Канонические записи. Каноническая форма задачи линейного программирования

канонической форме , если требуется максимизировать целевую функцию, все ограничения системы – уравнения и на все переменные наложено условие неотрицательности.

Задача линейного программирования задана в симметричной форме , если требуется максимизировать целевую функцию, все ограничения системы – неравенства «» (или минимизировать целевую функцию, все ограничения системы – неравенства «») и на все переменные наложено условие неотрицательности.

Набор чисел называется допустимым решением (планом) , если он удовлетворяет системе ограничений ЗЛП.

Множество всех допустимых решений называется областью допустимых решений (ОДР).

Допустимое решение , для которого достигается максимальное (минимальное) значение функции, называется оптимальным планом ЗЛП .

Термины «план» и «оптимальный план» возникли из экономических приложений.

Все три формы записи ЗЛП являются эквивалентными в том смысле, что имеются алгоритмы перехода от одной формы к другой. Таким образом, если имеется способ решения задачи в одной из форм, то всегда можно определить оптимальный план задачи, заданной в любой другой форме . Задача в симметричной форме решается графическим методом, а в канонической форме – симплекс–методом.

Рассмотрим алгоритмы перехода от одной формы к другой.


  • Симметричная  каноническая. Переход осуществляется путем добавления в левую часть каждого неравенства дополнительной неотрицательной переменной. Если неравенство было «≤», то балансовая переменная добавляется в левую часть неравенства со знаком «+». Если неравенство было «», то балансовая переменная добавляется в левую часть неравенства со знаком «–». Вводимые новые переменные называются балансовыми . Задачу минимизации функции Z заменяют на задачу максимизации функции (–Z) и используют, что min Z = –max (–Z).

  • Каноническая  симметричная. Для осуществления такого перехода находится общее решение системы уравнений – ограничений, целевая функция выражается через свободные переменные. Далее, воспользовавшись неотрицательностью базисных переменных, можно исключить их из задачи. Симметричная форма задачи будет содержать неравенства, связывающие только свободные переменные, и целевую функцию, зависящую только от свободных переменных. Значения базисных переменных находятся из общего решения исходной системы уравнений.

  • Общая  каноническая. Каждая переменная, на которую не было наложено условие неотрицательности, представляется в виде разности двух новых неотрицательных переменных. Неравенства преобразуются в уравнения путем введения в левую часть каждого неравенства балансовой переменной таким же образом, как это было описано при переходе от симметричной к канонической форме. Задачу минимизации функции Z заменяют на задачу максимизации функции (–Z) таким же образом, как это было описано при переходе от симметричной к канонической форме..
    1. Графический метод решения задачи линейного программирования

Графический метод применяется для решения ЗЛП, заданной в симметричной форме . Этот метод наиболее эффективно применяется для решения задач с двумя переменными, т.к. требует графических построений. В случае трех переменных необходимы построения в R 3 , в случае четырех переменных необходимы построения в R 4 и т.д.

Множество точек называется выпуклым , если для любых двух точек множества оно содержит отрезок, их соединяющий.

Пример 1

Следующие множества точек на плоскости являются выпуклыми:

Следующие множества точек на плоскости не являются выпуклыми:

Теорема 1 Пересечение любого количества выпуклых множеств является выпуклым множеством.

Теорема 2 Пусть имеются две произвольные точки и в пространстве R n . Тогда для любой точки отрезка [PQ ] должно выполняться: .где .

Гиперплоскостью в пространстве R n называется множество точек, удовлетворяющее уравнению . Заметим, что в двумерном случае гиперплоскостью является прямая.

Полупространством называется множество точек, удовлетворяющее одному из неравенств или . Гиперплоскость делит точки пространства на два полупространства. В двумерном случае гиперплоскостью является полуплоскость.

Теорема 3 Полупространство является выпуклым множеством.

Следствие Пересечение любого количества полупространств является выпуклым множеством.

Многогранником называется пересечение одного или более полупространств. Многогранник в двумерном случае называется многоугольником.

Пример 2

Следующие множества являются многоугольниками.

Ограниченное множество

Неограниченное множество


Единственная точка

Пустое множество


Точка выпуклого множества называется угловой , если она не лежит внутри никакого отрезка, соединяющего две другие точки из множества.

Пример 3

Угловыми точками треугольника являются его вершины (их три). Угловыми точками круга являются точки окружности, которая его ограничивает (их бесконечное число).

Угловая точка многогранника называется его вершиной .

Рассмотрим ЗЛП, заданную в симметричной форме.

Теорема 4 Оптимальный план ЗЛП соответствует вершине многогранника решений, определяемого ее системой ограничений.

В общем случае задача линейного программирования записывается так, что ограничениями являются как уравнения, так и неравенства, а переменные могут быть как неотрицательными, так и произвольно изменяющимися. В том случае, когда все ограничения являются уравнениями и все переменные удовлетворяют условию неотрицательности, задачу линейного программирования называют канонической. Она может быть представлена в координатной, векторной или матричной записи.

1. Каноническая задача линейного программирования в координатной записи имеет вид

.

В более компактной форме данную задачу можно записать, используя знак суммирования,

(1.7)

2. Каноническая задача линейного программирования в векторной записи имеет вид

(1.8)

где ,

.

3. Каноническая задача линейного программирования в матричной записи имеет вид

(1.9)

, .

Здесь А – матрица коэффициентов системы уравнений, Х – матрица-столбец переменных задачи, – матрица-столбец правых частей системы ограничений.

Нередко используются задачи линейного программирования, называемые симметричными , которые в матричной записи имеют вид

(1.10)

(1.11)

1.4. Приведение общей задачи линейного программирования
к канонической форме

В большинстве методов решения задач линейного программирования предполагается, что система ограничений состоит из уравнений и естественных условий неотрицательности переменных. Однако при составлении математических моделей экономических задач ограничения в основном формируются в системы неравенств, поэтому необходимо уметь переходить от системы неравенств к системе уравнений. С этой целью докажем следующую теорему.

Теорема 1.1. О замене неравенства уравнением. Каждому решению неравенства

соответствует единственное решение уравнения

и неравенства

, (1.14)

и, наоборот, каждому решению уравнения (1.13) и неравенства (1.14) соответствует единственное решение неравенства (1.12).

Доказательство. Пусть – решение неравенства (1.12), тогда . Обозначим разность правой и левой частей этого неравенства через , т. е.

Очевидно . Подставим в уравнение (1.13) вместо переменных значения , получим

Таким образом, удовлетворяет уравнению (1.13) и неравенству (1.14). Значит доказана первая часть теоремы.

Пусть теперь удовлетворяет уравнению (1.13) и неравенству (1.14), т. е. имеем

И

Отбрасывая в левой части последнего равенства неотрицательную величину , получаем

т. е. удовлетворяет неравенству (1.12). Теорема доказана.

Если неравенство , то дополнительную неотрицательную переменную необходимо ввести в его левую часть со знаком минус, т. е. .

Неотрицательные переменные, вводимая в ограничения неравенства для превращения их в уравнения, называются дополнительными переменными . Дополнительные переменные вводятся в целевую функцию с нулевыми коэффициентами и поэтому не влияют на ее значение.

В том случае, когда задача имеет произвольно изменяющиеся переменные, то любую такую переменную заменяют разностью двух неотрицательных переменных, т. е. , где и .

Иногда возникает необходимость перейти в задаче от нахождения минимума к нахождению максимума или наоборот. Для этого достаточно изменить знаки всех коэффициентов целевой функции на противоположные, а в остальном задачу оставить без изменения. Оптимальные решения полученных таким образом задач на максимум и минимум совпадают, а значения целевых функций на оптимальных решениях отличаются только знаком.

Пример 1.1. Привести к каноническому виду задачу линейного программирования.

Д

Решение . Перейдем к задаче на отыскание максимума целевой функции. Для этого изменим знаки коэффициентов целевой функции. Для превращения в уравнения второго и третьего неравенств системы ограничений введем неотрицательные дополнительные переменные (на математической модели эта операция отмечена буквой Д). Переменная вводится в левую часть второго неравенства со знаком "+", так как неравенство имеет вид . Переменная вводится в левую часть третьего неравенства со знаком "-", так как неравенство имеет вид . В целевую функцию переменные вводятся с коэффициентом, равным нулю. Переменную , на которую не наложено условие неотрицательности заменяем разностью , . Записываем задачу в каноническом виде

В некоторых случаях возникает необходимость приведения канонической задачи к симметричной задаче. Рассмотрим пример.

Пример 1.2. Привести к симметричному виду задачу линейного программирования

Каноническая форма ЗЛП - задача линейного программирования вида ax = b где a - матрица коэффициентов, b - вектор ограничений.

Назначение сервиса . Онлайн-калькулятор предназначен для перехода ЗЛП к КЗЛП. Приведение задачи к канонической форме означает, что все ограничения будут иметь вид равенств, путем ввода дополнительных переменных.
Если на какую-либо переменную x j не наложено ограничение, то она заменяется на разность дополнительных переменных, x j = x j1 - x j2 , x j1 ≥ 0, x j2 ≥ 0.

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word .

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 2 3 4 5 6 7 8 9 10
Как привести задачу линейного программирования к канонической форме

Математическая модель ЗЛП называется основной , если ограничения в ней представлены в виде уравнений при условии неотрицательности переменных.

Математическая модель называется канонической , если ее система ограничений представлена в виде системы m линейно независимых уравнений (ранг системы r=m), в системе выделен единичный базис , определены свободные переменные и целевая функция выражена через свободные переменные. При этом правые части уравнений неотрицательны (b i ≥ 0).

Переменные, входящие в одно из уравнений системы с коэффициентом один и отсутствующие в других уравнениях называются базисными неизвестными , а все другие - свободными .

Решение системы называется базисным , если в нем свободные переменные равны 0, и оно имеет вид:
X баз = (0, 0; b 1 , …, b m), f(X баз) = c 0

Базисное решение является угловой точкой множества решений системы, т.е. определяет вершину многоугольника решений модели. Среди таких решений находится и то, при котором целевая функция принимает оптимальное значение .

Базисное решение называется опорным, если оно допустимо, т.е. все правые части уравнений системы (или неравенств) положительны b i ≥ 0.

Компактная форма канонической модели имеет вид:
AX = b
X ≥ 0
Z = CX(max)

Понятие допустимого решения, области допустимых решений, оптимального решения задачи линейного программирования .
Определение 1 . Вектор X, удовлетворяющий системе ограничений ЗЛП, в том числе и условиям неотрицательности, если они имеются, называется допустимым решением ЗЛП.
Определение 2 . Совокупность всех допустимых решений образует область допустимых решений (ОДР) ЗЛП.
Определение 3 . Допустимое решение, для которого целевая функция достигает максимума (или минимума), называется оптимальным решением.

Пример №1 . Следующую задачу ЛП привести к каноническому виду: F(X) = 5x 1 + 3x 2 → max при ограничениях:
2x 1 + 3x 2 ≤20
3x 1 + x 2 ≤15
4x 1 ≤16
3x 2 ≤12
Модель записана в стандартной форме. Введем балансовые неотрицательные переменные x 3 , x 4 , x 5 , x 6 , которые прибавим к левым частям ограничений-неравенств. В целевую функцию все дополнительные переменные введем с коэффициентами, равными нулю:
В первом неравенстве смысла (≤) вводим базисную переменную x 3 . Во 2-ом неравенстве смысла (≤) вводим базисную переменную x 4 . В третьем неравенстве вводим базисную переменную x 5 . В 4-м неравенстве - базисную переменную x 6 . Получим каноническую форму модели:
2x 1 + 3x 2 + 1x 3 + 0x 4 + 0x 5 + 0x 6 = 20
3x 1 + 1x 2 + 0x 3 + 1x 4 + 0x 5 + 0x 6 = 15
4x 1 + 0x 2 + 0x 3 + 0x 4 + 1x 5 + 0x 6 = 16
0x 1 + 3x 2 + 0x 3 + 0x 4 + 0x 5 + 1x 6 = 12
F(X) = 5x 1 + 3x 2 + 0x 3 + 0x 4 + 0x 5 + 0x 6 → max

Пример №2 . Найти два опорных решения системы
x 1 + 2x 4 - 2x 5 = 4
x 3 + 3x 4 + x 5 = 5
x 2 + 3x 5 = 2

Cтраница 1


Каноническая форма задачи характеризуется следующими тремя признаками: 1) однородная система ограничений в виде системы уравнений; 2) однородные условия неотрицательности, распространяющиеся на все переменные, участвующие в задаче, и 3) максимизация, линейной функции. В данной задаче нарушены все эти три признака.  

Каноническая форма задачи характеризуется следующими тремя признаками: 1) однородная система ограничений в виде системы уравнений; 2) однородные условия неотрицательности, распространяющиеся на все переменные, участвующие в задаче, и 3) максимизация линейной функции. В данной задаче нарушены все эти три признака.  

Каноническая форма задачи линейного программирования удобна тем, что легко находится начальная вершина допустимой области.  

Рассмотрим каноническую форму задачи линейного программирования и метод исключения Жордана - Гаусса.  

Часто оказывается удобной каноническая форма задачи линейного программирования.  

При преобразовании системы ограничений к канонической форме задачи линейного программирования неравенства (12) и (13) должны быть заменены равенствами. Для этого вводят дополнительные неотрицательные переменные.  

Доказать, что попарно коммутирующие вещественные матрицы одновременно приводятся к канонической форме задачи 1128 преобразованием подобия посредством ортогональной матрицы.  

По существу (4) - (5) можно рассматривать как каноническую форму задачи нелинейного программирования, поскольку методы, изложенные в гл. Обычно в задачах нелинейного программирования не выдвигается требование целочисленности переменных.  

Виды ограничений и методы их преобразования.  

Каноническая форма задачи характеризуется однородностью системы ограничений в виде системы уравнений; максимизацией целевой функции; условием неотрицательности всех переменных, участвующих в задаче.  

Никаких дополнительных особенностей каноническая форма задач в рассматриваемую вычислительную схему не добавляет.  

Рассмотрим сначала вторую каноническую форму задачи на минимум.  

Алгоритм симплекс-мете да гложно разбить на два этапа. На первом этапе исключением переменных находят базисное решение. Если оно найдено, то мы имеем каноническую форму задачи для перехода ко второму этапу. На втором этапе проверяют, есть ли ограниченный оптимум. Если он существует то определяются допус - тимые базисные решанпя ив которых выбирается оптимальное.  

Если решается задача в канонической форме, то используется лишь часть введенных во втором параграфе операций. Так, для канонической задачи на минимум реализуется только случай пункта 3.4.1, и нужны лишь операции циклической перестановки столбцов, прогонки столбца через зону вертикального окаймления, исправления структурных нарушений и часть операции усечения. Симметрично, при решении канонической задачи на максимум реализуется только случай пункта 3.4.2, и нужны операции циклической перестановки строк, прогонки строки через зону горизонтального окаймления, исправления структурных нарушений и другая часть операции усечения. В остальном никакой дополнительной специфики каноническая форма задачи не добавляет.  

В первом параграфе введения было показано, как общую задачу линейного программирования можно свести к одной из канонических форм. Для канонически (же задач описание метода последовательного улучшения формально упрощается, так как отпадает необходимость рассматривать два варианта нарушения условий оптимальности и два варианта выхода в следующую вершину. Однако при этом увеличиваются размеры базисной матрицы А [ /, J ], которые в основном и определяют трудоемкость одного шата. Тем не менее, во многих случаях применение метода к каноническим формам задачи оказывается предпочтительным, и в этом параграфе мы остановимся на вариантах метода, получающихся для частных задач линейного программирования.  

Страницы:      1

Задача линейного программирования вида ax = b где a - матрица коэффициентов, b - вектор ограничений.
Пример :

В каждой задаче ЛП ищутся значения переменных при условии, чтобы:

  • эти значения удовлетворяли некоторой системе линейных уравнений или неравенств;
  • при этих значениях целевая функция обращалась бы в минимум или максимум.

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word .

Одним из универсальных методов ЛП является симплексный метод, который, однако, можно применять, если задача ЛП имеет каноническую форму.

Определение . Задача ЛП имеет каноническую форму, если все ограничения системы состоят только из уравнений (кроме неравенств, выражающих неотрицательность переменных) и целевую функцию необходимо минимизировать.
Примером такой задачи ЛП в канонической форме является задача 1 – сбалансированная транспортная задача с системой ограничений (1) и целевой функцией (2).
Однако в большинстве экономических задач чаще всего в систему ограничений первоначально входят не только уравнения, а и неравенства.

Утверждение. Любая общая задача ЛП может быть приведена к канонической форме.
Приведение общей задачи ЛП к канонической форме достигается путем введения новых (их называют дополнительными) переменных.
Система ограничений (3) этой задачи состоит из четырех неравенств. Введя дополнительные переменные y 1 ≥ 0, y 2 ≥ 0, y 3 ≥ 0, y 4 ≥ 0, можно перейти к системе ограничений:

Эти дополнительные переменные y i имеют абсолютно ясный экономический смысл, а именно означают величину неиспользованного времени работы (простоя машины i -го вида).
Например, если бы машины первого вида работали все 18 ч, то x + y = 18, следовательно, y 1 = 0. Но мы допускаем возможность неполного использования времени работы первой машины x + y <18. В этом случае y 1 приобретает положительное значение и может рассматриваться как неиспользованный лимит времени. Например, зная решение этой задачи из пункта 3.3.2, x = 12, y = 6, мы можем из системы ограничений (3.9) сделать вывод, что y 1 = y 2 = y 3 = 0, а y 4 = 12 – 6 = 6. Т. е. машины первого, второго, третьего вида используют свое рабочее время полностью. А вот четвертая машина загружена лишь наполовину, 6 часов, и при заданном оптимальном плане простаивает. Возможно, после таких выводов руководителю предприятия захочется загрузить ее другой работой, сдать в аренду на это время и т.д.
Итак, введением дополнительных переменных мы можем любое ограничение типа неравенства привести к уравнению.

Рассмотрим задачу о смеси. Система ограничений имеет вид:
Неравенства были обращены в сторону «больше», поэтому вводя дополнительные переменные y 1 , y 2 , y 3 ≥ 0, их необходимо вычесть из левой части, чтобы уравнять ее с правой. Получим систему ограничений в канонической форме:
Переменные y i также будут иметь экономический смысл. Если вы вспомните практическое содержание задачи, то переменная y 1 будет означать количество излишнего вещества А в смеси, y 2 –количество излишков вещества В в смеси, y 3 – излишки С в смеси.
Задача нахождения максимального значения целевой функции может быть сведена к нахождению минимума для функции –F ввиду очевидности утверждения max F = –min (– F). Посмотрите на рисунок: если в какой-то точке x = x 0 функция y = F (x ) достигает своего максимума, то функция y = –F (x ), симметричная ей относительно оси OX , в этой же точке x 0 достигнет минимума, причем F max = – (–F min) при x = x 0 .

Вывод. Для представления задачи ЛП в канонической форме необходимо:

  • неравенства, входящие в систему ограничений задачи, преобразовать в уравнения с помощью введения дополнительных переменных;
  • если целевая функция F →max (максимизируется), она заменяется на функцию –F → min (которая минимизируется).