Метод ветвей и границ в excel. Пример решений задачи коммивояжера методом ветвей и границ

Введение

При рассмотрении целого ряда задач, необходимо учитывать требование целочисленности используемых переменных. Методы решения задач линейного программирования не гарантируют целочисленности решения.

Иногда задачи целочисленного линейного программирования решают приближенно. Для этого решают задачу без учета целочисленности переменных, затем в полученном оптимальном решении округляют результаты до ближайших целых значений. Использование таких решений допустимо в тех ситуациях, где значения переменных достаточно велики, и погрешностью округления можно пренебречь. Если значения переменных невелики, то округление может привести к значительному расхождению с оптимальным решением.

Одним из широко распространенных методов решения целочисленных задач является метод ветвей и границ, впервые, он был предложен Ленд и Дойг в 1960 г.

ветвь граница линейное программирование

Метод ветвей и границ

Алгоритм метода ветвей и границ предусматривает декомпозицию исходной задачи линейного программирования (ЗЛП) на последовательность задач, содержащих дополнительные ограничения на переменные, которые затем оптимизируются.

1. Процесс начинают с решения задачи симплексным или графическим методом без учета требования на целочисленность переменных. Эту задачу называют ЗЛП-0. Если все переменные оптимального плана целые, то этот план также является оптимальными для задач целочисленного программирования.

2. Если некоторая переменная, не получила целочисленного значения, то производится ветвление на две новые задачи ЗЛП-1, ЗЛП-2. Одна из задач ЗЛП-1 представляет собой задачу ЗЛП-0, дополненную ограничением где - целая часть числа. Вторая образуется путем добавления к задаче ЗЛП-0 ограничения. Следует отметить, что выбор целочисленной переменной может быть произвольным определяться следующим образом:

по возрастанию или убыванию индексов;

переменная представляет важное решение принимаемое в рамках данной задачи;

коэффициент в целевой функции при этой переменной существенно превосходит все остальные.

3. Задачи ЗЛП-1 и ЗЛП-2 решаются самостоятельно. Ветвь оканчивается, если область допустимых решений пуста, либо её оптимальное решение полностью целочисленное. В противном случае возникает необходимость ветвления с п.2, обозначая следующие номера задач ЗЛП в естественном порядке ЗЛП-3, ЗЛП-4.

Процесс решения можно представить в виде дерева, в котором вершина ЗЛП-0 отвечает начальному плану решения задачи, а каждая из соединенных с ней ветвью вершин отвечает оптимальному плану следующей задачи.

Рассмотрим следующий пример. Максимизировать целевую функцию

при ограничениях

Воспользуемся графическим методом решения задачи линейного программирования.

1. Решим исходную задачу без учета требования целочисленности переменных.

Обозначим эту задачу линейного программирования ЗЛП-0.

На рисунке 1.1 штриховкой выделен многоугольник решений данной задачи. Максимальное значение достигается в точке Решение не является целочисленным.

Следующий шаг метода ветвей и границ состоит в ветвлении по одной из целочисленных переменных, имеющих дробное значение, например. Для этого добавим к задаче ЗЛП-0 два новых ограничения и Этими ограничениями удаляется интервал = в котором нет целых значений. Таким образом, в процессе ветвления создаются две новые задачи ЗЛП-1 и ЗЛП-2.

Рисунок 1.1 Решение задачи ЗЛП-0

2. Решим задачу ЗЛП-1 графически.

На рисунке 1.2 изображена допустимая область задачи ЗЛП-1. Максимальное значение достигается в точке. Решение задачи нецелочисленное.

Рисунок 1.2 Решение задачи ЗЛП-1

3. Решим задачу ЗЛП-2 графически.

В данном случае множество допустимых решений пусто (рисунок 1.2). Система ограничений несовместна, и задачу ЗЛП-2 можно исключить из дальнейшего рассмотрения.

Рисунок 1.3 Решение задачи ЗЛП-2

Теперь продолжим исследование задачи ЗЛП-1, поскольку значение нецелое. Произведем еще одно ветвление, путем введения ограничений и. В результате получаем две новые задачи ЗЛП-3 и ЗЛП-4.

Ниже приведено условие задачи и текстовая часть решения. Все решение полностью, в формате doc в архиве, вы можете скачать. Некоторые символы могут не отображаться на странице, но документе word все отображается. Еще примеры работ по ЭМММ можно посмотреть

ПОСТАНОВКА ЗАДАЧИ

Издательское предприятие должно выполнить в течении недели (число дней m = 5) работу по набору текста с помощью работников n категорий (высокая, средняя, ниже средней, низкая). Требуются определить оптимальную численность работников по категориям, при которой обеспечивается выполнение работы с минимальным расходом фонда зарплаты при заданных ограничениях. Исходные данные приведены в таблице 1 и 2.

Таблица 1

Таблица 2

Задача должна решаться методом целочисленного линейного программирования в Mathcad 2000/2001.

ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ
РЕШЕНИЯ
ЗАДАЧИ

Для расчета оптимальной численности работников, при которой обеспечивается минимум расхода фонда зарплаты, составляется математическая модель целочисленного линейного программирования, так как численность работников не может быть дробной величиной.

Решение задачи целочисленного программирования выполняется в два этапа.

На первом этапе выполняется задача линейного программирования без учета целочисленности.

На втором этапе производится пошаговый процесс замены нецелочисленных переменных ближайшими верхними или нижними целыми значениями.

Сначала решается, задача без учета условия целочисленности.

Целевая функция определяется по формуле:

где Q - общий фонд зарплаты на выполнение работы;

x 1 , x 2 , …, x n - численность работников по категориям;

n - число категорий работников;

c 1 , c 2 ,…, c n - дневная тарифная ставка одного работника по категориям;

m - число рабочих дней в неделю, m = 5.

Целевую функцию можно записать в векторной форме:

При решении задачи должны выполняться следующие ограничения. Ограничение сверху

x d (1)

задает максимальную численность работников по категориям, где d —вектор, определяющий численность по категориям.

В ограничении

учтено, что общая численность работников не должна превышать k max .

В ограничении снизу

р × х≥Р (3)

отражается, что все работники вместе должны выполнить заданный объем работ Р .

В качестве последнего ограничения записывается условие неотрицательности вектора переменных

x ≥0 (4)

Математическая модель решения задачи без учета условия целочисленности включает следующие выражения:

x d

р × х≥Р ,

x ≥ 0 .

Модель целочисленного программирования должна включать выражения (5), а также дополнительные ограничения, с помощью которых нецелочисленные переменные х заменяются целочисленными значениями. Конкретные выражения модели с целочисленными переменными рассмотрены в следующем подразделе.

РЕШЕНИЕ ЗАДАЧИ ОПТИМИЗАЦИИ В MATHCAD

Исходные данные для примера даны в табл. 1 и 2.

Для решения задачи используется пакет Mathcad с функцией Minimize. Данная функция определяет вектор решения задачи:

х := Minimize (Q , x ),

где Q — выражение целевой функции, определяющей минимальный фонд зарплаты, х - вектор переменных.

Сначала задача решается без учета условия целочисленности. Это решение приведено в Приложении 1. В первой строке введены нулевые начальные значения вектора х и целевая функция Q (x ) . После слова Given и перед функцией Minimize указаны ограничения. В результате получена нецелочисленная оптимальная численность по категориям:

х =

с фондом зарплаты Q = 135 у. е.

Из данного решения находится целочисленное решение методом ветвей и границ.

Сначала в полученном решении анализируется дробная величина х 4 =
= 1,143. Для нее можно задать два целочисленных значения: х 4 = 1 и х 4 = 2. Начинается построение дерева решений (Приложение 2). На дереве решений откладывается начальный нулевой узел. Затем он соединяется первым узлом х 4 , и из этого узла проводятся две ветви, соответствующие ограничениям: х 4 = 1 и х 4 = 2.

Для ветви с ограничением х 4 = 1 решается задача линейного программирования, данная в Приложении 1, с учетом этого ограничения.

В результате получено решение этой задачи. Переменная х 1 стала целочисленная, но переменная х 2 стала дробной х 2 = 0,9.

Для продолжения ветви создается узел х 3 и ветвь х 3 = 1. Снова выполняется задача линейного программирования со всеми тремя ограничениями: x 4 = 1, х 2 = 1, х 3 = 1. С этими ограничениями задача имеет решение х Т =
= (1,938 1 1 1).

Для продолжения ветви создается узел х 1 и ветвь х 1 = 2. Снова выполняется задача линейного программирования со всеми тремя ограничениями: x 4 = 1, х 2 = 1, х 3 = 1, х 1 = 2. С этими ограничениями задача имеет решение х Т = = (2 1 1 1).

Процесс построения дерева решении и выполнение задачи линейного программирования повторяется, пока не будут построены все ветви.

В Приложении 2 приводится полное дерево возможных целочисленных решений, из которого следуют, что в задаче имеется 4 результативных решения.

Из результативных выбирается наилучшее и оно принимается как оптимальное целочисленное решение всей задачи с минимальной величиной Q (x ) . В нашем случае мы имеем два оптимальных целочисленных решения

Q (х) = 140,

x T = (2 1 1 1),

x T = (1 1 2 2).

Следовательно, издательская организация должна привлечь для набора текста двух работников высокой категории, одного работника средней категории, одного работника ниже средней категории и одного работника низкой категории. Возможен так же другой равнозначный вариант привлечения работников: один работник высокой категории, один работник средней категории, два работника категории ниже средней и два работника низкой категории. В обоих вариантах затраты будут минимальными и составят 140 ден. ед.

Скачать решение задачи:


Имя файла: 2.rar
Размер файла: 24.99 Kb

Если закачивание файла не начнется через 10 сек, кликните

В основе метода ветвей и границ лежит идея последовательного разбиения множества допустимых решений на подмножества. На каждом шаге метода для элементов разбиения выполняется проверка для выяснения, содержит данное подмножество оптимальное решение или нет. Для этого вычисляется нижняя оценка целевой функции на данном подмножестве.

Если оценка снизу не меньше рекорда (наилучшего из найденных решений), то подмножество может больше не рассматриваться. Проверяемое подмножество может быть отброшено еще и в том случае, когда в нем удается найти наилучшее решение. Если значение целевой функции на найденном решении меньше рекорда, то происходит смена рекорда. По окончанию работы алгоритма рекорд является результатом его работы. Если удается отбросить все элементы разбиения, то рекорд - оптимальное решение задачи. В противном случае, из неотброшенных подмножеств выбирается наиболее перспективное (например, с наименьшим значением нижней оценки), и подвергается разбиению. Новые подмножества вновь подвергаются проверке и т.д. Вычисление нижней границы является важнейшим элементом данной схемы.

Для каждой конкретной задачи целочисленного программирования (другими словами, дискретной оптимизации) метод ветвей и границ реализуется по-своему. Есть много модификаций этого метода.

Рассмотрим реализацию метода ветвей и границ для задачи коммивояжёра и задачи о рюкзаке.

Рассмотрим алгоритм Литтла (методом ветвей и границ) для задачи коммивояжера. Идею можно сформулировать следующим образом. В каждой строке матрицы расстояний находится минимальный элемент и вычитается из всех элементов соответствующей строки. Получается матрица, приведенная по строкам. Аналогично приводится матрица по столбцам. Получается матрица, приведенная по строкам и столбцам. Суммируя при приведении минимальные элементы, получим константу приведения, которая будет нижней границей множества всех допустимых гамильтоновых контуров. После находятся степени нулей для приведенной матрицы (сумма минимальных элементов строки и столбца, соответствующих этому нулю) и выбирается дуга , для которой степень нулевого элемента достигает максимального значения. Множество всех гамильтоновых контуров разбивается на два подмножества, одно из которых содержит дугу , второе эту дугу не содержит. После этого приводятся полученные матрицы гамильтоновых контуров и сравниваются нижние границы подмножества гамильтоновых контуров с целью выбора для дальнейшего разбиения множества с меньшей нижней границей. Процесс разбиения множеств на подмножества сопровождается построением дерева ветвлений. Сравнивая длину гамильтонова контура с нижними границами оборванных ветвей, выбирается для дальнейшего ветвления подмножество с нижней границей, меньшей полученного контура, до тех пор, пока не получен маршрут с наименьшей длиной или не становится ясно, что такого маршрута не существует.



Пример.

Пусть в задаче коммивояжера задана следующая матрица стоимостей переездов

Находим в каждой строке матрицы минимальный элемент и вычитаем его из всех элементов соответствующей строки. Получим матрицу, приведенную по строкам, с элементами

.

Если в матрице , приведенной по строкам, окажутся столбцы, не содержащие нуля, то приводим ее по столбцам. Для этого в каждом столбце матрицы выбираем минимальный элемент , и вычитаем его из всех элементов соответствующего столбца. Получим матрицу

,

каждая строка и столбец, которой содержит хотя бы один нуль. Такая матрица называется приведенной по строкам и столбцам.

Суммируя элементы и , получим константу приведения:

.

Находим степени нулей для приведенной по строкам и столбцам матрицы. Для этого мысленно нули в матице заменяем на знак и находим сумму минимальных элементов строки и столбца, соответствующих этому нулю. Записываем ее в правом верхнем углу клетки:

.

Выбираем дугу , для которой степень нулевого элемента достигает максимального значения

Разбиваем множество всех допустимых маршрутов на два подмножества:

– подмножество, содержащее дугу ;

– подмножество, не содержащее дугу

Для вычисления оценки затрат для маршрутов, включающих дугу , вычеркиваем в матрице строку и столбец и заменяем симметричный элемент на знак . Приводим полученную матрицу и вычисляем сумму констант приведения .

Решение будем вести с использованием калькулятора . Возьмем в качестве произвольного маршрута:
X 0 = (1,2);(2,3);(3,4);(4,5);(5,1)
Тогда F(X 0) = 90 + 40 + 60 + 50 + 20 = 260
Для определения нижней границы множества воспользуемся операцией редукции или приведения матрицы по строкам, для чего необходимо в каждой строке матрицы D найти минимальный элемент.
d i = min(j) d ij
i j 1 2 3 4 5 d i
1 M 90 80 40 100 40
2 60 M 40 50 70 40
3 50 30 M 60 20 20
4 10 70 20 M 50 10
5 20 40 50 20 M 20

Затем вычитаем d i из элементов рассматриваемой строки. В связи с этим во вновь полученной матрице в каждой строке будет как минимум один ноль.
i j 1 2 3 4 5
1 M 50 40 0 60
2 20 M 0 10 30
3 30 10 M 40 0
4 0 60 10 M 40
5 0 20 30 0 M

Такую же операцию редукции проводим по столбцам, для чего в каждом столбце находим минимальный элемент:
d j = min(i) d ij
i j 1 2 3 4 5
1 M 50 40 0 60
2 20 M 0 10 30
3 30 10 M 40 0
4 0 60 10 M 40
5 0 20 30 0 M
d j 0 10 0 0 0

После вычитания минимальных элементов получаем полностью редуцированную матрицу, где величины d i и d j называются константами приведения .
i j 1 2 3 4 5
1 M 40 40 0 60
2 20 M 0 10 30
3 30 0 M 40 0
4 0 50 10 M 40
5 0 10 30 0 M

Сумма констант приведения определяет нижнюю границу H:
H = ∑d i + ∑d j
H = 40+40+20+10+20+0+10+0+0+0 = 140
Элементы матрицы d ij соответствуют расстоянию от пункта i до пункта j.
Поскольку в матрице n городов, то D является матрицей nxn с неотрицательными элементами d ij >=0
Каждый допустимый маршрут представляет собой цикл, по которому коммивояжер посещает город только один раз и возвращается в исходный город.
Длина маршрута определяется выражением:
F(M k) = ∑d ij
Причем каждая строка и столбец входят в маршрут только один раз с элементом d ij .
Шаг №1 .
Определяем ребро ветвления
i j 1 2 3 4 5 d i
1 M 40 40 0(40) 60 40
2 20 M 0(20) 10 30 10
3 30 0(10) M 40 0(30) 0
4 0(10) 50 10 M 40 10
5 0(0) 10 30 0(0) M 0
d j 0 10 10 0 30 0

d(1,4) = 40 + 0 = 40; d(2,3) = 10 + 10 = 20; d(3,2) = 0 + 10 = 10; d(3,5) = 0 + 30 = 30; d(4,1) = 10 + 0 = 10; d(5,1) = 0 + 0 = 0; d(5,4) = 0 + 0 = 0;
Наибольшая сумма констант приведения равна (40 + 0) = 40 для ребра (1,4), следовательно, множество разбивается на два подмножества (1,4) и (1*,4*).

H(1*,4*) = 140 + 40 = 180
Исключение ребра (1,4) проводим путем замены элемента d 14 = 0 на M, после чего осуществляем очередное приведение матрицы расстояний для образовавшегося подмножества (1*,4*), в результате получим редуцированную матрицу.
i j 1 2 3 4 5 d i
1 M 40 40 M 60 40
2 20 M 0 10 30 0
3 30 0 M 40 0 0
4 0 50 10 M 40 0
5 0 10 30 0 M 0
d j 0 0 0 0 0 40

Включение ребра (1,4) проводится путем исключения всех элементов 1-ой строки и 4-го столбца, в которой элемент d 41 заменяем на М, для исключения образования негамильтонова цикла.
В результате получим другую сокращенную матрицу (4 x 4), которая подлежит операции приведения.

∑d i + ∑d j = 10
i j 1 2 3 5 d i
2 20 M 0 30 0
3 30 0 M 0 0
4 M 50 10 40 10
5 0 10 30 M 0
d j 0 0 0 0 10

Нижняя граница подмножества (1,4) равна:
H(1,4) = 140 + 10 = 150 ≤ 180
Поскольку нижняя граница этого подмножества (1,4) меньше, чем подмножества (1*,4*), то ребро (1,4) включаем в маршрут с новой границей H = 150
Шаг №2 .
Определяем ребро ветвления и разобьем все множество маршрутов относительно этого ребра на два подмножества (i,j) и (i*,j*).
С этой целью для всех клеток матрицы с нулевыми элементами заменяем поочередно нули на М(бесконечность) и определяем для них сумму образовавшихся констант приведения, они приведены в скобках.
i j 1 2 3 5 d i
2 20 M 0(20) 30 20
3 30 0(10) M 0(30) 0
4 M 40 0(30) 30 30
5 0(30) 10 30 M 10
d j 20 10 0 30 0

d(2,3) = 20 + 0 = 20; d(3,2) = 0 + 10 = 10; d(3,5) = 0 + 30 = 30; d(4,3) = 30 + 0 = 30; d(5,1) = 10 + 20 = 30;
Наибольшая сумма констант приведения равна (0 + 30) = 30 для ребра (3,5), следовательно, множество разбивается на два подмножества (3,5) и (3*,5*).
Нижняя граница гамильтоновых циклов этого подмножества:
H(3*,5*) = 150 + 30 = 180
Исключение ребра (3,5) проводим путем замены элемента d 35 = 0 на M, после чего осуществляем очередное приведение матрицы расстояний для образовавшегося подмножества (3*,5*), в результате получим редуцированную матрицу.
i j 1 2 3 5 d i
2 20 M 0 30 0
3 30 0 M M 0
4 M 40 0 30 0
5 0 10 30 M 0
d j 0 0 0 30 30

Включение ребра (3,5) проводится путем исключения всех элементов 3-ой строки и 5-го столбца, в которой элемент d 53 заменяем на М, для исключения образования негамильтонова цикла.
В результате получим другую сокращенную матрицу (3 x 3), которая подлежит операции приведения.
Сумма констант приведения сокращенной матрицы:
∑d i + ∑d j = 10
После операции приведения сокращенная матрица будет иметь вид:
i j 1 2 3 d i
2 20 M 0 0
4 M 40 0 0
5 0 10 M 0
d j 0 10 0 10

Нижняя граница подмножества (3,5) равна:
H(3,5) = 150 + 10 = 160 ≤ 180
Поскольку нижняя граница этого подмножества (3,5) меньше, чем подмножества (3*,5*), то ребро (3,5) включаем в маршрут с новой границей H = 160
Шаг №3 .
Определяем ребро ветвления и разобьем все множество маршрутов относительно этого ребра на два подмножества (i,j) и (i*,j*).
С этой целью для всех клеток матрицы с нулевыми элементами заменяем поочередно нули на М(бесконечность) и определяем для них сумму образовавшихся констант приведения, они приведены в скобках.
i j 1 2 3 d i
2 20 M 0(20) 20
4 M 30 0(30) 30
5 0(20) 0(30) M 0
d j 20 30 0 0

d(2,3) = 20 + 0 = 20; d(4,3) = 30 + 0 = 30; d(5,1) = 0 + 20 = 20; d(5,2) = 0 + 30 = 30;
Наибольшая сумма констант приведения равна (0 + 30) = 30 для ребра (5,2), следовательно, множество разбивается на два подмножества (5,2) и (5*,2*).
Нижняя граница гамильтоновых циклов этого подмножества:
H(5*,2*) = 160 + 30 = 190
Исключение ребра (5,2) проводим путем замены элемента d 52 = 0 на M, после чего осуществляем очередное приведение матрицы расстояний для образовавшегося подмножества (5*,2*), в результате получим редуцированную матрицу.
i j 1 2 3 d i
2 20 M 0 0
4 M 30 0 0
5 0 M M 0
d j 0 30 0 30

Включение ребра (5,2) проводится путем исключения всех элементов 5-ой строки и 2-го столбца, в которой элемент d 25 заменяем на М, для исключения образования негамильтонова цикла.
В результате получим другую сокращенную матрицу (2 x 2), которая подлежит операции приведения.
Сумма констант приведения сокращенной матрицы:
∑d i + ∑d j = 20
После операции приведения сокращенная матрица будет иметь вид:
i j 1 3 d i
2 20 0 0
4 M 0 0
d j 20 0 20

Нижняя граница подмножества (5,2) равна:
H(5,2) = 160 + 20 = 180 ≤ 190
Поскольку нижняя граница этого подмножества (5,2) меньше, чем подмножества (5*,2*), то ребро (5,2) включаем в маршрут с новой границей H = 180
В соответствии с этой матрицей включаем в гамильтонов маршрут ребра (2,1) и (4,3).
В результате по дереву ветвлений гамильтонов цикл образуют ребра:
(1,4), (4,3), (3,5), (5,2), (2,1),
Длина маршрута равна F(Mk) = 180

Одна из самых известных и важных задач транспортной логистики (и класса задач оптимизации в целом) – задача коммивояжера (англ. «Travelling salesman problem», TSP ). Также встречается название «задача о бродячем торговце ». Суть задачи сводится к поиску оптимального, то есть кратчайшего пути проходящего через некие пункты по одному разу. Например, задача коммивояжера может применяться для нахождения самого выгодного маршрута, позволяющего объехать определенные города со своим товаром по одному разу и вернуться в исходную точку. Мерой выгодности маршрута будет минимальное время, проведенное в пути, минимальные расходы на дорогу или, в простейшем случае, минимальная длина пути.

Кто и когда впервые начал исследовать задачу коммивояжера неизвестно, но одним из первых предложил решение подобной проблемы выдающийся математик XIX в. – Уильям Гамильтон. Здесь мы рассмотрим замкнутый вариант задачи (т.е. такой, когда в итоге мы возвращаемся в исходную точку) и ее решение методом ветвей и границ .

Общий план решения задачи коммивояжера

Для решения задачи коммивояжера методом ветвей и границ необходимо выполнить следующий алгоритм (последовательность действий):

  1. Построение матрицы с исходными данными.
  2. Нахождение минимума по строкам.
  3. Редукция строк.
  4. Нахождение минимума по столбцам.
  5. Редукция столбцов.
  6. Вычисление оценок нулевых клеток.
  7. Редукция матрицы.
  8. Если полный путь еще не найден, переходим к пункту 2, если найден к пункту 9.
  9. Вычисление итоговой длины пути и построение маршрута.

Более подробно эти этапы решения задачи о бродячем торговце раскрыты ниже.

Подробная методика решения задачи коммивояжера

В целях лучшего понимания задачи будем оперировать не понятиями графа, его вершин и т.д., а понятиями простыми и максимально приближенными к реальности: вершины графа будут называться «города», ребра их соединяющие – «дороги».

Итак, методика решения задачи коммивояжера:

1. Построение матрицы с исходными данными

Сначала необходимо длины дорог соединяющих города представить в виде следующей таблицы:

В нашем примере у нас 4 города и в таблице указано расстояние от каждого города к 3-м другим, в зависимости от направления движения (т.к. некоторые ж/д пути могут быть с односторонним движением и т.д.).

Расстояние от города к этому же городу обозначено буквой M. Также используется знак бесконечности. Это сделано для того, чтобы данный отрезок путь был условно принят за бесконечно длинный. Тогда не будет смысла выбрать движение от 1-ого города к 1-му, от 2-ого ко 2-му, и т.п. в качестве отрезка маршрута.

2. Нахождение минимума по строкам

Находим минимальное значение в каждой строке (di ) и выписываем его в отдельный столбец.

3. Редукция строк

Производим редукцию строк – из каждого элемента в строке вычитаем соответствующее значение найденного минимума (di).

В итоге в каждой строке будет хотя бы одна нулевая клетка .

4. Нахождение минимума по столбцам

5. Редукция столбцов

Вычитаем из каждого элемента матрицы соответствующее ему dj.

В итоге в каждом столбце будет хотя бы одна нулевая клетка .

6. Вычисление оценок нулевых клеток

Для каждой нулевой клетки получившейся преобразованной матрицы находим «оценку ». Ею будет сумма минимального элемента по строке и минимального элемента по столбцу, в которых размещена данная нулевая клетка. Сама она при этом не учитывается. Найденные ранее di и dj не учитываются. Полученную оценку записываем рядом с нулем, в скобках.

И так по всем нулевым клеткам:

7. Редукция матрицы

Выбираем нулевую клетку с наибольшей оценкой. Заменяем ее на «М ». Мы нашли один из отрезков пути. Выписываем его (от какого города к какому движемся, в нашем примере от 4-ого к 2-му).

Ту строку и тот столбец, где образовалось две «М» полностью вычеркиваем. В клетку, соответствующую обратному пути , ставим еще одну букву «М» (т.к. мы уже не будем возвращаться обратно).

8. Если полный путь еще не найден, переходим к пункту 2, если найден к пункту 9

Если мы еще не нашли все отрезки пути, то возвращаемся ко 2 -му пункту и вновь ищем минимумы по строкам и столбцам, проводим их редукцию, считаем оценки нулевых клеток и т.д.

Если все отрезки пути найдены (или найдены еще не все отрезки, но оставшаяся часть пути очевидна) – переходим к пункту 9 .

9. Вычисление итоговой длины пути и построение маршрута

Найдя все отрезки пути, остается только соединить их между собой и рассчитать общую длину пути (стоимость поездки по этому маршруту, затраченное время и т.д.). Длины дорог соединяющих города берем из самой первой таблицы с исходными данными.

В нашем примере маршрут получился следующий: 4 2 3 1 4 .

Общая длина пути: L = 30 .

Практическое применение задачи коммивояжера

Применение задачи коммивояжера на практике довольно обширно. В частности ее можно использовать для поиска кратчайшего маршрута при гастролях эстрадной группы по городам, нахождения последовательности технологических операций обеспечивающей наименьшее время выполнения всего производственного цикла и пр.

Решение задачи коммивояжера онлайн

Галяутдинов Р.Р.


© Копирование материала допустимо только при указании прямой гиперссылки на