Системы счисления. Перевод из одной системы в другую

Калькулятор позволяет переводить целые и дробные числа из одной системы счисления в другую. Основание системы счисления не может быть меньше 2 и больше 36 (10 цифр и 26 латинских букв всё-таки). Длина чисел не должна превышать 30 символов. Для ввода дробных чисел используйте символ. или, . Чтобы перевести число из одной системы в другую, введите исходное число в первое поле, основание исходной системы счисления во второе и основание системы счисления, в которую нужно перевести число, в третье поле, после чего нажмите кнопку "Получить запись".

Исходное число записано в 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 -ой системе счисления .

Хочу получить запись числа в 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 -ой системе счисления .

Получить запись

Выполнено переводов: 1363703

Системы счисления

Системы счисления делятся на два типа: позиционные и не позиционные . Мы пользуемся арабской системой, она является позиционной, а есть ещё римская − она как раз не позиционная. В позиционных системах положение цифры в числе однозначно определяет значение этого числа. Это легко понять, рассмотрев на примере какого-нибудь числа.

Пример 1 . Возьмём число 5921 в десятичной системе счисления. Пронумеруем число справа налево начиная с нуля:

Число 5921 можно записать в следующем виде: 5921 = 5000+900+20+1 = 5·10 3 +9·10 2 +2·10 1 +1·10 0 . Число 10 является характеристикой, определяющей систему счисления. В качестве степеней взяты значения позиции данного числа.

Пример 2 . Рассмотрим вещественное десятичное число 1234.567. Пронумеруем его начиная с нулевой позиции числа от десятичной точки влево и вправо:

Число 1234.567 можно записать в следующем виде: 1234.567 = 1000+200+30+4+0.5+0.06+0.007 = 1·10 3 +2·10 2 +3·10 1 +4·10 0 +5·10 -1 +6·10 -2 +7·10 -3 .

Перевод чисел из одной системы счисления в другую

Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:

1. Перевести число 1001101.1101 2 в десятичную систему счисления.
Решение: 10011.1101 2 = 1·2 4 +0·2 3 +0·2 2 +1·2 1 +1·2 0 +1·2 -1 +1·2 -2 +0·2 -3 +1·2 -4 = 16+2+1+0.5+0.25+0.0625 = 19.8125 10
Ответ: 10011.1101 2 = 19.8125 10

2. Перевести число E8F.2D 16 в десятичную систему счисления.
Решение: E8F.2D 16 = 14·16 2 +8·16 1 +15·16 0 +2·16 -1 +13·16 -2 = 3584+128+15+0.125+0.05078125 = 3727.17578125 10
Ответ: E8F.2D 16 = 3727.17578125 10

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.

Перевод целой части числа из десятичной системы счисления в другую систему счисления

Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.

3. Перевести число 273 10 в восьмиричную систему счисления.
Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421
Проверка : 4·8 2 +2·8 1 +1·8 0 = 256+16+1 = 273 = 273 , результат совпал. Значит перевод выполнен правильно.
Ответ: 273 10 = 421 8

Рассмотрим перевод правильных десятичных дробей в различные системы счисления.

Перевод дробной части числа из десятичной системы счисления в другую систему счисления

Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью . Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.

4. Перевести число 0.125 10 в двоичную систему счисления.
Решение: 0.125·2 = 0.25 (0 - целая часть, которая станет первой цифрой результата), 0.25·2 = 0.5 (0 - вторая цифра результата), 0.5·2 = 1.0 (1 - третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).
Ответ: 0.125 10 = 0.001 2

Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.

1. Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней двойки:

Таблица 4. Степени числа 2

n (степень)

Пример.

2. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней восьмерки:

Таблица 5. Степени числа 8

n (степень)

Пример. Число перевести в десятичную систему счисления.

3. Для перевода шестнадцатеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 16, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней числа 16:

Таблица 6. Степени числа 16

n (степень)

Пример. Число перевести в десятичную систему счисления.

4. Для перевода десятичного числа в двоичную систему его необходимо последовательно делить на 2 до тех пор, пока не останется остаток, меньший или равный 1. Число в двоичной системе записывается как последовательность последнего результата деления и остатков от деления в обратном порядке.

Пример. Число перевести в двоичную систему счисления.

5. Для перевода десятичного числа в восьмеричную систему его необходимо последовательно делить на 8 до тех пор, пока не останется остаток, меньший или равный 7. Число в восьмеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример. Число перевести в восьмеричную систему счисления.

6. Для перевода десятичного числа в шестнадцатеричную систему его необходимо последовательно делить на 16 до тех пор, пока не останется остаток, меньший или равный 15. Число в шестнадцатеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример. Число перевести в шестнадцатеричную систему счисления.

Таблица 2.4. 16-ричная система кодирования
Десятичная система 16-ричная система Десятичная система 16-ричная система
0 0 (0000) 10 A (1010)
1 1(0001) 11 B (1011)
2 2 (0010) 12 C (1100)
3 3 (0011) 13 D (1101)
4 4 (0100) 14 E (1110)
5 5 (0101) 15 F (1111)
6 6 (0110) 16 10 (00010000)
7 7 (0111) 17 11 (00010001)
8 8 (1000) 18 12 (00010010)
9 9 (1001) 19 13 (00010011)

Для перевода 16-ричного числа в десятичное необходимо умножить значение младшего (нулевого) разряда на единицу, значение следующего (первого) разряда на 16, второго разряда на 256 (16 2) и т.д., а затем сложить все произведения. Например, возьмем число A17F :

A17F=F*16 0 + 7*16 1 + 1*16 2 + A*16 3 = 15*1 + 7*16+1*256+10*4096=41343

Таблица 2.5. 8-ричная система кодирования
Десятичная система 8-ричная система Десятичная система 8-ричная система
0 0 (000) 10 12 (001010)
1 1(001) 11 13 (001011)
2 2 (010) 12 14 (001100)
3 3 (011) 13 15 (001101)
4 4 (100) 14 16 (001110)
5 5 (101) 15 17 (001111)
6 6 (110) 16 20 (010000)
7 7 (111) 17 21 (010001)
8 10 (001000) 18 22 (010010)
9 11 (001001) 19 23 (010011)

Но каждому специалисту по цифровой аппаратуре (разработчику, оператору, ремонтнику, программисту и т.д.) необходимо научиться так же свободно обращаться с 16-ричной и двоичной системами, как и с обычной десятичной, чтобы никаких переводов из системы в систему не требовалось.

Значительно реже, чем 16-ричное, используется восьмеричное кодирование , которое строится по такому же принципу, что и 16-ричное, но двоичные разряды разбиваются на группы по три разряда. Каждая группа (разряд кода) затем обозначается одним символом. Каждый разряд 8-ричного кода может принимать восемь значений: 0, 1, 2, 3, 4, 5, 6, 7 (табл. 2.5) .

Помимо рассмотренных кодов, существует также и так называемое двоично-десятичное представление чисел. Как и в 16-ричном коде, в двоично-десятичном коде каждому разряду кода соответствует четыре двоичных разряда, однако каждая группа из четырех двоичных разрядов может принимать не шестнадцать, а только десять значений, кодируемых символами 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. То есть одному десятичному разряду соответствует четыре двоичных. В результате получается, что написание чисел в двоично-десятичном коде ничем не отличается от написания в обычном десятичном коде (табл. 2.6) , но в реальности это всего лишь специальный двоичный код, каждый разряд которого может принимать только два значения: 0 и 1. Двоично-десятичный код иногда очень удобен для организации десятичных цифровых индикаторов и табло.

Таблица 2.6. Двоично-десятичная система кодирования
Десятичная система Двоично-десятичная система Десятичная система Двоично-десятичная система
0 0 (0000) 10 10 (00010000)
1 1(0001) 11 11 (00010001)
2 2 (0010) 12 12 (00010010)
3 3 (0011) 13 13 (00010011)
4 4 (0100) 14 14 (00010100)
5 5 (0101) 15 15 (00010101)
6 6 (0110) 16 16 (00010110)
7 7 (0111) 17 17 (00010111)
8 8 (1000) 18 18 (00011000)
9 9 (1001) 19 19 (00011001)

В двоичном коде над числами можно проделывать любые арифметические операции : сложение , вычитание , умножение , деление .

Рассмотрим, например, сложение двух 4-разрядных двоичных чисел. Пусть надо сложить число 0111 (десятичное 7) и 1011 (десятичное 11). Сложение этих чисел не сложнее, чем в десятичном представлении:

При сложении 0 и 0 получаем 0, при сложении 1 и 0 получаем 1, при сложении 1 и 1 получаем 0 и перенос в следующий разряд 1. Результат - 10010 (десятичное 18). При сложении любых двух n-разрядных двоичных чисел может получиться n-разрядное или (n+1) -разрядное число.

Точно так же производится вычитание . Пусть из числа 10010 (18) надо вычесть число 0111 (7). Записываем числа с выравниванием по младшему разряду и вычитаем точно так же, как в случае десятичной системы:

При вычитании 0 из 0 получаем 0, при вычитании 0 из 1 получаем 1, при вычитании 1 из 1 получаем 0, при вычитании 1 из 0 получаем 1 и заем 1 в следующем разряде. Результат - 1011 (десятичное 11).

При вычитании возможно получение отрицательных чисел, поэтому необходимо использовать двоичное представление отрицательных чисел.

Для одновременного представления как двоичных положительных, так и двоичных отрицательных чисел чаще всего используется так называемый дополнительный код . Отрицательные числа в этом коде выражаются таким числом, которое, будучи сложено с положительным числом такой же величины, даст в результате нуль. Для того чтобы получить отрицательное число, надо поменять все биты такого же положительного числа на противоположные (0 на 1, 1 на 0) и прибавить к результату 1. Например, запишем число –5. Число 5 в двоичном коде выглядит 0101. Заменяем биты на противоположные: 1010 и прибавляем единицу: 1011. Суммируем результат с исходным числом: 1011 + 0101 = 0000 (перенос в пятый разряд игнорируем).

по модулю 2 два двоичных числа 0111 и 1011:

Среди других побитовых операций над двоичными числами можно отметить функцию И и функцию ИЛИ. Функция И дает в результате единицу только тогда, когда в соответствующих битах двух исходных чисел обе единицы, в противном случае результат -0. Функция ИЛИ дает в результате единицу тогда, когда хотя бы один из соответствующих битов исходных чисел равен 1, в противном случае результат 0.

Сдающим ЕГЭ и не только…

Странно, что в школах на уроках информатики обычно показывают ученикам самый сложный и неудобный способ перевода чисел из одной системы в другую. Это способ заключается в последовательном делении исходного числа на основание и сборе остатков от деления в обратном порядке.

Например, нужно перевести число 810 10 в двоичную систему:

Результат записываем в обратном порядке снизу вверх. Получается 81010 = 11001010102

Если нужно переводить в двоичную систему довольно большие числа, то лестница делений приобретает размер многоэтажного дома. И как тут собрать все единички с нулями и ни одной не пропустить?

В программу ЕГЭ по информатике входят несколько задач, связанных с переводом чисел из одной системы в другую. Как правило, это преобразование между 8- и 16-ричными системами и двоичной. Это разделы А1, В11. Но есть и задачи с другими системами счисления, как например, в разделе B7.

Для начала напомним две таблицы, которые хорошо бы знать наизусть тем, кто выбирает информатику своей дальнейшей профессией.

Таблица степеней числа 2:

2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10
2 4 8 16 32 64 128 256 512 1024

Она легко получается умножением предыдущего числа на 2. Так, что если помните не все эти числа, остальные нетрудно получить в уме из тех, которые помните.

Таблица двоичных чисел от 0 до 15 c 16-ричным представлением:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0 1 2 3 4 5 6 7 8 9 A B C D E F

Недостающие значения тоже нетрудно вычислить, прибавляя по 1 к известным значениям.

Перевод целых чисел

Итак, начнем с перевода сразу в двоичную систему. Возьмём то же число 810 10 . Нам нужно разложить это число на слагаемые, равные степеням двойки.

  1. Ищем ближайшую к 810 степень двойки, не превосходящую его. Это 2 9 = 512.
  2. Вычитаем 512 из 810, получаем 298.
  3. Повторим шаги 1 и 2, пока не останется 1 или 0.
  4. У нас получилось так: 810 = 512 + 256 + 32 + 8 + 2 = 2 9 + 2 8 + 2 5 + 2 3 + 2 1 .
Далее есть два способа, можно использовать любой из них. Как легко увидеть, что в любой системе счисления её основание всегда 10. Квадрат основания всегда будет 100, куб 1000. То есть степень основания системы счисления - это 1 (единица), и за ней столько нулей, какова степень.

Способ 1 : Расставить 1 по тем разрядам, какие получились показатели у слагаемых. В нашем примере это 9, 8, 5, 3 и 1. В остальных местах будут стоять нули. Итак, мы получили двоичное представление числа 810 10 = 1100101010 2 . Единицы стоят на 9-м, 8-м, 5-м, 3-м и 1-м местах, считая справа налево с нуля.

Способ 2 : Распишем слагаемые как степени двойки друг под другом, начиная с большего.

810 =

А теперь сложим эти ступеньки вместе, как складывают веер: 1100101010 .

Вот и всё. Попутно также просто решается задача «сколько единиц в двоичной записи числа 810?».

Ответ - столько, сколько слагаемых (степеней двойки) в таком его представлении. У 810 их 5.

Теперь пример попроще.

Переведём число 63 в 5-ричную систему счисления. Ближайшая к 63 степень числа 5 - это 25 (квадрат 5). Куб (125) будет уже много. То есть 63 лежит между квадратом 5 и кубом. Тогда подберем коэффициент для 5 2 . Это 2.

Получаем 63 10 = 50 + 13 = 50 + 10 + 3 = 2 * 5 2 + 2 * 5 + 3 = 223 5 .

Ну и, наконец, совсем лёгкие переводы между 8- и 16-ричными системами. Так как их основанием является степень двойки, то перевод делается автоматически, просто заменой цифр на их двоичное представление. Для 8-ричной системы каждая цифра заменяется тремя двоичными разрядами, а для 16-ричной четырьмя. При этом все ведущие нули обязательны, кроме самого старшего разряда.

Переведем в двоичную систему число 547 8 .

547 8 = 101 100 111
5 4 7

Ещё одно, например 7D6A 16 .

7D6A 16 = (0)111 1101 0110 1010
7 D 6 A

Переведем в 16-ричную систему число 7368. Сначала цифры запишем тройками, а потом поделим их на четверки с конца: 736 8 = 111 011 110 = 1 1101 1110 = 1DE 16 . Переведем в 8-ричную систему число C25 16 . Сначала цифры запишем четвёрками, а потом поделим их на тройки с конца: C25 16 = 1100 0010 0101 = 110 000 100 101 = 6045 8 . Теперь рассмотрим перевод обратно в десятичную. Он труда не представляет, главное не ошибиться в расчётах. Раскладываем число на многочлен со степенями основания и коэффициентами при них. Потом всё умножаем и складываем. E68 16 = 14 * 16 2 + 6 * 16 + 8 = 3688 . 732 8 = 7 * 8 2 + 3*8 + 2 = 474 .

Перевод отрицательных чисел

Здесь нужно учесть, что число будет представлено в дополнительном коде. Для перевода числа в дополнительный код нужно знать конечный размер числа, то есть во что мы хотим его вписать - в байт, в два байта, в четыре. Старший разряд числа означает знак. Если там 0, то число положительное, если 1, то отрицательное. Слева число дополняется знаковым разрядом. Беззнаковые (unsigned) числа мы не рассматриваем, они всегда положительные, а старший разряд в них используется как информационный.

Для перевода отрицательного числа в двоичный дополнительный код нужно перевести положительное число в двоичную систему, потом поменять нули на единицы и единицы на нули. Затем прибавить к результату 1.

Итак, переведем число -79 в двоичную систему. Число займёт у нас один байт.

Переводим 79 в двоичную систему, 79 = 1001111. Дополним слева нулями до размера байта, 8 разрядов, получаем 01001111. Меняем 1 на 0 и 0 на 1. Получаем 10110000. К результату прибавляем 1, получаем ответ 10110001 . Попутно отвечаем на вопрос ЕГЭ «сколько единиц в двоичном представлении числа -79?». Ответ - 4.

Прибавление 1 к инверсии числа позволяет устранить разницу между представлениями +0 = 00000000 и -0 = 11111111. В дополнительном коде они будут записаны одинаково 00000000.

Перевод дробных чисел

Дробные числа переводятся способом, обратным делению целых чисел на основание, который мы рассмотрели в самом начале. То есть при помощи последовательного умножения на новое основание с собиранием целых частей. Полученные при умножении целые части собираются, но не участвуют в следующих операциях. Умножаются только дробные. Если исходное число больше 1, то целая и дробная части переводятся отдельно, потом склеиваются.

Переведем число 0,6752 в двоичную систему.

0 ,6752
*2
1 ,3504
*2
0 ,7008
*2
1 ,4016
*2
0 ,8032
*2
1 ,6064
*2
1 ,2128

Процесс можно продолжать долго, пока не получим все нули в дробной части или будет достигнута требуемая точность. Остановимся пока на 6-м знаке.

Получается 0,6752 = 0,101011 .

Если число было 5,6752, то в двоичном виде оно будет 101,101011 .

Шестнадцатеричная система счисления имеет алфавит, состоящий из 16 цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, b, c, d, e, f.

При записи числа в шестнадцатеричной системе для записи цифр обозначающих числа 10, 11, 12. 13, 14. 15 используются соответственно буквы А, В, С, D, E, F.

Перевод чисел из шестнадцатеричной системы в десятичную

Перевести любое шестнадцатеричное число в десятичное можно по уже известной формуле

Примеры.

    АЕ07 16 =10∙16 3 +14∙16 2 +0∙16 1 +7∙16 0 =44551 10 .

    100 16 =1∙16 2 +0∙16 1 +0∙16 0 =256 10 .

    58 16 =5∙16 1 +8∙16 0 =.88 10 .

    2А 16 =2∙16 1 +10∙16 0 =42 10 .

Перевод числа из десятичной системы в шестнадцатеричную осуществляется также, как в двоичную.

Перевод чисел из шестнадцатеричной системы в двоичную и обратно

Перевести любое шестнадцатеричное число в двоичное можно следующим образом. Каждая цифра шестнадцатеричной записи числа записывается четырехзначным двоичным числом - тетрадой . После этого нули, стоящие слева, можно отбросить.

2) 2A= 0010 1010 2 = 101010 2 .

3) 58 16 = 0101 1000 2 = 1011000 2 .

И наоборот, перевести любое двоичное число в шестнадцатеричное можно аналогичным образом. Каждые четыре двоичные цифры, считая справа налево, записываются одной шестнадцатеричной цифрой. Эти цифры располагаются также справа налево.

Примеры.

2. 101010 2 = 10 1010 2 = 2A.

3. 1011000 2 = 101 1000 2 = 58 16 .

Восьмеричная система счисления

Восьмеричная система счисления имеет алфавит, состоящий из 8 цифр:

0, 1, 2, 3, 4, 5, 6, 7.

Перевод числа из десятичной системы в восьмеричную и обратно осуществляется по аналогии с переводом в двоичную / из двоичной.

Перевод чисел из восьмеричной системы в двоичную и обратно

Каждая цифра восьмеричной записи числа записывается трехзначным двоичным числом - триадой .

Примеры.

2563 8 = 010 101 110 011 2 =10101110011 2 .

1001101 2 = 001 001 101 2 = 115 8 .

Методические материалы для лабораторного занятия №1

Тема лабораторного занятия: Системы счисления. Измерение информации.

Количество часов: 2.

Примеры с решениями

    Перевод из p -ичной системы в 10-ичную. Пусть надо перевести число в некоторой системе счисления в десятичную. Для этого надо представить его в виде

11100110 2 = 1∙2 7 + 1∙2 6 + 1∙2 5 + 0∙2 4 + 0∙2 3 + 1∙2 2 + 1∙2 1 + 0∙2 0 = 128 + 64 + 32 + 4 + 2 = 230 10 .

2401 5 = 2∙5 3 + 4∙5 2 + 0∙5 1 + 1∙5 0 = 250 + 100 + 0 + 1 = 351.

    Перевод из 10-ичной системы в p -ичную.

2.1 98 10 → Х 2 .

Делим число на 2. Затем делим неполное частное на 2. Продолжаем до тех пор, пока неполное частное не станет меньше 2, т.е. равным 1.

    98: 2 = 49. Остаток - 0 .

    49: 2 = 24. Остаток - 1 .

    24: 2 = 12. Остаток - 0 .

    12: 2 = 6. Остаток - 0 .

    6: 2 = 3. Остаток - 0 .

    3: 2 = 1 . Остаток - 1 .

Так как последнее неполное частное равно 1, процесс окончен. Записываем все остатки снизу вверх, начиная с последнего неполного частного, и получаем число 1100010. Итак 98 10 = 1100010 2 .

2.2 2391 10 → Х 16 .

Делим число на 16. Затем делим неполное частное на 16. Продолжаем до тех пор, пока неполное частное не станет меньше 16.

    2391: 16 = 149. Остаток - 7 .

    149: 16 = 9 . Остаток - 5 .

Так как последнее неполное частное (9) меньше 16, процесс окончен. Записываем, начиная с последнего неполного частного, все остатки снизу вверх и получаем число 957. Итак 2391 10 = 957 16 .

2.3 12165 10 → Х 2 .

Если переводить делением в двоичную систему, то получится довольный громоздкий процесс. Можно сначала перевести число в восьмеричную систему, а затем заменять восьмеричные цифры справа налево триадами.

12165 10 = 27605 8 = 010 111 110 000 101 = 10111110000101.

    Определение основания системы счисления p .

Один мальчик так написал о себе: «Пальцев у меня 24, на каждой руке по 5, а на ногах 12». Как такое может быть?

Решение. Надо определить основание системы счисления p . Так как мы знаем, что пальцев на ногах всего 10 10 , то 12 p =1∙p +2 = 10 10 . Отсюда получаем уравнение p + 2 = 10  p = 8. Значит, мальчик имел в виду числа в восьмеричной системе. Действительно, всего пальцев 24 8 = 2∙8+4 = 20 10 , а на ногах - 12 8 = 1∙8+2 = 10 10 .