Модифицированный симплексный метод решения задач целевого программирования. Модифицированный симплекс метод

1.5.1. Вычислительная схема, основанная на преобра­зовании обратных матриц. Анализируя вычислительную процедуру симплекс-метода с позиций оценки трудоемкости, не­трудно заметить, что наиболее критичным в этом плане являет­ся этап пересчета значений А и b при переходе от одного базис­ного плана к другому (п. 3 алгоритма). Однако в том случае, когда число ограничений задачи m явно меньше количества переменных n , можно добиться существенной «экономии», вы­полняя на очередной итерации q преобразование Жордана-Га­усса не над матрицей А (β ( q )), а над матрицей Δ -1 (β ( q )). При этом учитывается и то, что при необходимости, применяя формулу (1.26), всегда можно получить А (β ( q )) по Δ -1 (β ( q )). Более того, для выполнения описанных выше действий симплекс-процедуры нам в действительности не требовалась матрица А (β ( q )) целиком. Реаль­но в ней использовались только строка оценок a 0 (β ( q )) и ведущий столбец a l (β ( q )). Данные соображения положены в основу вы­числительной схемы симплекс-метода, основанной на преобра­зовании обратных матриц, которую также называют модифици­рованным симплекс-методом . Впервые данный алгоритм был предложен в 1951 г. в работах Л. В. Канторовича.

Вычислительной схеме модифицированного симплекс-мето­да соответствует система таблиц T 1 и Т 2 ( q ) . Таблица T 1 (рис. 1.7 ) является общей для всех итераций и служит для получения строки оценок текущего базисного плана a 0 (β ( q )). Если обозна­чить через δ i (β ( q )) (i Î 0: m ) строки матрицы Δ -1 (β ( q )), то из (1.26), в частности, следует, что

Как видно из рис. 1.7 , T 1 состоит из трех блоков:

Ø Ø в центре содержится матрица А ;

Ø Ø в левом блоке таблицы на каждой итерации дописывают­ся нулевые строки матрицы Δ -1 (β ( q ))для текущего ба­зиса ;

Ø Ø нижний блок, расположенный под матрицей А , на каж­дой итерации дополняется строкой оценок текущего плана, вычисленной по формуле (1.42).

Симплекс-таблица Т 2 ( q ) , изображенная на рис. 1.8 , соответ­ствует допустимому базису КЗЛП β ( q ) , получаемому на q -й ите­рации. Столбец N (β ( q )) содержит номера базисных столбцов (в последовательности вхождения в базис); столбец b (β ( q )) - компоненты вектора ограничений относительно текущего ба­зиса β ( q ) ; Δ -1 (β ( q )) - матрица, обратная по отношению к матри­це расширенных столбцов текущего базиса β ( q ) ; графа а l со­держит расширенный вектор условий, вводимый в базис на текущей итерации, а следующая графа - координаты а l (β ( q )) этого же столбца в текущем базисе β ( q ) .


По аналогии с п. 1.4.1 опишем формальную схему алгоритма модифицированного симплекс-метода.

0-этап. Нахождение допустимого базисного плана.

1. Для поиска допустимого базиса может быть применен ме­тод минимизации невязок, рассмотренный в п. 1.4.5. При этом для решения вспомогательной задачи используется процедура модифицированного симплекс-метода. В результате 0-этапа мы получаем допустимый базисный план x (β (1)) и соответствую­щие ему матрицу Δ -1 (β (1)) и вектор b (β (1)).

2. Заполняем центральную часть таблицы T 1 , содержащую матрицу А .

3. Содержимое матрицы Δ -1 (β (1)) и вектора b (β (1)), получен­ных на этапе поиска допустимого базисного плана, переносит­ся в таблицу T 2 (1) .

4. Полагаем номер текущей итерации q равным 1 и перехо­дим к I-этапу.

1-этап. Стандартная итерация алгоритма - выполня­ется для очередного базисного плана x (β ( q )).

1°. Проверка оптимальности текущего базисного плана . Содержимое нулевой строки таблицы T 2 ( q ) - δ 0 (β ( q )) переписы­вается в соответствующую графу таблицы T 1 . По формуле (1.42) рассчитываем и заполняем строку a 0 (β ( q )). Осуществля­ем просмотр строки оценок a 0 (β ( q )). Возможны два варианта:

1΄. a 0 (β ( q ))≥0 -план, соответствующий текущему базису задачи, оптимален. Вычислительный процесс закончен. Со­гласно формулам (1.33) и (1.32) выписываются оптимальный план задачи х * = x (β ( q )) и оптимальное значение целевой функ­ции f (х *) = f (x (β ( q ))).

1". В строке оценок a 0 (β ( q )) существует по меньшей мере один элемент a 0, j (β ( q ))<0, т. е. имеющий отрицательную оцен­ку. Следовательно, план x (β ( q )) - неоптимален . Выбирает­ся номер l , соответствующий элементу, имеющему минималь­ную (максимальную по абсолютной величине) отрицательную оценку:

l -й столбец матрицы A становится ведущим и должен быть вве­ден в очередной базис. Переходим к пункту 2° алгоритма.

2°. Определение столбца, выводимого из базиса . Перепи­сываем ведущий столбец а l из таблицы T 1 в текущую таблицу Т 2 ( q ) . По формуле а l (β ( q )) = Δ -1 (β ( q ))а l заполняем соответствую­щий столбец в таблице Т 2 ( q ) . Возможны два варианта:

2". Для всех i Î 1: m а i , l (β ( q ))≤0. Делается вывод о неограни­ченности целевой функции и завершается вычислительный процесс.

2". Существует по крайней мере один индекс i Î 1: m , для ко­торого а i , l (β ( q ))>0. Согласно правилу (1.27) определяются мес­то r и номер N r (β ( q )) для столбца, выводимого из базиса. Пере­ходим к пункту 3° алгоритма.

3°. Пересчет относительно нового базиса элементов столбца b и матрицы Δ -1 . Переход к новому базису β ( q +1) , кото­рый получается введением в базис β ( q ) столбца а l и выводом из него столбца а r , осуществляется по формулам, аналогичным формулам (1.28)-(1.31). Они имеют вид:

Полагаем номер текущей итерации q : =q +l и переходим к первому пункту алгоритма.

В завершение подчеркнем, что в силу приведенных выше пре­имуществ именно модифицированный симплекс-метод реально применяется в программном обеспечении, предназначенном для решения канонических задач линейного программирования.

1.5.2. Пример решения ЗЛП модифицированным сим­плекс-методом. Приведем решение рассмотренной ранее за­дачи (1.34)-(1.35), основанное на использовании процедуры модифицированного симплекс-метода. По аналогии с п. 1.4.3 оно начинается с выбора очевидного исходного базиса, обра­зуемого столбцами {5,2,3}. Для него уже были вычислены Δ -1 (β ( q )) и b (β ( q )), поэтому заполнение начальных таблиц T 1 и Т 2 (1) не представляет труда.

На первой итерации мы переписываем нулевую строку

из Т 2 (1) в T 1 и, умножив ее на матрицу A , получаем строку оце­нок

Так как a 0 (β (1)) содержит отрицательные элементы, то делаем вывод о неоптимальности плана, соответствующего базису β (1) , и, выбрав наименьшую отрицательную оценку (-88), получаем номер столбца, вводимого в базис, l = 4.

Переписываем столбец

из таблицы T 1 в Т 2 (1) и пересчитываем его координаты относи­тельно текущего базиса, т. е. умножаем матрицу Δ -1 (β ( q )), рас­положенную в таблице Т 2 (1) слева, на а 4 .

После заполнения таблицы Т 2 (1) данными по вводимому в но­вый базис столбцу можно перейти к определению номера выво­димого столбца. Эта процедура осуществляется в полной ана­логии с обычным симплекс-методом. Рассмотрев отношения элементов b i (β (1)) и a i , l (β (1)) для {i Î1:m| a i , l (β (1))>0} и определив минимальное из них, находим, что r = 2. Следовательно, стол­бец с номером N 2 (β ( q )) = 2 должен быть выведен из базиса. Та­ким образом, получаем очередной допустимый базис задачи с N (β (2)) = {5, 4, 3}. Элемент a 2,3 (β (1)) является ведущим (обведен кружком). Применив формулы (1.43)-(1.46), переходим к сим­плекс-таблице, соответствующей второй итерации Т 2 (2) , и пола­гаем индекс текущей итерации q = 2.

Повторяя те же самые действия (их легко проследить по при­водимым здесь таблицам Т 2 (2) и Т 2 (3) , на третьей итерации мы получим оптимальный план задачи и оптимальное значение целевой функции, которые извлекаются из второго столбца таблицы Т 2 (3) . Легко заметить, что в процессе решения мы «про­шли» по той же самой последовательности допустимых базис­ных планов, которая встречалась в п. 1.4.3.

Рассмотрим метод решения задачи ЦП, использующий идеи симплексного метода. Основная особенность задач ЦП заключается в конструкции целевой функции и в переменных, которые показывают отклонения от желаемого уровня достижения целей. Если учесть эти особенности, то для решения таких задач может быть применён обычный симплексный метод. Проиллюстрируем это на рассмотренном ранее примере. Алгоритм в некоторой степени упрощается из-за того, что исходное базисное решение здесь очевидно. Роль базисных переменных для начального плана здесь играют отрицательные отклонения «d », которые включены в модель с коэффициентами +1. Сложнее со строкой для коэффициентов целевой функции, т.е. с оценочной строкой. Как мы знаем, коэффициентами для отклонений в целевой функции задачи ЦП служат веса, ранжирующие цели по приоритетам. Их численные значения, как правило, не определены. Важно, чтобы коэффициент при отклонении для целевого ограничения с более высоким приоритетом был бы значимо больше коэффициента при отклонении от цели с более низким приоритетом. Поэтому для удобства расчетов оценочная строка разбивается на несколько строк (по числу приоритетов), и вычисления ведутся по каждой строке в отдельности.

Итак, пусть решается задача min Z = P 1 d 1 - + P 2 d 2 - + P 3 d 3 + + P 4 d 4 - ,

при условии, что

7x 1 + 6x 2 + d 1 - – d 1 + = 30;

2x 1 + 3x 2 + d 2 - – d 2 + = 12;

6x 1 + 5x 2 + d 3 - – d 3 + = 30;

x 2 + d 4 - – d 4 + = 7;

x 1 , x 2 , d i - , d i + ³ 0 (i = ).

Составим исходную симплексную таблицу (таблица 5.1.)

Таблица 5.1 – Исходная симплексная таблица

C j C B Базис Реше-ние 0 x 1 0 x 2 P 1 d 1 - P 2 d 2 - d 3 - P 4 d 4 - d 1 + d 2 + P 3 d 3 + d 4 + q
P 1 P 2 P 4 d 1 - d 2 - d 3 - d 4 - 7 -1 -1 -1 -1 30/7 30/6 -
Z j – С j P 4 P 3 P 2 P 1 -1 -1 -1 -1

Как известно, элементы оценочной строки (Z j – C j) рассчитываются по правилу: «от суммы произведений элементов столбца «С в » на элементы соответствующего столбца отнимается элемент верхней строки». Например, для столбца «решение» элемент «Z j – C j » равен: Р 1 *30 + Р 2 *12 + 0* 30 + р 4 *7 – 0 = 30Р 1 + 12Р 2 + 7Р 4 и коэффициенты при соответствующих P i (i = ) выписаны в этом столбце в блоке «Z j – C j » (читать снизу вверх). Для столбца «х 1 »: Р 1 *7 + Р 2 *2 + 0 * 6 + Р 4 *0 – 0 = 7Р 1 + 2Р 2 , а это и есть коэффициенты при Р 1 и Р 2 в блоке «Z j – C j » и т.д.

Поскольку задача ЦП всегда решается на минимум, то решение будет оптимальным, если все элементы оценочной строки будут не положительны. В нашем случае две оценки (в столбцах «х 1 » и «х 2 ») положительны, следовательно, план не оптимальный. Для определения переменной, входящей в базис, на первой итерации определяем наибольшую положительную оценку. Определяется она по знаку коэффициента при Р 1 , т.к. P 1 >> P 2 >> P 3 >> P 4 . При равных коэффициентах при Р 1 , «поднимаемся» на строку выше и выбираем наибольший коэффициент там. В случае полного равенства по всем строкам – выбирается любой из них. В нашем случае разрешающим столбцом будет столбец «х 1 » (т.к. 7 > 6). Разрешающая строка выбирается так же как и в симплексном методе – по наименьшему симплексному отношению q (элементы столбца «решение» делим на положительные элементы разрешающего столбца). В таблице 5.1 наименьшее отношение q находится в первой строке. Итак, на следующей итерации в базис вводится переменная «х 1 », выводится «d 1 - ». Пересчитываем таблицу как в обычном симплекс-методе (таблица 5.2.)

Таблица 5.2 – Вторая симплексная таблица

C j C B Базис Решение x 1 x 2 P 1 d 1 - P 2 d 2 - d 3 - P 4 d 4 - d 1 + d 2 + P 3 d 3 + d 4 + q
P 2 P 4 x 1 d 2 - d 3 - d 4 - 30/7 24/7 30/7 6/7 9/7 1/7 1/7 2/7 6/7 1/7 2/7 6/7 -1 -1 -1 30/6 24/9 -
Z j – C j P 4 P 3 P 2 P 1 24/7 9/7 2/7 -1 2/7 -1 -1 -1

Как видим, на второй итерации из базиса выводится d 2 - , в базис вводится х 2 . И т.д., пока не получим оптимальное решение. После 4-й итерации получим таблицу 5.3.

Таблица 5.3 – Итоговая симплексная таблица

C j C B Базис Реше-ние x 1 x 2 P 1 d 1 - P 2 d 2 - d 3 - P 4 d 4 - d 1 + d 2 + P 3 d 3 + d 4 +
P 4 d 2 + x 2 d 1 + d 4 - 1,6 1,2 0,2 -1,2 -1 -1 0,6 0,2 1,2 -0,2 -0,6 -0,2 -1,2 0,2 -1
Z j – C j P 4 P 3 P 2 P 1 -1,2 -1 -1 -0,2 0,2 -1 -1

Тот факт, что в строке при P 4 имеется положительный элемент (в столбце d 3 +) означает, что четвёртая цель выполнена не полностью. При этом, целевая функция равна Р 4 , это минимально возможное её значение. В целом оценка переменной d 3 + равна (0,2 Р 4 – Р 3), и поскольку Р 3 >> Р 4 , то в итоге она отрицательна. Все остальные оценки неположительны, следовательно, план с точки зрения симплексного метода оптимален.



Решение этой задачи можно прокомментировать следующим образом. Для выполнения поставленной задачи необходимо выпустить вторую продукцию в объёме 6 ед. (х 2 = 6). Первую продукцию не выпускать. При этом первая и вторая цели перевыполнены на 6 ед. (d 1 + = d 2 + = 6), а четвёртая недовыполнена на 1ед. (d 4 - =1). Таким образом, прибыли получили на 6 ед. больше желаемого уровня, первый ресурс использован сверх нормального лимита на 6 ед., а продукцию 2-го вида выпустить в желаемом объёме не получилось – вместо 7 ед. выпустили 6 (не хватило 2-го ресурса; его «экономия» – цель более высокого приоритета).

В заключение в качестве примера составления модели задачи ЦП составим модель ещё одной задачи.

Пример 5.2 . Администрация города планирует расширить спортивную базу. На эти цели в городском бюджете выделено 5,4 млн руб. Было запланировано дополнительно построить четыре типа спортивных сооружений: теннисные корты, плавательные бассейны, микростадионы (атлетические площадки) и гимнастические залы. Данные относительно этих проектов следующие (таблица 5.4).

Таблица 5.4 – Информация о строящихся объектах

Решение. В городе для этих целей выделено 20 га свободных площадей, но при необходимости эта площадь может быть увеличена. При реализации этого проекта администрация ставит следующие цели в порядке их важности:

1) уложиться в отведённую бюджетом сумму;

2) построенные спортивные сооружения должны обеспечить не менее 14 000 посещений в неделю;

3) по возможности удовлетворить ожидаемый спрос на спортивные сооружения. При формировании целевой функции для этих целевых ограничений использовать веса, пропорциональные ожидаемому использованию;

4) при осуществлении проекта по возможности не занимать более отведённого свободного пространства в 20 га.

При составлении модели этой задачи будем иметь в виду, что ограничения при формулировке целей не категоричные и могут быть как пере-, так и недовыполнены.

Переменные задачи: х 1 , х 2 , х 3 , х 4 – соответственно количество построенных сооружений: теннисных кортов, плавательных бассейнов, атлетических площадок и гимнастических залов.

Все ограничения будут целевыми, системных ограничений нет.

Первая цель – уложиться в отведённую сумму:

120х 1 + 600х 2 + 480х 3 + 1 200х 4 + d 1 - – d 1 + = 5 400 .

Минимизируем «перерасход»: min Z = P 1 d 1 + .

Вторая цель – не менее 14 000 посещений в неделю:

500 x 1 + 1 000x 2 + 2 000x 3 + 1 500x 4 + d 2 - – d 2 + = 14 000

Минимизируем «недопосещения». С учётом первой цели имеем:

min Z = P 1 d 1 + + P 2 d 2 - .

Реализация третьей цели потребует выполнения 4 ограничений по каждому виду сооружений:

x 1 + d 3 - – d 3 + = 8;

x 2 + d 4 - – d 4 + = 3;

x 3 + d 5 - – d 5 + = 3;

x 4 + d 6 - – d 6 + = 2.

Минимизируем «недовыполнение». Это третья по важности цель, поэтому в целевой функции все 4 слагаемых будут иметь коэффициент Р 3 , но с разными весами:

min Z = P 1 d 1 + + P 2 d 2 - + 0,5P 3 d 3 - + P 3 d 4 - + 2P 3 d 5 - + 1,5P 3 d 6 - .

Четвёртая цель: 0,8x 1 + 5x 2 + 3,2x 3 + 1,6x 4 + d 7 - – d 7 + = 20.

Целевая функция с учётом всех целей:

min Z = P 1 d 1 + + P 2 d 2 - + 0,5P 3 d 3 - + P 3 d 4 - + 2P 3 d 5 - + 1,5P 3 d 6 - + P 4 d 7 + .

Итак, модель задачи примет вид:

Найти min Z = P 1 d 1 + + P 2 d 2 - + 0,5P 3 d 3 - + P 3 d 4 - + 2P 3 d 5 - + 1,5P 3 d 6 - + P 4 d 7 +

при условии, что

120x 1 + 600x 2 + 480x 3 + 1200x 4 + d 1 - – d 1 + = 5 400,

500x 1 + 1 000x 2 + 2 000x 3 + 1 500x 4 + d 2 - – d 2 + = 14 000,

x 1 + d 3 - – d 3 + = 8,

x 2 + d 4 - – d 4 + = 3,

x 3 + d 5 - – d 5 + = 3,

x 4 + d 6 - – d 6 + = 2,

0,8x 1 + 2x 2 + 3,2x 3 + 1,6x 4 + d 7 - – d 7 + = 20.

x j ³ 0 (j = ) ; d i - , d i + ³ 0 (i = ).

Если эту задачу решать обычным симплексным методом, то весам P i надо придавать конкретные значения, но учитывать, что P 1 >> P 2 >>…>> P 7 . Разработаны специальные программы для решения таких задач. Реализуя одну из них (программа QM for Window), получим следующее оптимальное решение (таблица 5.5):

Таблица 5.5 – Решение задачи из примера 5.2.

(Целевое программирование)

x 1 = 8, x 2 = 3, x 3 = 3, x 4 = 1, d 2 + = 500, d 6 - = 1, d 7 + = 3,6. (d 7 + = –653 994 – это закодированное число 3,6 – оно указано в строке Priority 4). Указанное недовыполнение (Nonachievement) в строке Priority 3, равное 1,5 – это с учётом весового коэффициента в целевой функции при ).

Итак, на выделенные средства можно построить 8 теннисных кортов, 3 плавательных бассейна, 3 министадиона и один гимнастический зал. Как видим, четвёртая цель недовыполнена на 1 (d = 1), т.е. вместо двух запланированных будет построен один гимнастический зал. Вторая цель перевыполнена (d 2 + = 500), т.е. вместо 14 000 посещений возможны 14 500. Перевыполнена так же 4-я цель (d 7 + = 3,6), т.е. вместо отведённых 20 га под эти спортивные сооружения потребуется 23,6 га.

Глава 6. Методы сетевого планирования и управления

Методы сетевого планирования позволяют осуществить анализ комплекса работ, который включает в себя большое число взаимосвязанных операций. Можно определить вероятную продолжительность выполнения всех работ, их стоимость, возможные размеры экономии времени или денежных средств, а также то, выполнение каких операций нельзя отсрочить, не задержав при этом срок выполнения проекта в целом. Немаловажным является и проблема обеспечения ресурсами. Методы сетевого анализа могут быть использованы при составлении календарного плана выполнения операций, удовлетворяющего существующим ограничениям на обеспечение ресурсами.

Анализ любого проекта осуществляется в три этапа:

1. Расчленение проекта на ряд отдельных работ (или операций), из которых затем составляется логическая схема.

2. Оценка продолжительности выполнения каждой операции; составление календарного плана выполнения проекта и выделение работ, которые определяют завершение выполнения проекта в целом.

3. Оценка потребностей каждой операции в ресурсах; пересмотр плана выполнения операций с учётом обеспечения ресурсами либо
перераспределение денежных или других ресурсов, которое улучшит план.

После того как составлен список, логическая последовательность выполнения операций может быть проиллюстрировала с помощью графа. Существуют различные типы графов, но наиболее широкое применение получили, так называемые вершинные и стрелочные графы.

Задачей оптимизации в математике называется задача о нахождении экстремума вещественной функции в некоторой области. Как правило, рассматриваются области, принадлежащие и заданные набором равенств и неравенств.

3.1. Описание

Задача линейного программирования состоит в том, что необходимо максимизировать или минимизировать некоторый линейный функционал на многомерном пространстве при заданных линейных ограничениях.

Каждое из линейных неравенств на переменные ограничивает полупространство в соответствующем линейном пространстве. В результате все неравенства ограничивают некоторый многогранник (возможно, бесконечный), называемый также полиэдральным конусом.

Уравнение W(x) = c, где W(x) – максимизируемый (или минимизируемый) линейный функционал, порождает гиперплоскость L(c). Зависимость от c порождает семейство параллельных гиперплоскостей. При этом экстремальная задача приобретает следующую формулировку: требуется найти такое наибольшее c, что гиперплоскость L(c) пересекает многогранник хотя бы в одной точке. Заметим, что пересечение оптимальной гиперплоскости и многогранника будет содержать хотя бы одну вершину, причем их будет более одной, если пересечение содержит ребро или k-мерную грань. Поэтому максимум функционала можно искать в вершинах многогранника. Принцип симплекс-метода состоит в том, что выбирается одна из вершин многогранника, после чего начинается движение по его рёбрам от вершины к вершине в сторону увеличения значения функционала. Когда переход по ребру из текущей вершины в другую вершину с более высоким значением функционала невозможен, считается, что оптимальное значение c найдено.

Сущность симплекс-метода состоит в том, что если число неизвестных больше числа уравнений, то данная система неопределенная с бесчисленным множеством решений. Для решения системы все неизвестные произвольно подразделяются на базисные и свободные. Число базисных переменных определяется числом линейно-независимых уравнений. Остальные неизвестные свободные. Им придаются произвольные значения и затем подставляются в систему. Любому набору свободных неизвестных можно придать бесчисленное множество произвольных значений, которые дадут бесчисленное множество решений. Если все свободные неизвестные приравнять к нулю, то решение будет состоять из значений базисных неизвестных. Такое решение называется базисным.

В теории линейного программирования существует теорема, которая утверждает, что среди базисных решений системы можно найти оптимальное, а в некоторых случаях – несколько оптимальных решений, причем все они обеспечат экстремум целевой функции. Таким образом, если найти какой-то базисный план и затем улучшить его, то получится оптимальное решение. На этом принципе построен симплекс-метод.

Последовательность вычислений симплекс-методом можно разделить на две основные фазы:

1. нахождение исходной вершины множества допустимых решений;

2. последовательный переход от вершины к вершине, ведущий к оптимизации значения целевой функции.

В некоторых случаях исходное решение очевидно или его определение не требует сложных вычислений, – например, когда все ограничения представлены неравенствами вида «меньше или равно» (тогда нулевой вектор совершенно точно есть допустимое решение, хотя, скорее всего, далеко не оптимальное). В таких задачах первую фазу симплекс-метода можно вообще не проводить. Симплекс-метод соответственно делится на однофазный и

двухфазный .

3.2. Алгоритм симплекс-метода

Усиленная постановка задачи

Рассмотрим следующую задачу линейного программирования:

Теперь поставим эту задачу в эквивалентной усиленной форме. Необходимо максимизировать Z, где:

Здесь x – переменные из исходного линейного функционала; x s – новые переменные, дополняющие старые таким образом, что неравенство переходит в равенство; c – коэффициенты исходного линейного функционала; Z – переменная, которую необходимо максимизировать. Полупространства и в пересечении образуют многогранник, представляющий множество допустимых решений. Разница между числом переменных и уравнений даёт число степеней свободы. Проще говоря, если рассматривать вершину многогранника, это есть число рёбер, по которым можно продолжать движение.

Тогда можно присвоить такому числу переменных значение 0 и назвать

3. Модифицированный симплекс-метод

В основу данной разновидности симплекс-метода положены такие особенности линейной алгебры, которые позволяют в ходе решения задачи работать с частью матрицы ограничений. Иногда метод называют методом обратной матрицы.

В процессе работы алгоритма происходит спонтанное обращение матрицы ограничений по частям, соответствующим текущим базисным векторам. Указанная способность делает весьма привлекательной машинную реализацию вычислений вследствие экономии памяти под промежуточные переменные и значительного сокращения времени счёта. Способность хороша для ситуаций, когда число переменных n значительно превышает число ограничений m.

В целом, метод отражает традиционные черты общего подхода к решению задач линейного программирования, включающего в себя канонизацию условий задачи, расчёт симплекс – разностей, проверку условий оптимальности, принятие решений о коррекции базиса и исключение Жордана – Гаусса. Особенности заключаются в наличии двух таблиц – основной и вспомогательной, порядке их заполнения и некоторой специфичности расчётных формул.

Зная оптимальный план этой задачи, на основе соотношений получаем оптимальный план исходной задачи.

Таким образом, процесс нахождения решения задачи нелинейного программирования включает следующие этапы:

1. Первоначальную задачу сводят к задаче линейного программирования.

2. Находят решение линейной задачи

Используя соотношения, определяют оптимальный план исходной задачи и находят максимальное значение целевой функции нелинейной задачи.

Первый этап: Получение задания к курсовой работе

1. Все числовые данные, касающиеся предполагаемых производственных и экономических процессов, берутся на основе шестизначного шифра:

Под каждую цифру записываются буквы a, b, c, d, e, f в следующем виде:

из последней строки таблицы индивидуальных заданий находим столбцы соответствующие буквам a, b, c, d, e, f. Тогда числовыми данными, необходимыми для выполнения данной курсовой работы, будут данные находящиеся в а – том столбце в строке 9, b – том столбце в строке 5, c – том столбце в строке 5, d – том столбце в строке 8, e – том столбце в строке 7и f – том столбце в строке 2.

По таблице исходных заданий для любого варианта заданий по столбцу а исполнитель получает вариант выполняемого задания. В моем случае для цифры 9 соответствует вариант 9.

На некотором заводе производится три вида продукта и при этом расходуется два вида ресурсов. Производственная функция каждого вида продукта на предприятии опишется равенствами:


где С i и - постоянные величины, i = 1, 2, 3;

X 1 – трудовые ресурсы в человеко-днях;

Х 2 – денежно-материальные средства, в тенге;

У i – получаемый продукт

Х 1 = а 1 х 1 + b 1 x 2 + c 1 x 3

Х 2 = а 2 х 1 + b 2 x 2 + c 2 x 3

Найти все неотрицательные базисные решения и определить оптимальный план F = y 1 + y 2 + y 3 .

Известно, что продукт для производства j – того вида затрачивается a ij единиц i – того ресурса. Эти затраты даются в таблицах 3.9.1. – 3.9.10

Последующие числовые данные берутся только из таблицы исходных данных выбранного варианта задания т.е. из таблицы №3.9.11.

2. По столбцу таблицы №3.9.11 для строки 8 исходной таблицей затрат единиц ресурса, будет таблица №3.9.4 т.е. следующая таблица:

Продукты ресурсы

I 8 4 6
II 160 240 200

3. По столбцу c – на 3 строке находим с 1 =6, α 1 =0,6

4. По столбцу d – на 5 строке определяем с 2 =5, α 2 =0,5

5. По столбцу e – по 4 строке установим, что с 3 =8, α 3 =0,4.

6. И наконец по столбцу f – в 1 строке найдем Т чел.дней =1000, П тенге = 280000

Для производства имеются трудовые ресурсы Т чел.дней и денежно-материальные средства П тенге.

Требуется найти оптимальный план выпуска продукции, при котором выпускаемый продукт будет наибольшим.


Второй этап – составление математической модели задачи

1. На основании полученных в первом этапе исходных данных и описания заданного производственного процесса составляется следующая таблица:

Продукты ресурсы

I 8 4 6 1000
II 160 240 200 280000

Через Х 1 обозначим ресурсы I вида.

Через Х 2 обозначим ресурсы II вида.

2. Обращаясь к условиям задачи, определяем все возможные ограничения, объединяя их в систему ограничений.

8Х 1 + 4Х 2 + 6Х 3 ≤ 1000

240Х 1 + 200Х 2 + 160Х 3 ≤ 280000

Таким образом, получили задачу нелинейного программирования. Такие задачи называются задачами нелинейного программирования.

Решение задач нелинейного программирования осуществляется приведением их к задачам линейного программирования.

Для решения задачи линейного программирования применяется симплекс – метод.

Третий этап – выбор метода решения полученной математической задачи

1. Для решения задач линейного программирования симплекс – методом задача приводиться к каноническому виду:


8Х 1 + 4Х 2 + 6Х 3 + Х 4 = 1000

240Х 1 + 200Х 2 + 160Х 3 + Х 5 = 280000


Разрабатываются методы отыскания экстремальных значений целевой функции среди множества ее возможных значений, определяемых ограничениями. Наличие ограничений делает задачи математического программирования принципиально отличными от классических задач математического анализа по отысканию экстремальных значений функции. Методы математического анализа для поиска экстремума функции в задачах...



Нахождение точки Куна-Таккера обеспечивает получение оптимального решения задачи нелинейного программирования. Теорему 2 можно также использовать для доказательства оптимальности данного решения задачи нелинейного программирования. В качестве иллюстрации опять рассмотрим пример: Минимизировать при ограничениях С помощью теоремы 2 докажем, что решение является оптимальным. Имеем Так...



Лучей, исходящих из одной точки, называется многогранным выпуклым конусом с вершиной в данной точке. 1.4 Математические основы решения задачи линейного программирования графическим способом 1.4.1 Математический аппарат Для понимания всего дальнейшего полезно знать и представлять себе геометрическую интерпретацию задач линейного программирования, которую можно дать для случаев n = 2 и n = ...

Положит в такой симплекс-таблице текущие базисные переменные равными Ai,0, а свободные - нулю, то будет получено оптимальное решение. Практика применения симплекс метода показала, что число итераций, требуемых для решения задачи линейного программирования обычно колеблется от 2m до 3m, хотя для некоторых специально построенных задач вычисления по правилам симплекс метода превращаются в прямой...

Поясним вычисления a i , j ¢ с использованием “правила прямоугольника“. Необходимо взять разрешающий элемент a k , s и мысленно соединить его с тем коэффициентом, новое значение которого требуется найти. Эту прямую следует считать главной диагональю, на ней строится прямоугольник, сторонами которого являются строки и столбцы. В прямоугольнике нужно провести побочную диагональ, тогда значение нового коэффициента будет равно его исходному значению, из которого вычитается произведение элементов, стоящих на побочной диагонали, поделœенному на разрешающий элемент. Поясним эти действия на схеме (рис. 1.9). Прежде чем заполнить симплекс-таблицу исходные уравнения следует представить в виде (1.21).
a k,j
a i,j

Суть преобразований симплекс-метода рассмотрим на примере 1.4. Давайте вспомним ограничивающие неравенства и целœевую функцию из этого примера и найдем max целœевой функции, пользуясь вышеизложенным методом:

F = 908X 1 + 676X 2 ® max.

X 1 + X 2 14,

X 2 10,

10 X 1 + 8 X 2 120,

7X 1 + 5 X 2 70,

4X 1 + 2X 2 28,

.

Преобразуем ее в каноническую форму, вводя дополнительные переменные X j 0, и превратив неравенства в равенства. Следует обратить внимание, что если в неравенстве стоит знак "", то при свободной переменной пишут " - ", в противном случае - " + ":

X 1 + X 2 = 14 - X 3 ,

X 2 = 10 - X 4 ,

10 X 1 + 8 X 2 = 120 - X 5 ,

7X 1 + 5 X 2 = 70 - X 6 ,

4X 1 + 2X 2 = 28 - X 7 .

Чтобы приступить к процедуре симплекс-метода, нужно из множества базисных решений полученной системы уравнений сначала найти опорное. С учетом этого в решении задач симплекс-методом различают три этапа:

Нахождение первоначального базисного решения и формирование исходной симплекс-таблицы;

Определœение допустимого решения;

Определœение оптимального решения.

1-й этап

Первоначальное базисное решение систем находим, полагая свободными переменные X 1 и X 2 .

Тогда X 3 = 14 - X 1 - X 2 ,

X 4 = 10 - X 2 ,

X 5 =120 - 10X 1 - 8X 2 ,

X 6 = 70 - 10X 1 - 5X 2 ,

X 7 = 28 - 4X 1 - 2X 2 ,

F = 908X 1 + 676X 2 = 0 .

Преобразуем эти уравнения к нормальному виду:

X 3 = 14 - (X 1 + X 2),

X 4 = 10 - (0X 1 + X 2),

X 5 =120 - (10X 1 + 8X 2),

X 6 = 70 - (7X 1 + 5X 2),

X 7 = 10 - (4X 1 + 2X 2),

F = 0 + 908 X 1 + 676 X 2 .

Полученную систему уравнений запишем в виде исходной симплекс-таблицы (табл. 1.9). В табл. 1.9 нет отрицательных свободных членов. Следовательно, нами получено опорное (допустимое) решение, так как допустимым решением является любое неотрицательное решение (при котором > 0 ), но оно не является оптимальным.

Очевидно, что если бы при всœех неизвестных в целœевой функции F стояли положительные коэффициенты, то было бы достигнуто максимальное значение F . Отсюда вытекает признак оптимальности допустимого решения: в F - строке симплекс-таблицы не должно быть отрицательных коэффициентов.

Таблица 1.9

Базисные переменные X б Свободный член Свободные переменные
X 1 X 2
X 3
X 4
X 5
X 6
X 7
F - 908 - 676

2-й этап

Напомним, что основная операция симплекс-метода состоит по сути в том, что некоторая базисная переменная замещается на свободную переменную . При этом операция замещения выполняется при соблюдении следующих условий:

Значение целœевой функции F в новом опорном (допустимом) решении должно быть больше, чем в предыдущем;

Новое решение системы должно быть также опорным (допустимым).

В нашем примере первое условие выполняется, в случае если разрешающий элемент положительный и выбран в столбце отрицательного коэффициента F -строки.

Второе условие выполняется, в случае если разрешающий элемент находится как минимальное положительное отношение элементов столбца свободных членов к соответствующим элементам разрешающего столбца.

По выше изложенному правилу для нахождения допустимого решения меняют местами базисные и свободные переменные. Для этого находят разрешающий элемент (в табл. 1.9 он взят в рамку). В нашем случае разрешающим должна быть как столбец X 1 , так и X 2 . Деля свободные переменные на соответствующие значения X 1 иX 2 (кроме строки F ), находим наименьшее положительное значение. Важно заметить, что для столбца X 1 :

Важно заметить, что для столбца X 2 :

Наименьшее отношение 28/4 определяет разрешающую строку и разрешающий столбец, а пересечение разрешающего столбца и разрешающей строки - разрешающий элемент a ks = 4. В табл. 1.9 разрешающий столбец и разрешающую строку отмечаем стрелками (®). Определивa ks , строят следующую таблицу, в которой меняют местами переменные, входящие в строку и столбец разрешающего элемента͵ ᴛ.ᴇ. переводят базисные переменные в свободные, а свободные - в базисные.

В нашем примере меняем местами переменные Х 7 и Х 1 , отмеченные в табл. 1.9 стрелками. Коэффициенты новой табл. 1.10 находят по коэффициентам старой табл. 1.9, используя выражения, приведенные в табл. 1.8 и “правило прямоугольника”. В табл. 1.10 снова не имеем оптимального решения.

Таблица 1.10

Базисные переменные Х б Свободный член В Свободные переменные
X 7 X 2
Х 3 - 1/4 1/2
Х 4
Х 5 -5/2
Х 6 -7/4 3/2
Х 1 1/4 1/2
F -222

По вышеописанным правилам в табл. 1.10 находим разрешающий элемент 1 и строим новую табл. 1.11 сделав замещение базиса (Х 4 и Х 2 ). Особо подчеркнем, что для нахождения разрешающего элемента мы должны выбирать наименьшее положительное значение, ᴛ.ᴇ. отрицательные отношения свободных членов к коэффициентам разрешающего столбца мы не рассматриваем.

3-й этап

Проверим, является ли найденное решение оптимальным, а для нашего примера - максимальным. Для этого сделаем анализ целœевой функции F : F = 8576 + 227 X 7 + 222 X 4 .

Целœевая функция не содержит отрицательных коэффициентов и имеет наибольшее значение в последней таблице, нами получено оптимальное решение:

X 3 = 2; X 2 = 10; X 5 = 20; X 6 = 6; X 1 = 2; X 7 = X 4 = 0;

F max = 8576.

Обратите внимание, что результаты решения симплекс методом и графическим совпадают.

В соответствии с рассмотренной последовательностью, алгоритм симплекс-метода должен иметь следующие блоки:

1. Нахождения первоначального базисного (опорного) решения и формирование исходной таблицы.

2. Отыскание разрешающего элемента a ks (нахождение отрицательного свободного члена - b i < 0 и минимального отношенияb i / a ij ; если в строке отрицательного свободного члена нет отрицательных коэффициентов, то задача неразрешима).

3. Перерасчет новой таблицы по формулам табл. 1.8.

4. Проверка наличия отрицательного свободного члена. В случае если он есть, то переходим к п. 2. Отсутствие отрицательного свободного члена означает, что получено опорное (допустимое) решение.

5. Аналогично п. 2 - 4 выполняется перерасчет таблицы при поиске оптимального решения.

Решение задачи ЛП симплекс-методом в матричной форме

Требуется минимизировать ,

при ограничениях

при "x ³ 0.

Введем векторы:

C = (C 1 , ... , C n) - вектор оценок,

X = (X 1 , ... , X n) - вектор переменных,

b = (B 1 , ... , B m) - вектор ограничений

и матрицу

A =

размером (mn) - матрицу коэффициентов ограничений.

Тогда задача ЛП будет иметь следующую трактовку:

минимизировать F=CX

при условиях AX = b, X 0.

Эту задачу можно записать в матричной форме:

Введем обозначение:

А * = - здесь матрица A * размером (m+1)(n+1).

Согласно выше приведенной методике находят разрешающий элемент a ks .

Следующий шаг симплекс-метода - процедура исключения Гаусса, которая позволяет сделать всœе коэффициенты в s - м столбце, кроме a ks , нулевыми, a ks - равным единице.

Важно заметить, что для симплекс-метода в матричной форме итерация симплекс-метода эквивалентна умножению матричного уравнения слева на следующую квадратную матрицу:

(1.23)
, гдеk 0; s 0.

В случае если всœе столбцы матрицы A разделить на базисные B и небазисные N, то задачу ЛП можно записать так:

,

где C b и C N - соответствующие компоненты вектора C, X b , X N - базисные и небазисные переменные.

Для выбора начальных базисных переменных x b следует умножить уравнение слева на матрицу:

где R= C b B -1 .

В результате получим

,

гдеI - единичная матрица.

Отсюда следует, что относительные оценки при небазисных переменных

c j = c j - C b B -1 a j = c j - Ra j .

Базис будет допустимым, в случае если свободные члены при базисных переменных будут неотрицательными, ᴛ.ᴇ. B -1 b ³ 0.

В случае если c j ³ 0 для , то базис является оптимальным решением задачи. Вектор называют вектором текущих цен. Каждая строка умножается на вектор R и вычитается из строки коэффициентов стоимости, для того чтобы исключить коэффициенты стоимости при базисных переменных.

В случае если задача ЛП задана не в канонической форме, ᴛ.ᴇ.

минимизировать F=CX

при условиях AX b , X 0,

то, вводя слабые переменные, их можно записать в виде

Метод исключения по строкам для матрицы эквивалентен умножению этой матрицы слева на B -1 , где B - базис подматрицы A , тогда

,

ᴛ.ᴇ. матрица, получаемая на месте единичной I , будет матрицей, обратной для текущего базиса. Относительные оценки, расположенные над единичной матрицей, будут

,

поскольку - единичные векторы.

Так как F= C b B -1 b = Rb, текущее значение целœевой функции равно произведению вектора текущих цен матрицы A на исходный вектор b .

Пример.
Размещено на реф.рф
F= 5X 1 + 6X 2 + 3X 3 + 4X 4 + 5X 5
® min

при ограничениях

2X 1 + 3X 3 + 4X 4 + 2X 5 = 10,

3X 2 + 3X 4 + 6X 5 = 9,

.

Для данного примера матрицаA * будет иметь вид

.

Пусть X 1 и X 2 - базисные переменные.

Матрица B имеет вид

.

Тогда обратная матрица B -1 имеет следующий вид

.

Напомним, что , где присоединœенная матрица, составленная из алгебраических дополнений элементов b ik определителя матрицы B .

Определитель равен:

= .

Следовательно, матрица B неособенная.

Алгебраические дополнения элементов определителя имеют следующие значения:

b 11 = 3, b 12 = 0, b 12 = 0, b 22 = 2 ; т.е. .

Умножив на , находим обратную матрицу:

.

Вектор текущих цен будет

R = C b B -1 = = .

Напомним, что C b - базисные компоненты вектора C :

Тогда = .

Для выбора начального базиса нужно матрицу A * умножить слева на матрицу

=

.

Разрешающий элемент находится в квадрате.

Итерация симплекс-метода эквивалентна полученной таблице, умноженной слева на следующую матрицу:

.

Эта матрица получена из матрицы (1.23)

Здесь a ks = 2 ;

a 11 = 1; a 12 = - a 0s / a ks = - 12/2 = - 6;

a 13 = 0 ; a 21 = 0 ; a 22 = 1/ a ks = 1/2 ; a 23 = 0;

a 31 = 0 ; a 32 = - a ms / a ks = -1/2 ; a 33 = 1.

Тогда имеем

=

(1.24)

Разрешающий элемент помещен в квадрат.

Следующая итерация симплекс-метода равносильна умножению слева на матрицу

.

=

.

Следовательно, F min =11; X 4 =7/3; X 5 =1/3; X 1 =X 2 =X 3 =0.

Модифицированный симплекс-метод(МСМ ) отличается от обычного симплекс-метода(СМ ) тем, что в СМ всœе элементы симплекс-таблиц пересчитываются на каждой итерации и при получении очередной таблицы, всœе предыдущие таблицы, включая исходную, не сохраняются. В МСМ сохраняется исходная таблица, а на каждой итерации определяются: строка относительных оценок C , вводимых в базис , и текущее значение вектора правых частей ограничений . Для того чтобы определить всœе элементы таблицы после j- й итерации СМ , достаточно знать матрицу B -1 , соответствующую этой таблице, исходную матрицу и индексы текущих базисных переменных. Тогда текущий вектор R = C b B -1 (индексы текущих базисных переменных определяют, какие элементы вектора оценок из исходной таблицы входят в вектор С b ); =B -1 b , где b берется из исходной таблицы, а любой столбец новой таблицы=B -1 a j , гдеa j - столбец исходной таблицы.

Пусть задана теперь исходная таблица B -1 , соответствующая таблице i -й итерации. Для того чтобы получить матрицуB -1 , соответствующую (i+1)- й итерации, нужно определить небазисный столбец i -й таблицы , который должен быть введен в базис. ИзСМ следует, что должна быть введен в базис, в случае если C j <0. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, крайне важно вычислить С j для i -ой таблицы, выбрать среди них <0, а затем вычислить

a S = B -1 и =B -1 b (= C j - Ra j ).

Найдя разрешающий элемент и используя элементы векторов и , находим матрицу B -1 для следующей таблицы.

Пример. Модифицированным симплекс-методом минимизировать

F = 5X 1 + 6X 2 + 3X 3 + 4X 4 + 5X 5 ® min

при ограничениях:

2X 1 + 3X 3 + 4X 4 + 2X 5 = 10,

3X 2 + 3X 4 + 6X 5 = 9,

Выбрав в качестве базисных переменных X 1 и Х 2 , получили следующую задачу: F = 43 - 9/2X 3 - 12X 4 - 12X 5