3d сканирование. оценкой целостности трубопроводов

Что такое 3D сканер?

3D сканер – это устройство, которое анализирует физический объект и, отталкиваясь от полученной информации, создает его 3D образ. Отсканированные модели далее могут обрабатываться средствами САПР, после чего используются для технологических и инженерных разработок. Для создания 3D-модели используются 3D-принтер и 3D-монитор.

В создании 3D-сканера участвовали сразу несколько технологий, различных между собой. Объекты, подвергающиеся оцифровке, также имеют некоторые ограничения. Трудности могут возникнуть с зеркальными, блестящими или прозрачными поверхностями. Стоит напомнить, что трехмерные данные важны и в других сферах деятельности. Например, его используют в развлекательной индустрии: при создании видеоигр, фильмов, рисунков. 3D-технологии находят свое применение в ортопедической области и протезировании, при разработке промышленного дизайна, реверс-инжиниринге, создании прототипов, а также в осмотре и документальной отчетности исторических объектов или иных культурных артефактов.

Область функциональных возможностей 3D-сканера

Во время работы 3D-сканер создает множество точек согласно геометрическим пропорциям сканируемого объекта. В дальнейшем эти точки воссоздают форму предмета, то есть реконструируют его на монитор. Если имеются сведения о расцветках, то они определяют и цвет будущей цифровой поверхности.

3D-сканер можно сравнить с обычной камерой: поле зрения у них конусообразного типа, а информация может быть получена только с тех поверхностей, которые были не затемнены. Различия между этими приборами все же существенные. Камера передает только изображение и цвет предмета, а сканер, более тщательно исследуя объект, выдает «картинку» с точным расстоянием каждой точки до поверхности. Это позволяет видеть изображение сразу в трех плоскостях.

Для полноценного моделирования предмета одного сканирования, как правило, недостаточно. Требуется сразу несколько таких операций. Сканирование объекта с разных направлений необходимо для получения более полной информации о его сторонах. Все отсканированные данные накладываются на общую систему координат, где происходит «привязка» и выравнивание изображения. Вся процедура моделирования называется 3D конвейером.

Для четкого сканирования объекта и сканирования его форм существует несколько технологий. По классификации 3D-сканеры делятся на два типа: контактные сканеры и бесконтактные. Последние, в свою очередь, делятся еще на два вида – пассивные и активные.

Контактные 3D-сканеры

Сканеры этого вида изучают объект напрямую – через физическое взаимодействие. В момент исследования предмет находится на специальной поверочной плите, отполированной и отшлифованной до нужной шероховатости поверхности. Если вещь несимметричная или не может лежать ровно на одном месте, ее удерживают специальные зажимы (тиски).

Различают три формы механизма 3D-сканера:

  1. Каретка, оснащенная измерительной рукой, которая четко зафиксирована в перпендикулярном направлении. Исследование по всем осям происходит в тот момент, когда рука двигается вдоль каретки. Этот вариант идеально подходит для изучения плоских или обычных выпуклых поверхностей.
  2. Прибор, оснащенный высокоточным угловым датчиком и зафиксированными составляющими. Конец измерительной руки расположен так, что способен воспроизводить сложнейшие математические вычисления. Данный механизм оптимален для сканирования внутреннего пространства объекта или иных его углублений, имеющих небольшое входное отверстие.
  3. Единовременное использование двух вышеуказанных механизма. К примеру, манипулятор совмещают с кареткой, что позволяет собирать информацию с крупных объектов, имеющих несколько внутренних отсеков или, перекрывающих друг друга, плоскости.

Координатно-измерительная машина – яркий пример 3D-сканера контактного типа. Они являются сверхточными и широко применяются на различных производствах. К существенному минусу машины можно отнести необходимость обязательного соприкосновения с изучаемым объектом. Велика вероятность повреждения предмета или его деформации. Этот пункт очень важен, тем более, если происходит сканирование хрупкого или исторического объекта.

Еще один недостаток КИМ – это ее медлительность. Перемещение руки по установленной цели может происходить очень долго. В то время, как современные оптические модели, могут работать гораздо быстрее.

К этой группе можно также отнести ручные измерительные приборы, которые часто используются для 3D-моделирования анимационных фильмов.

Бесконтактные активные 3D-сканеры

Для работы активного сканера используются либо обычный свет, либо определенный вид излучения. Именно через проходящее излучение или отражение света, объект подвергается цифровому исследованию. Случается применение рентгеновских лучей или ультразвука.

Триангуляционные сканеры

Эти приборы используют для зондирования объекта лазерный луч. Сканер посылает луч на предмет, а отдельно зафиксированная камера заносит данные о расположении указанной точки. По мере движения лазера по поверхности, поле зрения камеры фиксирует точку в разных местах. Триангуляционными их назвали потому, что лазерный излучатель, конечная точка и сама камера, совместно образуют треугольник.

Времяпролетные 3D-сканеры

Это активный вид сканера, который для исследования объекта использует лазерный луч. В его основе лежит времяпролетный дальномер. Именно он определяет расстояние до поверхности, рассчитывая время, за которое лазер пролетел туда и обратно. В этом случае лазерный луч используется, как световой импульс, время отражения которого и измеряется при помощи детектора. Скорость света, как известно, величина постоянная, поэтому, зная, за какое время луч совершает пролет туда-обратно, можно без труда вычислить расстояние от сканера до поверхности изучаемого предмета.

Времяпролетные 3D-приборы сканирования за одну секунду способны измерить до 100 000 точек.

Применение 3D-сканеров

Технологию 3D-сканирования простой не назовешь. Но, несмотря на это, этот с каждым годом она все активней развивается. Причин для этого масса, но можно выделить самые весомые.

В первую очередь, такое оборудование необходимо всем промышленным предприятиям для более дешевых и быстрых разработок продукции.

Реалистичными копиями реально существующих предметов пользуются сейчас во многих сферах деятельности: медицине, кино, фэйшн-индустрии.

Производство 3D-сканеров давно перестало быть чем-то из ряда фантастики. Сейчас их производят тысячи компаний: как акулы индустрии, так и дебютанты данного рынка. Поколение 3D-сканеров способно положительным образом повлиять на индустрии в целом. тем боле, что свою нишу здесь найдут, как крупные производства, так и инженеры одиночки.

Чтобы напечатать объемный предмет на 3D принтере, предварительно необходимо сделать его трехмерную модель – визуальный графический образ объекта. Раньше моделирование осуществлялось вручную с помощью специального ПО. Просчеты в чертежах неминуемо сказывались на конечном результате. Чтобы нивелировать человеческий фактор, ускорить и упростить процесс моделирования изобрели 3D сканер.

Трехмерное сканирование дает возможность получить сложнопрофильную объемную модель исследуемого объекта – 3D сканер оцифровывает предмет, что позволяет быстро сделать его математическую модель для последующей печати на принтере.

Прибор создает облако точек, соединенных линиями, которые формируют геометрию объекта из множества пересекающихся плоскостей. Полученные координаты обрабатываются и сохраняются в виде параметрической модели, – с ней можно работать в любой CAD-системе для снятия чертежей отдельных элементов объекта, его доработки, корректировки размеров и прочих параметров, нужных для программирования принтера.

Где используется 3D сканер

Сфера применения сканирующего оборудования неограниченна. Применение аддитивных технологий позволяет сократить расходы на производство, снизить количество отходов, уменьшить вес деталей, сделанных традиционным путем. 3D сканирование используется в следующих направлениях:

  • авиастроение;
  • кораблестроение;
  • производство промышленного оборудования;
  • автоиндустрия;
  • военно-промышленный комплекс;
  • музееведение и культурология (оцифровка изделий с целью сохранения исторического наследия);
  • строительство и проектирование инженерных систем;
  • медицина и протезирование;
  • легкая промышленность.

Производители одежды и обуви уже объявили о том, что в примерочных кабинках вскоре появятся 3D сканеры. Такой подход позволит покупателям заказывать кастомизированные наряды и оригинальную обувь, а производителям – быстро и точно воспроизвести модели без использования лекал и очной ставки с клиентом. Ожидается, что люди смогут использовать свои отсканированные и оцифрованные силуэты для виртуальной примерки нарядов, без надобности в переодевании.

Методы 3D сканирования

Различают два метода объемного сканирования – контактный и бесконтактный.

Контактный 3D сканер работает «на ощупь». Прибором обводят предмет, при этом специальным щупом исследуют каждую грань. Раньше на исследуемый объект наносили точки-маркеры, формирующие систему координат. На участках с большим изгибом расстояние между точками делалось минимальным, на ровных плоскостях – максимальным. Сканер снимал координаты точек – из них формировал 3D модель. Современные приборы обходятся без нанесения физической сетки.

Контактное сканирование не зависит от условий освещения. Работе с устройством легко научиться. Но есть ряд недостатков: сканер не различает текстуры, а для обработки большого предмета придется изрядно попотеть с прибором в руках.

Бесконтактный метод трехмерного сканирования делится на два подвида: активный и пассивный. Приборы для активного 3D сканирования используют ультразвук, направленный источник света, лазер или рентгеновские лучи для облучения исследуемого объекта – прибор высчитывает время возврата «сигнала», формируя систему координат из точек соприкосновения с предметом и расстоянием до сканера. Оператор под разными углами сканирует объект, а ПО склеивает части воедино.

Преимущество 3D сканер активного типа:

  • прост в использовании;
  • процесс осуществляется без физического контакта с объектом;
  • работает внутри и снаружи помещения;
  • не зависит от освещения;
  • доступная цена;
  • ненужно наносить сетку и маркеры.

В то же время есть весомые упущения:

  • сканер неспособен работать с зеркальными поверхностями и прозрачными предметами;
  • для работы с маленькими изделиями нужна мощная оптика.

Пассивный 3D сканер – это всё та же цифровая видеокамера, которая снимает исследуемый предмет под разными углами, улавливая его силуэт. Работает только на высококонтрастном фоне и при хорошем освещении. Отснятый материал обрабатывается ПО и сводится в 3D модель для печати на принтере или обработке в CAD-системах.

На что обратить внимание при выборе сканера

Устройство, которое одинаково хорошо справляется со сканированием в инженерных и развлекательных целях, при этом делает высокоточные модели, может стоить десятки тысяч долларов. При покупке 3D сканера следует обратить внимание на следующие параметры:

  • зона сканирования;
  • продолжительность сканирования рабочей зоны;
  • точность;
  • разрешение.

Используются два понятия 3d модели: поверхностная модель и твердотельная модель . Они обладают разными свойствами и соответственно разными возможностями использования.

Поверхностную модель можно распечатать на 3d принтере, разместить на сайте, использовать для визуализации объекта. Изменить форму такой 3d модели нельзя. Если необходимо получить размеры, сделать чертеж, доработать модель, полноценно использовать ее в CAD-программе, stl-модель нужно перевести в твердотельную. Для этого необходимо произвести ряд действий.

1. Сканирование

Сканер подсвечивает изделие лазером или структурированным подсветом и получает информацию о расстоянии до поверхностей объекта. На основе этой информации строится участок поверхностной модели, который представляет собой облако миллионов точек. После получения достаточного количества таких участков программа, которая поставляется вместе со сканером, сшивает их в один объект в автоматическом или ручном режиме.

2. Обработка поверхностной модели

Поверхностная модель (полигональная модель, stl-модель, облако точек, облако треугольников) - это набор точек, соединенных в треугольники, которые образуют множество поверхностей, обозначающих границы объекта. Поверхностная модель может быть представлена как в виде облака точек, так и в виде набора треугольников, эти два вида легко трансформируются друг в друга.

Самый распространенный формат файла полигональной модели - stl, но могут быть и другие.

Модель из облака точек, полученных со сканера, как правило некачественная. Даже при идеальной для сканирования поверхности (объемная, белая, матовая, без труднодоступных мест и острых краев) 3д сканер все равно улавливает различные шумы - это могут быть как особенности самого объекта - грязь, сварные швы, метки и пр., так и внешние условия и характеристики самого сканера- освещение, температура, колебания опоры сканера. В итоге образуются лишние неровности, туннели, дыры и другие артефакты.

Некоторые операции обработки можно произвести в собственном софте сканера, но, как правило, это очень ограниченный набор функций. Для более качественной обработки используются сторонние программные комплексы, например Geomagic.

В процессе обработки над моделью может быть произведен ряд операций:

  • зашиваются дыры,
  • выравниваются поверхности,
  • удаляется шум,
  • модель правильно ориентируется;
  • уменьшается количество треугольников.

Полученную поверхность объекта можно просматривать в разных режимах: как облако точек или как сетку. Во втором случае все точки соединяются в треугольники, образуя миллион микро-поверхностей.

Эта сетка по сути и является полноценной полигональной моделью. Ее можно сохранить в формат stl или другие форматы (txt, csv, odt, xls).

Такую модель можно напечатать на 3d принтере, но сверх того возможности ее использования ограничены.

Важно! Несмотря на то, что на данном этапе мы получили stl-модель, она пока еще не пригодна для использования на многокоординатных станках с ЧПУ, так как содержит слишком большое количество поверхностей. Для станка с ЧПУ требуется дополнительная обработка базовой сканированной stl-модели: выравнивание, усреднение, уменьшение количества поверхностей.

По той же причине такую модель не получится загрузить в CAD-систему. SolidWorks, например, выдаст предупреждение о том, что модель содержит слишком большое количество поверхностей.

3. Построение твердотельной модели

На данном этапе на основе полигональной модели происходит построение нормального твердого тела также в специализированном софте, например Geomagic Design.

Используемые операции: вытягивание эскизов, деление на области, поиск вытянутых областей, построение замкнутого эскиза.

При правильной обработке модели на выходе мы получаем модель с деревом построений, пригодную для дальнейшей обработки в CAD-системе.

4. Контроль правильности построения модели

На данном этапе полученная твердотельная модель сравнивается со сканированной. Специальный инструмент программы позволяет в цветном виде увидеть отклонения, вызванные ошибками построения модели. Придется вернуться на несколько шагов назад и исправить некоторые операции.

5. Экспорт в CAD-систему

Этот, казалось бы, автоматический этап также может выявить ряд ошибок на этапе обработки модели. Например программа Geomagic Design Х с помощью своего API строит в открытом заранее SolidWorks модель на лету согласно собственному дереву построений. В конце может появится ошибка - в ней будет описано, на каком этапе построения модели возникла ошибка - идем обратно в Design X и редактируем в дереве этот элемент.

Общий процесс обработки получается довольно сложным, что и определяет более высокую стоимость 3d сканирования, по сравнению с ручным образмериванием изделий. Надеемся, что развитие технологий 3d сканирования и обработки 3d моделей позволит в дальнейшем упростить или объединить эти процедуры.

3D-сканирование является одним из способов построения 3D-модели. Напомним, что 3D-модель можно построить и без использования 3D-сканера - в профессиональной программе по работе с трехмерной графикой. Но 3D-сканер значительно упрощает и ускоряет данный процесс.

3D-лазерные сканеры - это устройства, которые проводят анализ физического объекта, и, на основе полученных данных, создают 3д модель. Трехмерное изображение 3D-сканер сохраняет преимущественно в форматах STL, OBJ, PLY и WRL.

С помощью 3D-сканера можно быстро и качество воссоздать максимально точную модель объекта. Работа 3D-сканера должна проходить под контролем опытного инженера. Результат сканирования дорабатывается в профессиональном графическом редакторе для трехмерной графики. В дальнейшем, при необходимости, можно провести 3D-печать объекта, на основе построенной 3D-модели. Компания KOLORO предоставляет услуги 3D-сканирования. В нашем техническом арсенале есть 3D-сканеры для работы с физическими объектами различного типа и величины.

Методы трехмерного сканирования

  • Контактный 3 D-сканер . Для сканирования устройству необходимо находится в непосредственном контакте с объектом сканирования.
  • Бесконтактный 3D -сканер . Получение 3D-модели с его помощью считается наиболее перспективным методом 3D-сканирования. 3D-сканеру необязательно контактировать с объектом, что позволяет проводить 3D-сканирование труднодоступных объектов, памятников культуры и архитектуры, а также ювелирных изделий. Уже даже существует промышленный 3D-сканер, который сканирует дома, насыпи и другие крупные объекты.
  • Активные бесконтактные 3D -сканеры (для изучение объекта используют структурированный световой или лазерный луч, который попадая на объект, отражается и на основе этого отражения 3D-сканер строит 3D-модель).
  • Пассивные бесконтактные 3D -сканеры (данный вид устройства использует уже существующее отражение от объекта, в основном - солнечный свет).

Принцип работы 3D-сканера

В основе работы 3D-сканера лежит принцип стереозрения. Сканер, как и человеческий глаз, способен определить расстояние до объекта и его размеры. Как у человека два глаза, так и у 3D-сканера - две камеры. После получения необходимой информации 3D-сканер строит 3D-модель объекта. Для недопущения неточностей, 3D-сканер оборудован подсветками для каждой из камер

Преимущества 3D-сканера

Для начала выделим общие преимущества 3D-сканеров :

  1. Максимально высокая точность модели - 3D-сканер воссоздает даже самые незначительные, мельчайшие, детали физического объекта;
  2. Высокая скорость работы - объемное сканирование занимает всего несколько минут, а то и секунд, после чего необходима доработка построенной сканером 3D-модели в профессиональных программах для работы с 3D-графикой;
  3. Сканер можно разместить под разными углами , в зависимости от сложности объекта, при этом сам объект можно не трогать, что особенно важно при сканировании больших и огромных объектов (например, дома, памятники и ландшафты).

Контактные 3D-сканеры:

  • просты в использовании.
  • не зависят от уровня освещения.
  • создают модели высокой точности.
  • файл 3D-модели небольшой по объему.

Бесконтактные 3D-сканеры:

  • энергоэкономичны;
  • не требуют непосредственного контакта с объектом;
  • применяют технологию структурированного света;
  • не наносит вреда физическому объекту.

Применение 3D-сканера

  • Инженерный анализ - 3D-сканер может быстро и качественно создать трехмерную модель объекта и просчитать его физические пропорции в требуемых размерах. При наличии физической модели в единственном экземпляре объемное сканирование поможет создать разноразмерные копии и быстро наладить мелкосерийное производство.
  • Цифровой анализ - 3D-сканер помогает визуализировать все технические несоответствия изделий и деталей, а значит, внести в них все необходимые корректировки еще до этапа изготовления протипа изделия.
  • Цифровая архивация . Теперь можно отказаться от двухмерных рисунков, чертежей и даже от 3D-моделирования устаревших деталей. 3д-сканер считает с объекта всю необходимую информацию, построит 3D-модель и заархивирует ее в нужном для изготовления формате. Это существенно экономит время и не потребует выделение места под хранение физических чертежей.
  • Архитектура . С помощью 3D-сканера можно создать модель целого дома, а также отдельных элементов архитектуры: эмблем, колон и различного рода декораций.
  • Медицина . Именно 3D-принтер выступает отличным помощником при 3D-сканировании костей и даже отдельных органов - с высочайшим уровнем детализации! В дальнейшем, полученные 3D-модели и созданные прототипы могут быть использованы в качестве учебных материалов в специализированных ВУЗах или при создании полноценных биологических протезов.

Здравствуйте, дорогие посетители сайта!

Этим постом я открываю серию статей о 3d сканерах и 3d сканировании. В данной статье мы разберемся с тем, какие методы сканирования существуют, чем они отличаются и где используются. Для начала давайте поймем, что такое вообще 3d сканирование. Представьте, что есть деталь с большим количеством сложных поверхностей, которую обычным штангенциркулем не измеришь, либо придется долго и мучительно повозиться, чтобы получить результаты требуемой точности. А потом по этим данным еще получить математическую модель. Вот тут-то и приходит на помощь 3D сканер . Он позволяет в разы сократить получение математической модели, пригодной для сравнения с эталонной моделью. Применение сканирования на этом не заканчивается. 3d сканирование также используется для получения точных моделей сложнопрофильных объектов, которые в дальнейшем могут быть использованы для получения прототипов изделия, построения новых изделий на базе существующих. Также применяются в киноиндустрии, в медицине, в музейном деле, в промышленном дизайне и в индустрии развлечений, например, при создании компьютерных игр. С помощью трехмерного сканирования можно оцифровывать культурное наследие, археологические объекты, предметы искусства. Кроме того широкое применение трехмерное сканирование нашло в медицинском протезировании, в цифровом архивировании и так далее. Теперь давайте разберемся, какие методы 3d сканирования существуют. На данный момент есть следующие методы сканирования:

  1. Контактный метод.
  2. Беcконтактные методы:
    • Активный метод.
    • Пассивный метод.

Области применения этих методов:

  • Инженерный анализ
  • Контроль качества и инспекция
  • Разработка упаковки
  • Цифровое архивирование
  • Промышленный дизайн
  • Развлечения и игры
  • Рынок аксессуаров
  • Репродуцирование и изготовление на заказ
  • Медицина и ортопедия

Остановимся на каждом методе поподробнее.

Контактный метод

Основным принципом данного метода является обводка сканируемого объекта специальным механическим приспособлением, которое является сенсором и называется щуп. Перед началом сканирования на объект наносится сетка, размер ячеек которой в областях высокой кривизны поверхности должен быть минимальным, а в местах малой кривизны — наибольшим. Там, где линии сетки пересекаются, образуются точки. Посредством щупа производится замер координат этих точек, которые потом вводятся в компьютер. Этот способ используется при ручной обводке поверхности объекта. Современным развитием данного метода стало использование для сканирования специального устройства. В этом случае нет необходимости в ручной обводке и нанесении сетки. Щуп движется по поверхности объекта и в компьютер заносятся координаты о его положении. На базе этих координат строится трехмерная модель сканируемого объекта.

Преимущества контактного 3D сканирования :

  • простота процесса,
  • независимость от условий освещения,
  • высокоточное сканирование ребристых поверхностей и призматических деталей,
  • компактный объём полученных файлов.

Недостатки:

  • невозможность захвата текстуры сканируемого объекта,
  • сложность или невозможность сканирования объектов больших размеров.

Бесконтактные методы:

Активный метод

Активный метод основывается на регистрации отраженных лучей от объекта сканирования. Источником таких лучей является с
ам 3d сканер . Сканер может облучать объект следующими видами лучей:

  • направленные световые,
  • лазерные,
  • ультразвук,
  • рентгеновские.

Принцип данного метода основывается на измерении расстояния от сканера до точек объекта сканирования. Данными точками могут являться светоотражающие самоклеющиеся маркеры. Также широко используется сканирование оптическими системами, использующими модулированную или структурированную подсветку. В случае модулированной подсветки объект освещается световыми импульсами, изменяющимися определенным образом. Камера считывает отражения и по искажениям получает облик сканируемого объекта. При структурированной подсветке объект освещается определенным “узором” (сеткой), по искажениям которой камера формирует 3d модель. Эти данные либо сохраняются в памяти сканера, а потом передаются на компьютер, либо сразу отправляются в компьютер, где происходит их обработка и построение трехмерной модели. Т.к. 3d сканер в один момент времени видит только часть объекта, в процессе сканирования необходимо перемещать объект сканирования, либо двигать сам сканер. Таким образом в итоге мы получаем модель, сшивая полученные куски объекта. В большинстве случаев отсканированный кусок объекта отображается сразу на экране компьютера. Это позволяет сразу проконтролировать, насколько хорошо выбран угол сканирования и понять, за сколько итераций можно отсканировать объект. Выбирая правильные углы сканирования, можно добиться сокращения сканирования за счет уменьшения количества сканируемых кусков объекта.

Преимущества активного метода 3d сканирования:

  • низкая стоимость сканирования,
  • возможность применения вне помещения,
  • использование при различной освещенности,
  • не требуется наносить сетку на объект,
  • сканирование производится по бесконтактной технологии,
  • есть возможность сканировать объекты недоступные для других методов сканирования.

Недостатки:

  • сложность или невозможность сканирования прозрачных и зеркальных поверхностей,
  • сканирование мелкоразмерных изделий требует использование более точной оптики, а соответсвенно более дорогих 3d сканеров .

Пассивный метод

Пассивный метод использует уже имеющийся окружающий свет. Отраженмие этого света от объекта и анализируется 3d сканером . По сути этот метод сканирования представляет собой либо съемку объекта обычными видеокамерами при разной освещенности и восстановление их в 3d, либо съемка силуэта объекта на высококонтрастном фоне при помощи стереоскопических или “силуэтных” видеокамер.

Подведем итог. Каждый метод по-своему хорош и привлекателен. Выбор между этими методами стоит осуществлять исходя из финансовых соображений, сложности объекта сканирования и точности, которую вы хотите получить в результате.