Как устроена и работает мобильная сотовая связь.

Сотовая связь (мобильная связь) - один из видов мобильной радиосвязи, в базе которого лежит сотовая сеть. Это более современная разработка телефонной связи на сей день. Главная особенность состоит в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базисных станций (БС). Соты отчасти перекрываются и совместно образуют сеть. На безупречной (ровненькой и в отсутствие застройки) поверхности зона покрытия одной БС представляет собой круг, потому составленная из их сеть имеет вид сот с шестиугольными ячейками (сотами).

Выгоды сотовой связи явны: мобильный телефон дает свободу передвижения по всей местности обслуживания сети, каждый абонент может избрать более подходящий тариф обслуживания. Не считая услуг по телефонной связи, сотовая связь предлагает дополнительные услуги: это и голосовая почта, и переадресация, SMS, MMS, EMS, GPRS, EDGE, 3G и т.д. (находится в зависимости от модели мобильного телефона).

Сотовую сеть составляют разнесённые в пространстве приёмопередатчики, работающие в одном и том же частотном спектре, и коммутирующее оснащение, позволяющее определять текущее положение подвижных абонентов и обеспечивать непрерывность связи при перемещении абонента из зоны действия 1-го приёмопередатчика в зону действия другого.

Принцип действия сотовой связи

Главные составляющие сотовой сети - это мобильники и базисные станции. Базисные станции обычно располагают на крышах построек и вышках. Будучи включённым, мобильник прослушивает эфир, находя сигнал базисной станции. После чего телефон отправляет станции собственный уникальный идентификационный код. Телефон и станция поддерживают неизменный радиоконтакт, временами обмениваясь пакетами. Связь телефона со станцией может идти по аналоговому протоколу (AMPS, NAMPS, NMT -450) либо по цифровому (DAMPS, CDMA, GSM, UMTS ). В том случае телефон выходит из поля действия базисной станции, он налаживает связь с иной (англ. handover ).

Сотовые сети могут состоять из базисных станций различного эталона, что позволяет улучшить работу сети и сделать лучше её покрытие.

Сотовые сети различных операторов соединены вместе, также со стационарной телефонной сетью. Это позволяет абонентам 1-го оператора делать звонки абонентам другого оператора, с мобильников на стационарные и со стационарных на мобильные.

Операторы могут заключать меж собой договоры роуминга. Благодаря подобным договорам абонент, находясь вне зоны покрытия собственной сети, может совершать и принимать звонки через сеть другого оператора. Чаше всего, это осуществляется по завышенным тарифам.

Принцип работы сотовой связи

Основные принципы сотовой телефонии довольно просты. Первоначально Федеральная комиссия по связи установила географические зоны покрытия сотовых радиосистем на основе измененных данных переписи 1980 г. Идея сотовой связи состоит в том, что каждая зона подразделяется на ячейки шестиугольной формы, которые, совмещаясь, образуют структуру, напоминающую пчелиные соты, как показано на рисунке 6.1, а. Шестиугольная форма была выбрана потому, что она обеспечивает наиболее эффективную передачу, приблизительно соответствуя круговой диаграмме направленности и при этом устраняя щели, которые всегда возникают между соседними окружностями.

Сота определяется своими физическими размерами, численностью населения и структурой трафика. Федеральная комиссия по связи не регламентирует количеств сот в системе и их размер, предоставляя операторам возможность установить эти параметры в соответствии с ожидаемой структурой трафика. Каждой географической области выделяется фиксированное количество сотовых речевых каналов. Физические размеры соты зависят от абонентской плотности и структуры вызовов. Например, крупные соты (макросоты) обычно имеют радиус от 1,6 до 24 км при мощности передатчика базовой станции от 1 Вт до 6 Вт. Самые маленькие соты (микросоты) обычно имеют радиус 460 м или меньше при мощности передатчика базовой станции от 0,1 Вт до 1 Вт. На рисунке 6.1, б показана сотовая конфигурация с сотами двух размеров.

Рисунок 6.1. – Сотовая структура ячеек а);сотовая структура с сотами двух размеров б) классификация сот в)

Микросоты чаще всего используются в регионах с высокой плотностью населения. В силу своего небольшого радиуса действия микросоты менее подвержены воздействиям, ухудшающим качество передачи, например, отражениям и задержкам сигнала.

Макросота может накладываться на группу микросот, при этом микросоты обслуживают медленно перемещающиеся мобильные аппараты, а макросота – быстро перемещающиеся аппараты. Мобильный аппарат способен определять скорость своего перемещения как быструю или медленную. Это позволяет уменьшить число переходов из одной соты в другую и коррекции данных о месте нахождения.

Алгоритм перехода из одной соты в другую может быть изменен при малых расстояниях между мобильным аппаратом и базовой станцией микросоты.

Иногда радиосигналы в соте слиш­ком слабы, чтобы обеспечить надеж­ную связь внутри помещений. Осо­бенно это касается хорошо экрани­рованных участков и зон с высоким уровнем помех. В таких случаях ис­пользуются очень маленькие соты – пикосоты. Пикосоты внутри помеще­ний могут использовать те же час­тоты, что и обычные соты данного региона, особенно при благоприятной окружающей среде, как, например, в подземных тоннелях.

При планировании систем, использующих соты шестиугольной формы, передатчики базовой станции могут раз­мещаться в центре соты, на ребре соты или в вер­шине соты (рисунок 6.2 а, б, в соответственно). В сотах с передатчиком в центре используются обычно всенаправленные антенны, а в сотах с передатчиками на ребре или в вершине – секторные направленные антенны.

Всенаправленные антенны излучают и принимают сигналы одинаково во всех направлениях.

Рисунок 6.2 – Размещение передатчиков в сотах: в центре а); на ребре б); в вершине в)

В системе сотовой связи одна мощная стационарная базовая станция, расположенная высоко над центром города, может заменяться многочисленными одинаковыми маломощными станциями, которые устанавливаются в зоне покрытия на площадках, расположенных ближе к земле..

Соты, использующие одну и ту же группу радиоканалов, могут избежать взаимных влияний, если они правильно разнесены. При этом наблюдается повторное использование частот. Повторное использование частот – это выделение одной и той же группы частот (каналов) нескольким сотам при условии, что эти соты разделены значительны­ми расстояниями. Повторному использованию частот способствует уменьшение зоны обслуживания каждой соты. Базовой станции каждой соты выделяется группа рабочих частот, отличающихся от частот соседних сот, а антенны базовой станции выбираются таким образом, чтобы охватить желаемую зону обслуживания в пределах своей соты. Поскольку зона обслуживания ограничена границами одной соты, различные соты могут использовать одну и ту же группу рабочих частот без взаимных влияний при условии, что две таких соты находятся на достаточном расстоянии друг от друга.

Географическая зона обслуживания сотовой системы, содержащая несколько групп сот делится на кластеры (рисунок 6.3). Каждый кластер состоит из семи сот, которым выделяется одинаковое количество полнодуплексных каналов связи. Соты с одинаковыми буквенными обозначениями используют одну и ту же группу рабочих частот. Как видно из рисунка, одинаковые группы частот используются во всех трех кластерах, что позволяет в три раза увеличить количество доступных каналов мобильной связи. Буквы A , B , C , D , E , F и G обозначают семь групп частот.


Рисунок 6.3 – Принцип повторного использования частот в сотовой связи

Рассмотрим систему с фиксированным количеством полнодуплексных каналов, доступных в некоторой области. Каждая зона обслуживания разделя­ется на кластеры и получает группу каналов, которые распределяются между N сотами кластера, группируясь в неповторяющиеся комбинации. Все соты имеют одинаковое количество каналов, но при этом они могут обслуживать зоны раз­ового размера.

Таким образом, общее число каналов сотовой связи, доступных в кластере, можно представить выражением:

F = GN (6.1)

где F – число полнодуплексных каналов сотовой связи, доступных в кластере;

G – число каналов в соте;

N – число сот в кластере.

Если кластер «копируется» в пределах заданной зоны об­служивания m раз, то суммарное число полно дуплексных каналов составит:

C = mGN = mF (6.2)

где С – суммарное число каналов в заданной зоне;

m – число кластеров в заданной зоне.

Из выражений (6.1) и (6.2) видно, что суммарное число каналов в сотовой телефонной системе прямо пропорционально количеству «повторений» кластера в заданной зоне обслуживания. Если размер кластера уменьшается, а размер соты остается неизменным, то для покрытия заданной зоны обслуживания потребуется больше кластеров, и суммарное число каналов в системе возрастет.

Число абонентов, которые могут одновременно использовать одну и ту же группу частот (каналов), находясь не в соседних ячейках небольшой зоны об­служивания (например, в пределах города), зависит от общего числа ячеек в данной зоне. Обычно число таких абонентов равно четырем, однако в густона­селенных регионах оно может быть значительно больше. Это число называют коэффициентом повторного использования частот или FRF Frequency reuse factor . Математически его можно выразить отношением:

(6.3)

где N – общее число полно дуплексных каналов в зоне обслуживания;

С – общее число полнодуплексных каналов в соте.

В условиях прогнозируемого увеличения трафика сотовой связи возросший спрос на обслуживание удовлетворяют путем уменьшения размера соты, раз­деляя ее на несколько сот, каждая из которых имеет свою базовую станцию. Эффективное разделение сот позволяет системе обрабатывать больше вызовов при условии, что соты не будут слишком маленькими. Если диаметр соты стано­вится меньше 460 м, то базовые станции соседних ячеек будут влиять друг на друга. Соотношение между повторным использованием частот и размером кластера определяет, как можно изменить масштаб сотовой системы в случае увеличения абонентской плотности. Чем меньше сот в кластере, тем больше вероятность взаимных влияний между каналами.

Поскольку соты имеют шестиугольную форму, каждая из них всегда имеет шесть равноудаленных соседних сот, и углы между линиями, соединяющими центр любой соты с центрами соседних сот, кратны 60°. Поэтому число возмож­ных размеров кластера и схем размещения сот ограничено. Для соединения сот между собой без пробелов (мозаичным способом) геометрические размеры ше­стиугольника должны быть такими, чтобы число сот в кластере удовлетворяло условию:

(6.4)

где N – число сот в кластере; i и j – неотрицательные целые числа.

Отыскание маршрута к ближайшим сотам с совмещенным каналом (так называемым сотам первого яруса) происходит следующим образом:

Перемещение на i сот (через центры соседних сот):

Перемещение на j сот вперед (через центры соседних сот).

Например, число сот в кластере и место­положение сот первого яруса для следующих значений: j = 2. i = 3 будет определяться из выражения 6.4 (рисунок 6.4) N = 3 2 + 3 2 + 2 2 = 19.

На рисунке 6.5 показаны шесть ближайших сот, использующих те же каналы, что и сота А .


Процесс передачи обслуживания из одной соты в другую, т.е. когда мобильный аппарат удаляется от базовой станции 1 к базовой станции 2 (рисунок 6.6) включает четыре основных этапа:

1) инициирование – мобильный аппарат или сеть выявляет необходимость в передаче обслуживания и инициирует необходимые сетевые процедуры;

2) резервирование ресурсов – с помощью соответствующих сетевых проце­урр резервируются ресурсы сети, необходимые дляпередачи обслуживания (речевой канал и канал управления);

3) исполнение – непосредственная передача управления от одной базовой станции к другой;

4) окончание – излишние сетевые ресурсы освобождаются, становясь доступ­ными другим мобильным аппаратам.

Рисунок 6.6 – Передача обслуживания

Знаете ли вы, что происходит после того, как вы набрали номер друга на мобильном телефоне? Как сотовая сеть находит его в горах Андалусии или на побережье далекого острова Пасхи? Почему иногда неожиданно разговор прерывается? На прошлой неделе я побывал в компании Beeline и попытался разобраться, как устроена сотовая связь…

Большая площадь населенной части нашей страны покрыта Базовыми Станциями (БС). В поле они выглядят как красно-белые вышки, а в городе спрятаны на крышах нежилых домов. Каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров и общается с мобильным телефоном по служебным или голосовым каналам.

После того, как вы набрали номер друга, ваш телефон связывается с ближайшей к вам Базовой Станцией (БС) по служебному каналу и просит выделить голосовой канал. Базовая Станция отправляет запрос на контроллер (BSC), а тот переадресует его на коммутатор (MSC). Если ваш друг является абонентом той же сотовой сети, то коммутатор сверится с Home Location Register (HLR), выяснит, где в данный момент находится вызываемый абонент (дома, в Турции или на Аляске), и переведет звонок на соответствующий коммутатор, откуда тот его переправит на контроллер и затем на Базовую Станцию. Базовая Станция свяжется с мобильным телефоном и соединит вас с другом. Если ваш друг абонент другой сети или вы звоните на городской телефон, то ваш коммутатор обратится к соответствующему коммутатору другой сети. Сложно? Давайте разберемся подробнее. Базовая Станция представляет из себя пару железных шкафов, запертых в хорошо кондиционируемом помещении. Учитывая, что в Москве было на улице +40, мне захотелось немного пожить в этом помещении. Обычно, Базовая Станция находится либо на чердаке здания, либо в контейнере на крыше:

2.

Антенна Базовой Станции разделена на несколько секторов, каждый из которых «светит» в свою сторону. Вертикальная антенна осуществляет связь с телефонами, круглая соединяет Базовую Станцию с контроллером:

3.

Каждый сектор может обслуживать до 72 звонков одновременно, в зависимости от настройки и конфигурации. Базовая Станция может состоять из 6 секторов, таким образом, одна Базовая Станция может обслуживать до 432 звонков, однако, обычно на станции установлено меньшее количество передатчиков и секторов. Сотовые операторы предпочитают ставить больше БС для улучшения качества связи. Базовая Станция может работать в трех диапазонах: 900 МГц — сигнал на этой частоте распространяется дальше и лучше проникает внутрь зданий 1800 МГц — сигнал распространяется на более короткие расстояния, но позволяет установить большее количество передатчиков на 1 секторе 2100 МГц — Сеть 3G Вот так выглядит шкаф с 3G оборудованием:

4.

На Базовые Станции в полях и деревнях устанавливают передатчики 900 МГц, а в городе, где Базовые Станции натыканы как иглы у ежика, в основном, связь осуществляется на частоте 1800 МГц, хотя на любой Базовой Станции могут присутствовать передатчики всех трех диапазонов одновременно.

5.

6.

Сигнал частотой 900 МГц может бить до 35 километров, хотя «дальность» некоторых Базовых Станций, стоящих вдоль трасс, может доходить до 70 километров, за счет снижения числа одновременно обслуживаемых абонентов на станции в два раза. Соответственно, наш телефон с его маленькой встроенной антенной также может передавать сигнал на расстояние до 70 километров… Все Базовые Станции проектируются таким образом, чтобы обеспечить оптимальное покрытие радиосигналом на уровне земли. Поэтому, несмотря на дальность в 35 километров, на высоту полета самолетов радиосигнал просто не посылается. Тем не менее, некоторые авиакомпании уже начали устанавливать на своих самолетах маломощные базовые станции, которые обеспечивают покрытие внутри самолета. Такая БС соединяется с наземной сотовой сетью с помощью спутникового канала. Система дополняется панелью управления, которая позволяет экипажу включать и выключать систему, а также отдельные типы услуг, например, выключать голос на ночных рейсах. Телефон может измерять уровень сигнала от 32 Базовых Станций одновременно. Информацию о 6-ти лучших (по уровню сигнала) он отправляет по служебному каналу, и уже контроллер (BSC) решает, какой БС передать текущий звонок (Handover), если вы находитесь в движении. Иногда телефон может ошибиться и перебросить вас на БС с худшим сигналом, в этом случае разговор может прерваться. Также может оказаться, что на Базовой Станции, которую выбрал ваш телефон, все голосовые линии заняты. В этом случае разговор также прервется. Еще мне рассказали о так называемой «проблеме верхних этажей». Если вы живете в пентхаусе, то иногда, при переходе из одной комнаты в другую, разговор может прерываться. Это происходит потому, что в одной комнате телефон может «видеть» одну БС, а во второй — другую, если она выходит на другую сторону дома, и, при этом эти 2 Базовые Станции находятся на большом удалении друг от друга и не прописаны как «соседние» у сотового оператора. В этом случае передача звонка с одной БС на другую происходить не будет:

Связь в метро обеспечивается так же, как и на улице: Базовая Станция – контроллер – коммутатор, с той лишь разницей, что применяются там маленькие Базовые Станции, а в тоннеле покрытие обеспечивается не обычной антенной, а специальным излучающим кабелем. Как я уже писал выше, одна БС может производить до 432 звонков одновременно. Обычно этой мощности хватает за глаза, но, например, во время некоторых праздников БС может не справиться с количеством желающих позвонить. Обычно это случается на Новый Год, когда все начинают поздравлять друг друга. SMS передаются по служебным каналам. На 8 марта и 23 февраля люди предпочитают поздравлять друг друга с помощью SMS, пересылая смешные стишки, и телефоны зачастую не могут договориться с БС о выделении голосового канала. Мне рассказали интересный случай. Из одного района Москвы стали поступать жалобы от абонентов о том, что они не могут никуда дозвониться. Технические специалисты стали разбираться. Большинство голосовых каналов было свободно, а все служебные были заняты. Оказалось, что рядом с этой БС находился институт, в котором шли экзамены и студенты беспрерывно обменивались эсэмэсками. Длинные SMS телефон делит на несколько коротких и отправляет каждое отдельно. Сотрудники технической службы советуют отправлять такие поздравления с помощью MMS. Это будет быстрее и дешевле. С Базовой Станции звонок попадает на контроллер. Выглядит он так же скучно, как и сама БС — это просто набор шкафов:

7.

В зависимости от оборудования, контроллер может обслуживать до 60 Базовых Станций. Связь между БС и контроллером (BSC) может осуществляться по радиорелейному каналу либо по оптике. Контроллер осуществляет управление работой радиоканалов, в т.ч. контролирует передвижение абонента, передачу сигнала с одной БС на другую. Гораздо интереснее выглядит коммутатор:

8.

9.

Каждый коммутатор обслуживает от 2 до 30 контроллеров. Он занимает уже большой зал, заставленный различными шкафами с оборудованием:

10.

11.

12.

Коммутатор осуществляет управление трафиком. Помните старые фильмы, где люди сначала дозванивались до «девушки», а затем она уже соединяла их с другим абонентом, перетыкивая проводки? Этим же занимаются и современные коммутаторы:

13.

Для контроля за сетью у Билайна есть несколько автомобилей, которые они ласково называют «ежики». Они передвигаются по городу и измеряют уровень сигнала собственной сети, а также уровень сети коллег из «Большой Тройки»:

14.

Вся крыша такого автомобиля утыкана антеннами:

15.

Внутри стоит оборудование, осуществляющее сотни звонков и снимающее информацию:

16.

Круглосуточный контроль за коммутаторами и контроллерами осуществляется из Центра Управления Полетами Центра Контроля Сети (ЦКС):

17.

Существует 3 основных направления по контролю за сотовой сетью: аварийность, статистика и обратная связь от абонентов. Так же, как и в самолетах, на всем оборудовании сотовой сети стоят датчики, которые посылают сигнал в ЦКС и выводят информацию на компьютеры диспетчеров. Если какое-то оборудование вышло из строя, то на мониторе начнет «мигать лампочка». ЦКС также отслеживает статистику по всем коммутаторам и контроллерам. Он анализирует ее, сравнивая с предыдущими периодами (часом, сутками, неделей и т.д.). Если статистика какого-то из узлов стала резко отличаться от предыдущих показателей, то на мониторе опять начнет «мигать лампочка». Обратную связь принимают операторы абонентской службы. Если они не могут решить проблему, то звонок переводится на технического специалиста. Если же и он оказывается бессильным, то в компании создается «инцидент», который решают инженеры, занимающиеся эксплуатацией соответствующего оборудования. За коммутаторами круглосуточно следят по 2 инженера:

18.

На графике показана активность московских коммутаторов. Хорошо видно, что ночью практически никто не звонит:

19.

Контроль за контроллерами (простите за тавтологию) осуществляется со второго этажа Центра Контроля Сети:

22.

21.

Мобильная сотовая связь

Сотовая связь - один из видов мобильной радиосвязи , в основе которого лежит сотовая сеть . Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично перекрываются и вместе образуют сеть. На идеальной (ровной и без застройки) поверхности зона покрытия одной БС представляет собой круг, поэтому составленная из них сеть имеет вид сот с шестиугольными ячейками (сотами).

Примечательно, что в английском варианте связь называется «ячеистой» или «клеточной» (cellular), что не учитывает шестиугольности сот .

Сеть составляют разнесённые в пространстве приёмопередатчики, работающие в одном и том же частотном диапазоне, и коммутирующее оборудование, позволяющее определять текущее местоположение подвижных абонентов и обеспечивать непрерывность связи при перемещении абонента из зоны действия одного приёмопередатчика в зону действия другого.

История

Первое использование подвижной телефонной радиосвязи в США относится к 1921 г.: полиция Детройта использовала одностороннюю диспетчерскую связь в диапазоне 2 МГц для передачи информации от центрального передатчика к приёмникам, установленным на автомашинах. В 1933 г. полиция Нью-Йорка начала использовать систему двусторонней подвижной телефонной радиосвязи также в диапазоне 2 МГц. В 1934 г. Федеральная комиссия связи США выделила для телефонной радиосвязи 4 канала в диапазоне 30…40 МГц, и в 1940 г. телефонной радиосвязью пользовались уже около 10 тысяч полицейских автомашин. Во всех этих системах использовалась амплитудная модуляция . Частотная модуляция начала применяться с 1940 г. и к 1946 г. полностью вытеснила амплитудную. Первый общественный подвижный радиотелефон появился в 1946 г. (Сент-Луис, США; фирма Bell Telephone Laboratories), в нём использовался диапазон 150 МГц. В 1955 г. начала работать 11-канальная система в диапазоне 150 МГц, а в 1956 г. - 12-канальная система в диапазоне 450 МГц. Обе эти системы были симплексными, и в них использовалась ручная коммутация. Автоматические дуплексные системы начали работать соответственно в 1964 г. (150 МГц) и в 1969 г. (450 МГц).

В СССР В 1957 г. московский инженер Л. И. Куприянович создал опытный образец носимого автоматического дуплексного мобильного радиотелефона ЛК-1 и базовую станцию к нему. Мобильный радиотелефон весил около трех килограммов и имел радиус действия 20-30 км. В 1958 году Куприянович создает усовершенствованные модели аппарата весом 0,5 кг и размером с папиросную коробку. В 60-х гг Христо Бочваров в Болгарии демонстрирует свой опытный образец карманного мобильного радиотелефона. На выставке «Интероргтехника-66» Болгария представляет комплект для организации местной мобильной связи из карманных мобильных телефонов РАТ-0,5 и АТРТ-0,5 и базовой станции РАТЦ-10, обеспечивающей подключение 10 абонентов.

В конце 50-х гг в СССР начинается разработка системы автомобильного радиотелефона «Алтай» , введенная в опытную эксплуатацию в 1963 г. Система «Алтай» первоначально работала на частоте 150 МГц. В 1970 г. система «Алтай» работала в 30 городах СССР и для нее был выделен диапазон 330 МГц.

Аналогичным образом, с естественными отличиями и в меньших масштабах, развивалась ситуация и в других странах. Так, в Норвегии общественная телефонная радиосвязь использовалась в качестве морской мобильной связи с 1931 г.; в 1955 г. в стране было 27 береговых радиостанций. Наземная мобильная связь начала развиваться после второй мировой войны в виде частных сетей с ручной коммутацией. Таким образом, к 1970 г. подвижная телефонная радиосвязь, с одной стороны, уже получила достаточно широкое распространение, но с другой - явно не успевала за быстро растущими потребностями, при ограниченном числе каналов в жёстко определённых полосах частот. Выход был найден в виде системы сотовой связи, что позволило резко увеличить ёмкость за счёт повторного использования частот в системе с ячеистой структурой.

Конечно, как это обычно бывает в жизни, отдельные элементы системы сотовой связи существовали и раньше. В частности, некоторое подобие сотовой системы использовалось в 1949 г. в Детройте (США) диспетчерской службой такси - с повторным использованием частот в разных ячейках при ручном переключении каналов пользователями в оговоренных заранее местах. Однако архитектура той системы, которая сегодня известна как система сотовой связи, была изложена только в техническом докладе компании Bell System, представленном в Федеральную комиссию связи США в декабре 1971 г. И с этого времени начинается развитие собственно сотовой связи, которое стало поистине триумфальным с 1985 г., в последние десять с небольшим лет.

В 1974 г. Федеральная комиссия связи США приняла решение о выделении для сотовой связи полосы частот в 40 МГц в диапазоне 800 МГц; в 1986 г. к ней было добавлено ещё 10 МГц в том же диапазоне. В 1978 г. в Чикаго начались испытания первой опытной системы сотовой связи на 2 тыс. абонентов. Поэтому 1978 год можно считать годом начала практического применения сотовой связи. Первая автоматическая коммерческая система сотовой связи была введена в эксплуатацию также в Чикаго в октябре 1983 г. компанией American Telephone and Telegraph (AT&T). В Канаде сотовая связь используется с 1978 г., в Японии - с 1979 г., в Скандинавских странах (Дания, Норвегия, Швеция, Финляндия) - с 1981 г., в Испании и Англии - с 1982 г. По состоянию на июль 1997 г. сотовая связь работала более чем в 140 странах всех континентов, обслуживая более 150 млн абонентов.

Первой коммерчески успешной сотовой сетью была финская сеть Autoradiopuhelin (ARP). Это название переводится на русский как «Автомобильный радиотелефон». Запущенная в г., она достигла 100%-ного покрытия территории Финляндии в . Размер соты был равен около 30 км , в г. в ней было более 30 тыс. абонентов . Работала она на частоте 150 МГц .

Принцип действия сотовой связи

Основные составляющие сотовой сети - это сотовые телефоны и базовые станции . Базовые станции обычно располагают на крышах зданий и вышках. Будучи включённым, сотовый телефон прослушивает эфир, находя сигнал базовой станции. После этого телефон посылает станции свой уникальный идентификационный код. Телефон и станция поддерживают постоянный радиоконтакт, периодически обмениваясь пакетами. Связь телефона со станцией может идти по аналоговому протоколу (NMT-450) или по цифровому (DAMPS , GSM, англ. handover ).

Сотовые сети могут состоять из базовых станций разного стандарта, что позволяет оптимизировать работу сети и улучшить её покрытие.

Сотовые сети разных операторов соединены друг с другом, а также со стационарной телефонной сетью. Это позволяет абонентам одного оператора делать звонки абонентам другого оператора, с мобильных телефонов на стационарные и со стационарных на мобильные.

Операторы разных стран могут заключать договоры роуминга . Благодаря таким договорам абонент, находясь за границей, может совершать и принимать звонки через сеть другого оператора (правда, по повышенным тарифам).

Сотовая связь в России

В России сотовая связь начала внедряться с 1990 г., коммерческое использование началось с 9 сентября 1991 г., когда в Санкт-Петербурге компанией «Дельта Телеком» была запущена первая в России сотовая сеть (работала в стандарте NMT-450) и был совершён первый символический звонок по сотовой связи мэром Санкт-Петербурга Анатолием Собчаком . К июлю 1997 г. общее число абонентов в России составило около 300 тысяч. На 2007 год основные протоколы сотовой связи, используемые в России - GSM-900 и GSM-1800 . Помимо этого, работают и UMTS. В частности, первый фрагмент сети этого стандарта в России был введён в эксплуатацию 2 октября 2007 года в Санкт-Петербурге компанией «МегаФон ». В Свердловской области продолжает эксплуатироваться сеть сотовой связи стандарта DAMPS , принадлежащей компании Сотовая Связь «МОТИВ» .

В России в декабре 2008 г насчитывалось 187,8 млн пользователей сотовой связи (по числу проданных сим-карт). Уровень проникновения сотовой связи (количество SIM-карт на 100 жителей) на эту дату составил, таким образом, 129,4 %. В регионах, без учёта Москвы, уровень проникновения превысил 119,7 %.

Доля рынка крупнейших сотовых операторов на декабрь 2008 года составила: 34,4 % у МТС , 25,4 % у «Вымпелкома » и 23,0 % у «МегаФона ».

В декабре 2007 года число пользователей сотовой связи в России выросло до 172,87 млн абонентов, в Москве - до 29,9, в Питере - до 9,7 млн. Уровень проникновения в России - до 119,1 %, Москве - 176 %, Санкт-Петербурге - 153 %. Доля рынка крупнейших сотовых операторов на декабрь 2007 года составила: МТС 30,9 %, «ВымпелКом» 29,2 %, «МегаФон» 19,9 %, другие операторы 20 %.

Согласно данным британской исследовательской компании Informa Telecoms & Media за 2006 год, средняя стоимость минуты сотовой связи для потребителя в России составила $0,05 - это самый низкий показатель из стран «большой восьмёрки ».

Компания IDC на основе исследования российского рынка сотовой связи сделала вывод, что в 2005 году общая продолжительность разговоров по сотовому телефону жителей РФ достигла 155 миллиардов минут, а текстовых сообщений было отправлено 15 миллиардов штук.

Согласно исследованию компании J"son & Partners, количество зарегистрированных в России сим-карт по состоянию на конец ноября 2008 года достигло 183,8 млн .

См. также

Источники

Ссылки

  • Информационный сайт о поколениях и стандартах сотовой связи .
  • Сотовая связь в России 2002-2007, данные официальной статистики

Принцип работы радиосвязи

Радио (лат.radio- излучаю, испускаю лучи radius- луч) - разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.

Принцип работы
Передача происходит следующим образом: на передающей стороне формируется сигнал с требуемыми характеристиками (частота и амплитуда сигнала). Далее передаваемыйсигналмодулируетболее высокочастотное колебание (несущее). Полученный модулированный сигнал излучается антенной в пространство. На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).Полученный модулированный сигнал излучается антенной в пространство.
На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).). Таким образом, происходит извлечение полезного сигнала. Получаемый сигнал может несколько отличаться от передаваемого передатчиком (искажения вследствие помех и наводок).

Частотные диапазоны
Частотная сетка, используемая в радиосвязи, условно разбита на диапазоны:

  • Длинные волны(ДВ)- f = 150-450 кГц (л = 2000-670 м)
  • Средние волны(СВ)- f = 500-1600 кГц (л = 600-190 м)
  • Короткие волны(КВ)- f = 3-30 МГц (л = 100-10 м)
  • Ультракороткие волны(УКВ)- f = 30 МГц- 300 МГц (л = 10-1 м)
  • Высокие частоты (ВЧ- сантиметровый диапазон)- f = 300 МГц- 3 ГГц (л = 1-0,1 м)
  • Крайне высокие частоты (КВЧ- миллиметровый диапазон)- f = 3 ГГц- 30 ГГц (л = 0,1-0,01 м)
  • Гипервысокие частоты (ГВЧ- микрометровый диапазон)- f = 30 ГГц- 300 ГГц (л = 0,01-0,001 м)

В зависимости от диапазона радиоволны имеют свои особенности и законы распространения:

  • ДВ сильно поглощаются ионосферой, основное значение имеют приземные волны, которые распространяются, огибая землю. Их интенсивность по мере удаления от передатчика уменьшается сравнительно быстро.
  • СВ сильно поглощаются ионосферой днём, и район действия определяется приземной волной, вечером хорошо отражаются от ионосферы и район действия определяется отражённой волной.
  • КВ распространяются исключительно посредством отражения ионосферой, поэтому вокруг передатчика существует т.н.зона радиомолчания. Днём лучше распространяются более короткие волны (30 МГц), ночью- более длинные (3 МГц). Короткие волны могут распространяться на большиме расстояния при малой мощности передатчика.
  • УКВ распространяются прямолинейно и, как правило, не отражаются ионосферой. Легко огибают препятствия и имеют высокую проникающую способность.
  • ВЧ не огибают препятствия, распространяются в пределах прямой видимости. Используются в WiFi, сотовой связи ит.д.
  • КВЧ не огибают препятствия, отражаются большинством препятствий, распространяются в пределах прямой видимости. Используются для спутниковой связи.
  • Гипервысокие частоты не огибают препятствия, отражаются подобно свету, распространяются в пределах прямой видимости. Использование ограничено.

Распространение радиоволн
Радиоволны распространяются в пустоте и в атмосфере; земная твердь и вода для них непрозрачны. Однако, благодаря эффектам дифракции и отражения, возможна связь между точками земной поверхности, не имеющими прямой видимости (в частности, находящимися на большом расстоянии).
Распространение радиоволн от источника к приёмнику может происходить несколькими путями одновременно. Такое распространение называетсямноголучёвостью. Вследствие многолучёвости и изменений параметров среды, возникаютзамирания(англ.fading)- изменение уровня принимаемого сигнала во времени. При многолучёвости изменение уровня сигнала происходит вследствие интерференции, то есть в точке приёма электромагнитное поле представляет собой сумму смещённых во времени радиоволн диапазона.

Радиолокация

Радиолока́ция - область науки и техники, объединяющая методы и средства обнаружения, измерения координат, а также определение свойств и характеристик различных объектов, основанных на использовании радиоволн. Близким и отчасти перекрывающимся термином является радионавигация, однако в радионавигации более активную роль играет объект, координаты которого измеряются, чаще всего это определение собственных координат. Основное техническое приспособление радиолокации - радиолокационная станция (англ. Radar).

Различают активную, полуактивную, активную с пассивным ответом и пассивную РЛ. Подразделяются по используемому диапазону радиоволн, по виду зондирующего сигнала, числу применяемых каналов, числу и виду измеряемых координат, месту установки РЛС.

Принцип действия

Радиолокация основана на следующих физических явлениях:

  • Радиоволны рассеиваются на встретившихся на пути их распространения электрических неоднородностях (объектами с другими электрическими свойствами, отличными от свойств среды распространения). При этом отражённая волна, также, как и собственно, излучение цели, позволяет обнаружить цель.
  • На больших расстояниях от источника излучения можно считать, что радиоволны распространяются прямолинейно и с постоянной скоростью, благодаря чему имеется возможность измерять дальность и угловые координаты цели (Отклонения от этих правил, справедливых только в первом приближении, изучает специальная отрасль радиотехники - Распространение радиоволн. В радиолокации эти отклонения приводят к ошибкам измерения).
  • Частота принятого сигнала отличается от частоты излучаемых колебаний при взаимном перемещении точек приёма и излучения (эффект Доплера), что позволяет измерять радиальные скорости движения цели относительно РЛС.
  • Пассивная радиолокация использует излучение электромагнитных волн наблюдаемыми объектами, это может быть тепловое излучение, свойственное всем объектам, активное излучение, создаваемое техническими средствами объекта, или побочное излучение, создаваемое любыми объектами с работающими электрическими устройствами.

Сотовая связь

Сотовая связь , сеть подвижной связи - один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть . Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично перекрываются и вместе образуют сеть. На идеальной (ровной и без застройки) поверхности зона покрытия одной БС представляет собой круг, поэтому составленная из них сеть имеет вид сот с шестиугольными ячейками (сотами).

Сеть составляют разнесённые в пространстве приёмопередатчики, работающие в одном и том же частотном диапазоне, и коммутирующее оборудование, позволяющее определять текущее местоположение подвижных абонентов и обеспечивать непрерывность связи при перемещении абонента из зоны действия одного приёмопередатчика в зону действия другого.

Принцип действия сотовой связи

Основные составляющие сотовой сети - это сотовые телефоны и базовые станции, которые обычно располагают на крышах зданий и вышках. Будучи включённым, сотовый телефон прослушивает эфир, находя сигнал базовой станции. После этого телефон посылает станции свой уникальный идентификационный код. Телефон и станция поддерживают постоянный радиоконтакт, периодически обмениваясь пакетами. Связь телефона со станцией может идти по аналоговому протоколу (AMPS, NAMPS, NMT-450) или по цифровому (DAMPS, CDMA, GSM, UMTS). Если телефон выходит из поля действия базовой станции (или качество радиосигнала сервисной соты ухудшается), он налаживает связь с другой (англ. handover ).

Сотовые сети могут состоять из базовых станций разного стандарта, что позволяет оптимизировать работу сети и улучшить её покрытие.

Сотовые сети разных операторов соединены друг с другом, а также со стационарной телефонной сетью. Это позволяет абонентам одного оператора делать звонки абонентам другого оператора, с мобильных телефонов на стационарные и со стационарных на мобильные.

Операторы могут заключать между собой договоры роуминга. Благодаря таким договорам абонент, находясь вне зоны покрытия своей сети, может совершать и принимать звонки через сеть другого оператора. Как правило, это осуществляется по повышенным тарифам. Возможность роуминга появилась лишь в стандартах 2G и является одним из главных отличий от сетей 1G.

Операторы могут совместно использовать инфраструктуру сети, сокращая затраты на развертывание сети и текущие издержки.

Услуги сотовой связи

Операторы сотовой связи предоставляют следующие услуги:

  • Голосовой звонок;
  • Автоответчик в сотовой связи (услуга);
  • Роуминг;
  • АОН (Автоматический определитель номера) и АнтиАОН;
  • Приём и передача коротких текстовых сообщений (SMS);
  • Приём и передача мультимедийных сообщений - изображений, мелодий, видео (MMS-сервис);
  • Мобильный банк (услуга);
  • Доступ в Интернет;
  • Видеозвонок и видеоконференция

Телевидение

Телеви́дение (греч. τήλε - далеко и лат. video - вижу; от новолатинского televisio - дальновидение) - комплекс устройств для передачи движущегося изображения и звука на расстояние. В обиходе используется также для обозначения организаций, занимающихся производством и распространением телевизионных программ.

Основные принципы

Телевидение основано на принципе последовательной передачи элементов изображения с помощью радиосигнала или по проводам. Разложение изображения на элементы происходит при помощи диска Нипкова, электронно-лучевой трубки или полупроводниковой матрицы. Количество элементов изображения выбирается в соответствии с полосой пропускания радиоканала и физиологическими критериями. Для сужения полосы передаваемых частот и уменьшения заметности мерцания экрана телевизора применяют чересстрочную развёртку. Также она позволяет увеличить плавность передачи движения.

Телевизионный тракт в общем виде включает в себя следующие устройства:

  1. Телевизионная передающая камера. Служит для преобразования изображения, получаемого при помощи объектива на мишени передающей трубки или полупроводниковой матрице, в телевизионный видеосигнал.
  2. Видеомагнитофон. Записывает и в нужный момент воспроизводит видеосигнал.
  3. Видеомикшер. Позволяет переключаться между несколькими источниками изображения: видеокамерами, видеомагнитофонами и другими.
  4. Передатчик. Сигнал радиочастоты модулируется телевизионным видеосигналом и передается по радио или по проводам.
  5. Приёмник - телевизор. С помощью синхроимпульсов, содержащихся в видеосигнале, телевизионное изображение воспроизводится на экране приемника (кинескоп, ЖК-дисплей, плазменная панель).

Кроме того, для создания телевизионной передачи используется звуковой тракт, аналогичный тракту радиопередачи. Звук передаётся на отдельной частоте обычно при помощи частотной модуляции, по технологии, аналогичной FM-радиостанциям. В цифровом телевидении звуковое сопровождение, часто многоканальное, передаётся в общем с изображением потоке данных.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11