего порядка оказались равными нулю. Ранг матрицы А равен двум.

Вычисление ранга матрицы с помощью элементарных преобразований

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными , если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например,

.

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Пример 2 Найти ранг матрицы

А=

и привести ее к каноническому виду.

Решение. Из второй строки вычтем первую и переставим эти строки:

.

Теперь из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5:

;

из третьей строки вычтем первую; получим матрицу

В = ,

которая эквивалентна матрице А, так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы В равен 2, а следовательно, и r(A)=2. Матрицу В легко привести к канонической. Вычитая первый столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменяются. Затем, вычитая второй столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу:

.

Пусть задана некоторая матрица :

.

Выделим в этой матрице произвольных строк ипроизвольных столбцов
. Тогда определитель-го порядка, составленный из элементов матрицы
, расположенных на пересечении выделенных строк и столбцов, называется минором-го порядка матрицы
.

Определение 1.13. Рангом матрицы
называется наибольший порядок минора этой матрицы, отличного от нуля.

Для вычисления ранга матрицы следует рассматривать все ее миноры наименьшего порядка и, если хоть один из них отличный от нуля, переходить к рассмотрению миноров старшего порядка. Такой подход к определению ранга матрицы называется методом окаймления (или методом окаймляющих миноров).

Задача 1.4. Методом окаймляющих миноров определить ранг матрицы
.

.

Рассмотрим окаймление первого порядка, например,
. Затем перейдем к рассмотрению некоторого окаймления второго порядка.

Например,
.

Наконец, проанализируем окаймление третьего порядка.

.

Таким образом, наивысший порядок минора, отличного от нуля, равен 2, следовательно,
.

При решении задачи 1.4 можно заметить, что ряд окаймляющих миноров второго порядка отличны от нуля. В этой связи имеет место следующее понятие.

Определение 1.14. Базисным минором матрицы называется всякий, отличный от нуля минор, порядок которого равен рангу матрицы.

Теорема 1.2. (Теорема о базисном миноре). Базисные строки (базисные столбцы) линейно независимы.

Заметим, что строки (столбцы) матрицы линейно зависимы тогда и только тогда, когда хотя бы одну из них можно представить как линейную комбинацию остальных.

Теорема 1.3. Число линейно независимых строк матрицы равно числу линейно независимых столбцов матрицы и равно рангу матрицы.

Теорема 1.4. (Необходимое и достаточное условие равенства нулю определителя). Для того, чтобы определитель-го порядкабыл равен нулю, необходимо и достаточно, чтобы его строки (столбцы) были линейно зависимы.

Вычисление ранга матрицы, основанное на использовании его определения, является слишком громоздкой операцией. Особенно это становится существенным для матриц высоких порядков. В этой связи на практике ранг матрицы вычисляют на основании применения теорем 10.2 - 10.4, а также использования понятий эквивалентности матриц и элементарных преобразований.

Определение 1.15. Две матрицы
иназываются эквивалентными, если их ранги равны, т.е.
.

Если матрицы
иэквивалентны, то отмечают
.

Теорема 1.5. Ранг матрицы не меняется от элементарных преобразований.

Будем называть элементарными преобразованиями матрицы
любые из следующих действий над матрицей:

Замену строк столбцами, а столбцов соответствующими строками;

Перестановку строк матрицы;

Вычеркивание строки, все элементы которой равны нулю;

Умножение какой-либо строки на число, отличное от нуля;

Прибавление к элементам одной строки соответствующих элементов другой строки умноженных на одно и то же число
.

Следствие теоремы 1.5. Если матрица
получена из матрицыпри помощи конечного числа элементарных преобразований, то матрицы
иэквивалентны.

При вычислении ранга матрицы ее следует привести при помощи конечного числа элементарных преобразований к трапециевидной форме.

Определение 1.16. Трапециевидной будем называть такую форму представления матрицы, когда в окаймляющем миноре наибольшего порядка отличного от нуля все элементы, стоящие ниже диагональных, обращаются в нуль. Например:

.

Здесь
, элементы матрицы
обращаются в нуль. Тогда форма представления такой матрицы будет трапециевидной.

Как правило, матрицы к трапециевидной форме приводят при помощи алгоритма Гаусса. Идея алгоритма Гаусса состоит в том, что, умножая элементы первой строки матрицы на соответствующие множители, добиваются, чтобы все элементы первого столбца, расположенные ниже элемента
, превращались бы в нуль. Затем, умножая элементы второго столбца на соответствующие множители, добиваются, чтобы все элементы второго столбца, расположенные ниже элемента
, превращались бы в нуль. Далее поступают аналогично.

Задача 1.5. Определить ранг матрицы путем сведения ее к трапециевидной форме.

.

Для удобства применения алгоритма Гаусса можно поменять местами первую и третью строки.






.

Очевидно, что здесь
. Однако, для приведения результата к более изящному виду можно далее продолжить преобразования над столбцами.








.

Определение ранга матрицы

Рассмотрим матрицу \(A\) типа \((m,n)\). Пусть, для определенности, \(m \leq n\). Возьмем \(m\) строк и выберем \(m\) столбцов матрицы \(A\), на пересечении этих строк и столбцов получится квадратная матрица порядка \(m\), определитель которой называют минором порядка \(m\) матрицы \(A\). Если этот минор отличен от 0, его называют базисным минором и говорят, что ранг матрицы \(A\) равен \(m\). Если же этот определитель равен 0, то выбирают другие \(m\) столбцов, на их пересечении стоят элементы, образующие другой минор порядка \(m\). Если минор равен 0, продолжаем процедуру. Если среди всех возможных миноров порядка \(m\) нет отличных от нуля, мы выбираем \(m-1\) cтрок и столбцов из матрицы \(A\), на их пересечении возникает квадратная матрица порядка \(m-1\), ее определитель называется минором порядка \(m-1\) исходной матрицы. Продолжая процедуру, ищем ненулевой минор, перебирая все возможные миноры, понижая их порядок.

Определение.

Ненулевой минор данной матрицы наивысшего порядка называется базисным минором исходной матрицы, его порядок называется рангом матрицы \(A\), строки и столбцы, на пересечении которых находится базисный минор, называются базисныи строками и столбцами. Ранг матрицы обозначается \(rang(A)\).

Из этого определения следуют простые свойства ранга матрицы: это целое число, причем ранг ненулевой матрицы удовлетворяет неравенствам: \(1 \leq rang(A) \leq \min(m,n)\).

Как изменится ранг матрицы, если вычеркнуть какую-нибудь строку? Добавить какую-нибудь строку?

Проверить ответ

1) Ранг может уменьшиться на 1.

2) Ранг может увеличиться на 1.

Линейная зависимость и линейная независимость столбцов матрицы

Пусть \(A\) - матрица типа \((m,n)\). Рассмотрим столбцы матрицы \(A\) - это столбцы из \(m\) чисел каждый. Обозначим их \(A_1,A_2,...,A_n\). Пусть \(c_1,c_2,...,c_n\) - какие-то числа.

Определение.

Столбец \[ D=c_1A_1+c_2A_2+...+c_nA_n = \sum _{m=1}^nc_mA_m \] называется линейной комбинацией столбцов \(A_1,A_2,...,A_n\), числа \(c_1,c_2,...,c_n\) называются коэффициентами этой линейной комбинации.

Определение.

Пусть дано \(p\) столбцов \(A_1, A_2, ..., A_p\). Если существуют такие числа \(c_1,c_2,...,c_p\), что

1. не все эти числа равны нулю,

2. линейная комбинация \(c_1A_1+c_2A_2+...+c_pA_p =\sum _{m=1}^pc_mA_m\) равна нулевому столбцу (т.е. столбцу, все элементы которого нули), то говорят, что столбцы \(A_1, A_2, ..., A_p\) линейно зависимы. Если для данного набора столбцов таких чисел \(c_1,c_2,...,c_n\) не существует, столбцы называются линейно независимыми.

Пример. Рассмотрим 2-столбцы

\[ A_1=\left(\begin{array}{c} 1 \\ 0 \end{array} \right), A_2=\left(\begin{array}{c} 0 \\ 1 \end{array} \right), \] тогда для любых чисел \(c_1,c_2\) имеем: \[ c_1A_1+c_2A_2=c_1\left(\begin{array}{c} 1 \\ 0 \end{array} \right)+c_2\left(\begin{array}{c} 0 \\ 1 \end{array} \right)=\left(\begin{array}{c} c_1 \\ c_2 \end{array} \right). \]

Эта линейная комбинация равна нулевому столбцу тогда и только тогда, когда оба числа \(c_1,c_2\) равны нулю. Таким образом, эти столбцы линейно независимы.

Утверждение. Для того, чтобы столбцы были линейно зависимы, необходимо и достаточно, чтобы один из них был линейной комбинацией остальных.

Пусть столбцы \(A_1,A_2,...,A_m\) линейно зависимы, т.е. для некоторых констант \(\lambda _1, \lambda _2,...,\lambda _m\), не все из которых равны 0, выполняется: \[ \sum _{k=1}^m\lambda _kA_k=0 \] (в правой части - нулевой столбец). Пусть, например, \(\lambda _1 \neq 0\). Тогда \[ A_1=\sum _{k=2}^mc_kA_k, \quad c_k=-\lambda _k/\lambda _1, \quad \quad (15) \] т.е. первый столбец - линейная комбинация остальных.

Теорема о базисном миноре

Теорема.

Для любой ненулевой матрицы \(A\) справедливо следующее:

1. Базисные столбцы линейно независимы.

2. Любой столбец матрицы является линейной комбинацией его базисных столбцов.

(Аналогичное верно и для строк).

Пусть, для определенности, \((m,n)\) - тип матрицы \(A\), \(rang(A)=r \leq n\) и базисный минор расположен в первых \(r\) строках и столбцах матрицы \(A\). Пусть \(s\) - любое число между 1 и \(m\), \(k\) - любое число между 1 и \(n\). Рассмотрим минор следующего вида: \[ D=\left| \begin{array}{ccccc} a_{11} & a_{12} & \ldots & a_{1r} & a_{1s} \\ a_{21} & a_{22} & \ldots & a_{2r} & a_{2s} \\ \dots &\ldots & \ldots & \ldots & \ldots \\ a_{r1} & a_{r2} & \ldots & a_{rr} & a_{rs} \\ a_{k1} & a_{k2} & \ldots & a_{kr} & a_{ks} \\ \end{array} \right| , \] т.е. мы к базисному минору приписали \(s-\)ый столбец и \(k-\)ую строку. По определению ранга матрицы этот определитель равен нулю (если мы выбрали \(s\leq r\) или \(k \leq r\) , значит в этом миноре 2 одинаковых столбца или 2 одинаковых строки, если \(s>r\) и \(k>r\) - по определению ранга минор размера больше \(r\) обращается в ноль). Разложим этот определитель по последней строке, получим: \[ a_{k1}A_{k1}+a_{k2}A_{k2}+....+a_{kr}A_{kr}+a_{ks}A_{ks}=0. \quad \quad(16) \]

Здесь числа \(A_{kp}\) - алгебраические дополнения элементов из нижней строки \(D\). Их величины не зависят от \(k\), т.к. образуются с помощью элементов из первых \(r\) строк. При этом величина \(A_{ks}\) - это базисный минор, отличный от 0. Обозначим \(A_{k1}=c_1,A_{k2}=c_2,...,A_{ks}=c_s \neq 0\). Перепишем в новых обозначениях (16): \[ c_1a_{k1}+c_2a_{k2}+...+c_ra_{kr}+c_sa_{ks}=0, \] или, разделив на \(c_s\), \[ a_{ks}=\lambda_1a_{k1}+\lambda_2a_{k2}+...+\lambda_ra_{kr}, \quad \lambda _p=-c_p/c_s. \] Это равенство справедливо для любого значения \(k\), так что \[ a_{1s}=\lambda_1a_{11}+\lambda_2a_{12}+...+\lambda_ra_{1r}, \] \[ a_{2s}=\lambda_1a_{21}+\lambda_2a_{22}+...+\lambda_ra_{2r}, \] \[ ........................................................ \] \[ a_{ms}=\lambda_1a_{m1}+\lambda_2a_{m2}+...+\lambda_ra_{mr}. \] Итак, \(s-\)ый столбец является линейной комбинацией первых \(r\) столбцов. Теорема доказана.

Замечание.

Из теоремы о базисном миноре следует, что ранг матрицы равен числу ее линейно независимых столбцов (которое равно числу линейно независимых строк).

Следствие 1.

Если определитель равен нулю, то у него есть столбец, который является линейной комбинацией остальных столбцов.

Следствие 2.

Если ранг матрицы меньше числа столбцов, то столбцы матрицы линейно зависимы.

Вычисление ранга матрицы и нахождение базисного минора

Некоторые преобразования матрицы не меняют ее ранг. Такие преобразования можно назвать элементарными. Соответствующие факты нетрудно проверить с помощью свойств определителей и определения ранга матрицы.

1. Перестановка столбцов.

2. Умножение элементов какого-нибудь столбца на ненулевой множитель.

3. Прибавление к столбцу любого другого столбца, умноженного на произвольное число.

4. Вычеркивание нулевого столбца.

Аналогичное верно и для строк.

С помощью этих преобразований матрицу можно преобразовать к так называемой "трапециевидной" форме - матрице, под главной диагональю которой располагаются только нули. Для "трапециевидной" матрицы ранг - это число ненулевых элементов на главной диагонали, и базисный минор - минор, диагональ которого совпадает с набором ненулевых элементов на главной диагонали преобразованной матрицы.

Пример. Рассмотрим матрицу

\[ A=\left(\begin{array}{cccc} 2 &1 & 11 & 2 \\ 1 & 0 & 4 & -1 \\ 11 & 4 & 56 & 5 \\ 2 & -1 & 5 & -6 \end{array} \right). \] Будем преобразовывать ее с помощью указанных выше преобразований. \[ A=\left(\begin{array}{cccc} 2 &1 & 11 & 2 \\ 1 & 0 & 4 & -1 \\ 11 & 4 & 56 & 5 \\ 2 & -1 & 5 & -6 \end{array} \right) \mapsto \left(\begin{array}{cccc} 1 & 0 & 4 & -1 \\ 2 & 1 & 11 & 2 \\ 11 & 4 & 56 & 5 \\ 2 & -1 & 5 & -6 \end{array} \right) \mapsto \left(\begin{array}{cccc} 1 & 0 & 4 & -1 \\ 0 & 1 & 3 & 4 \\ 0 & 4 & 12 & 16 \\ 0 & -1 & -3 & -4 \end{array} \right) \mapsto \] \[ \left(\begin{array}{cccc} 1 & 0 & 4 & -1 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)\mapsto \left(\begin{array}{cccc} 1 & 0 & 4 & -1 \\ 0 & 1 & 3 & 4 \end{array}\right). \]

Здесь мы последовательно делаем следующие шаги: 1) переставляем вторую строку наверх, 2) вычитаем первую строку из остальных с подходящим множителем, 3) вычитаем вторую строку из третьей 4 раза, прибавляем вторую строку к четвертой, 4) вычеркиваем нулевые строки - третью и четвертую. Наша итоговая матрица прибрела желаемую форму: на главной диагонали стоят ненулевые числа, под главной диагональю - нули. После этого процедура останавливается и число ненулевых элементов на главной диагонали равно рангу матрицы. Базисный минор при этом - две первые строки и два первых столбца. На их пересечении стоит матрица порядка 2 с ненулевым определителем. При этом, возвращаясь по цепочке преобразований в обратную сторону, можно проследить, откуда возникла та или иная строка (тот или иной столбец) в конечной матрице, т.е. определить базисные строки и столбцы в исходной матрице. В данном случае первые две строки и первые два столбца образуют базисный минор.

«Если Вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи , то решайте их
Д. Пойа (1887-1985 г.)

(Математик. Внёс большой вклад в популяризацию математики. Написал несколько книг о том, как решают задачи и как надо учить решать задачи.)

Рассмотрим матрицу

Выделим в ней k-строк и k-столбцов (k≤(min(m,n)) ). Из элементов, стоящих на пересечении выделенных строк и столбцов, составим определитель k-го порядка. Все такие определители называются минорами этой матрицы.

Рассмотрим всевозможные миноры матрицы А , отличные от нуля.

Рангом матрицы А называется наибольший порядок минора этой матрицы, отличного от нуля.

Если все элементы матрицы равны нулю, то ранг этой матрицы принимают равным нулю.

Минор, порядок которого определяет ранг матрицы, называется базисным.

У матрицы может быть несколько базисных миноров.

Ранг матрицы А обозначается r(A) . Если r(A)=r(B) , то матрицы А и В называются эквивалентными. Пишут A̴∼В .

Свойства ранга матрицы:

  1. При транспонировании матрицы ее ранг не меняется.
  2. Если вычеркнуть из матрицы нулевую строку (столбец), то ранг матрицы не изменится.
  3. Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

Под элементарными преобразованиями понимают:

  • Перестановку строк матрицы;
  • Умножение какой-либо строки на число, отличное от нуля;
  • Прибавление к элементам одной строки соответствующих элементов другой строки, умноженной на произвольное число.

При вычислении ранга матрицы могут быть использованы элементарные преобразования, метод приведения матрицы к ступенчатому виду, метод окаймляющих миноров.

Метод приведения матрицы к ступенчатому виду заключается в том, что при помощи элементарных преобразований данная матрица приводится к ступенчатой.

Матрица называется ступенчатой , если в каждой ее строке первый ненулевой элемент стоит правее, чем в предыдущей (т. е. получаются ступеньки, высота каждой ступеньки должна быть равна единице).

Примеры ступенчатых матриц:

Примеры не ступенчатых матриц:

ПРИМЕР: Найти ранг матрицы:

РЕШЕНИЕ:

Приведем данную матрицу к ступенчатой с помощью элементарных преобразований.

1.Поменяем местами первую и третью строки.

2. Получим в первом столбце нули под единицей.

Прибавив ко второй строке первую, умноженную на (-3), к третьей – первую, умноженную на (-5), к четвертой – первую, умноженную на (-3), получим

Для того чтобы было понятней где еще нужно получить нули, нарисуем ступеньки в матрице. (Матрица будет ступенчатой, если везде под ступеньками будут нули)

3. Прибавив к третьей строке вторую, умноженную на (-1), к четвертой – вторую, умноженную на (-1), получим нули под ступеньками во втором столбце.

Если нарисовать опять ступеньки, увидим, что матрица ступенчатая.

Ее ранг равен r=3 (число строк ступенчатой матрицы, в каждой из которых хотя бы один элемент отличен от нуля). Следовательно, ранг данной матрицы r=3.

Решение можно записать так:

(римскими цифрами обозначены номера строк)

Ответ: r=3.

Минор порядка k+1 , содержащий в себе минор порядка k называется окаймляющим минор.

Метод окаймляющих миноров основан на том, что ранг данной матрицы равен порядку такого минора этой матрицы, который отличен от нуля, а все окаймляющие его миноры равны нулю.

Определение. Рангом матрицы называется максимальное число линейно независимых строк, рассматриваемых как векторы.

Теорема 1 о ранге матрицы. Рангом матрицы называется максимальный порядок отличного от нуля минора матрицы.

Понятие минора мы уже разбирали на уроке по определителям , а сейчас обобщим его. Возьмём в матрице сколько-то строк и сколько-то столбцов, причём это "сколько-то" должно быть меньше числа строк и стобцов матрицы, а для строк и столбцов это "сколько-то" должно быть одним и тем же числом. Тогда на пересечении скольки-то строк и скольки-то столбцов окажется матрица меньшего порядка, чем наша исходная матрица. Определитель это матрицы и будет минором k-го порядка, если упомянутое "сколько-то" (число строк и столбцов) обозначим через k.

Определение. Минор (r +1)-го порядка, внутри которого лежит выбранный минор r -го порядка, называется называется окаймляющим для данного минора.

Наиболее часто используются два способа отыскания ранга матрицы . Это способ окаймляющих миноров и способ элементарных преобразований (методом Гаусса).

При способе окаймляющих миноров используется следующая теорема.

Теорема 2 о ранге матрицы. Если из элементов матрицы можно составить минор r -го порядка, не равный нулю, то ранг матрицы равен r .

При способе элементарных преобразований используется следующее свойство:

Если путём элементарных преобразований получена трапециевидная матрица, эквивалентная исходной, то рангом этой матрицы является число строк в ней кроме строк, полностью состоящих из нулей.

Отыскание ранга матрицы способом окаймляющих миноров

Окаймляющим минором называется минор большего порядка по отношению к данному, если этот минорм большего порядка содержит в себе данный минор.

Например, дана матрица

Возьмём минор

окаймляющими будут такие миноры:

Алгоритм нахождения ранга матрицы следующий.

1. Находим не равные нулю миноры второго порядка. Если все миноры второго порядка равны нулю, то ранг матрицы будет равен единице (r =1 ).

2. Если существует хотя бы один минор второго порядка, не равный нулю, то составляем окаймляющие миноры третьего порядка. Если все окаймляющие миноры третьего порядка равны нулю, то ранг матрицы равен двум (r =2 ).

3. Если хотя бы один из окаймляющих миноров третьего порядка не равен нулю, то составляем окаймляющие его миноры. Если все окаймляющие миноры четвёртого порядка равны нулю, то ранг матрицы равен трём (r =2 ).

4. Продолжаем так, пока позволяет размер матрицы.

Пример 1. Найти ранг матрицы

.

Решение. Минор второго порядка .

Окаймляем его. Окаймляющих миноров будет четыре:

,

,

Таким образом, все окаймляющие миноры третьего порядка равны нулю, следовательно, ранг данной матрицы равен двум (r =2 ).

Пример 2. Найти ранг матрицы

Решение. Ранг данной матрицы равен 1, так как все миноры второго порядка этой матрицы равны нулю (в этом, как и в случаях окаймляющих миноров в двух следующих примерах, дорогим студентам предлагается убедиться самостоятельно, возможно, используя правила вычисления определителей), а среди миноров первого порядка, то есть среди элементов матрицы, есть не равные нулю.

Пример 3. Найти ранг матрицы

Решение. Минор второго порядка этой матрицы , в все миноры третьего порядка этой матрицы равны нулю. Следовательно, ранг данной матрицы равен двум.

Пример 4. Найти ранг матрицы

Решение. Ранг данной матрицы равен 3, так как единственный минор третьего порядка этой матрицы равен 3.

Отыскание ранга матрицы способом элементарных преобразований (методом Гаусса)

Уже на примере 1 видно, что задача определения ранга матрицы способом окаймляющих миноров требует вычисления большого числа определителей. Существует, однако, способ, позволяющий свести объём вычислений к минимуму. Этот способ основан на использовании элементарных преобразований матриц и ещё называется также методом Гаусса.

Под элементарными преобразованиями матрицы понимаются следующие операции:

1) умножение какой-либо строки или какого либо столбца матрицы на число, отличное от нуля;

2) прибавление к элементам какой-либо строки или какого-либо столбца матрицы соответствующих элементов другой строки или столбца, умноженных на одно и то же число;

3) перемена местами двух строк или столбцов матрицы;

4) удаление "нулевых" строк, то есть таких, все элементы которых равны нулю;

5) удаление всех пропорциональных строк, кроме одной.

Теорема. При элементарном преобразовании ранг матрицы не меняется. Другими словами, если мы элементарными преобразованиями от матрицы A перешли к матрице B , то .