Решение задачи линейного программирования (ЗЛП) графическим методом. Решение задач линейного программирования

На этом уроке будем знакомиться с графическим методом решения задач линейного программирования , то есть, таких задач, в которых требуется найти такое решения системы линейных уравнений и (или) неравенств (системы ограничений), при котором функция цели - линейная функция - принимает оптимальное значение.

Ввиду того, что наглядность графического решения достигается лишь на плоскости, мы можем познакомиться с графическим представлением задачи только в двумерном пространстве. Это представление пригодно для системы ограничений-неравенств с двумя переменными или для систем уравнений, в которых число переменных на 2 превышает число уравнений, то есть число свободных переменных равно двум.

Поэтому графический метод имеет такие узкие рамки применения, что о нём как об особом методе решения задач линейного программирования говорить нельзя.

Однако для выработки наглядных представлений о решениях задач линейного программирования графический метод представляет определённый интерес. Кроме того, он позволяет геометрически подтвердить справедливость теорем линейного программирования .

Теоретические основы графического метода

Итак, задача линейного программирования. Требуется найти неотрицательные значения переменных и , удовлетворяющих системе неравенств

при которых линейная форма принимает оптимальное значение.

Пример 3.

Пример 4. Решить графическим методом задачу линейного программирования, в которой требуется найти минимум функции при ограничениях

Продолжаем решать задачи графическим методом вместе

До сих пор полученные выводы были основаны на том, что множество решений задачи линейного программирования сконфигурировано так, что оптимальное решение конечно и единственно. Теперь рассмотрим примеры, когда это условие нарушается. В этих примерах многоугольник решений строится так, как показано в предыдущих примерах, остановимся же на признаках, которые отличают эти исключительные примеры.

Пример 5. Решить графическим методом задачу линейного программирования, в которой требуется найти максимум функции при ограничениях

Решение. На рисунке изображены: неограниченная многогранная область решений данной системы ограничений, исходная линия уровня (чёрного цвета), вектор (бордового цвета), указывающий направление движения исходной линии уровня для нахождения максимума целевой функции.

Легко заметить, что функция F может неограниченно возрастать при заданной системе ограничений, поэтому можно условно записать, что .

Пример 6. Решить графическим методом задачу линейного программирования, в которой требуется найти максимум функции при ограничениях

Наиболее простым и наглядным методом линейного программирования (ЛП) является графический метод. Он применяется для решения задач ЛП с двумя переменными. Рассмотрим задачу ЛП в стандартной форме:

max f(x 1 , x 2 , ..., x n) = ,

, i = 1, 2, …, m,

x j 0, j = 1, 2, …, n.

Положим n=2 и будем рассматривать задачу на плоскости. Пусть система неравенств совместна (имеет хотя бы одно решение).

Каждое неравенство этой системы геометрически определяет полуплоскость с граничной прямой а i 1 х 1 + а i 2 х 2 = b i , i = 1, 2,…, m. Условия неотрицательности определяют полуплоскости с гра­ничными прямыми х 1 = 0, х 2 = 0 соответственно. Система со­вместна, поэтому полуплоскости, как выпуклые множества, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек, где ко­ординаты каждой точки являются решением данной системы. Совокупность этих точек называют многоугольником решений. Он может быть точкой, отрезком, лучом, ограниченным и неограни­ченным многоугольником.

Таким образом, геометрически ЗЛП представляет собой отыс­кание такой точки многоугольника решений, координаты которой доставляют линейной функции цели максимальное (минимальное) значение, причем допустимыми решениями являются все точки многоугольника решений.

Линейное уравнение описывает множество точек, лежащих на одной прямой. Линейное неравенство описывает некоторую об­ласть на плоскости. Определим, какую часть плоскости описыва­ет неравенство 2х 1 + Зх 2 12.

Во-первых, построим прямую 2х 1 + Зх 2 = 12. Она проходит через точки (6; 0) и (0; 4). Для того чтобы определить, какая полуплоскость удовлетворяет неравенству, необходимо выбрать любую точку на графике, не принадлежащую прямой, и подставить ее координаты в неравенство. Если неравенство будет вы­полняться, то данная точка является допустимым решением, и полуплоскость, содержащая точку, удовлетворяет неравенству. Для подстановки в неравенство удобно использовать точку начала координат. Подставим х 1 = х 2 = 0 в неравенство 2х 1 + Зх 2 12. Получим 2х0 + 3х0 12. Данное утверждение является верным, следовательно, неравенству 2х 1 + Зх 2 12 соответствует нижняя полуплоскость, содержащая точку (0; 0). Это отражено на графике, изображенном на рис. 1.1.

Аналогично графически можно изобразить все ограничения задачи ЛП.

Решением каждого неравенства системы ограничений ЗЛП является полуплоскость, содержащая граничную прямую и расположенная по одну сторону от нее. Пересечение полуплоскостей, каждая из которых определяется соответствующим неравенством системы, называется областью допустимых решений, или областью определения. Необходимо помнить, что область допустимых решений удовлетворяет условиям неотрицательности (х j 0, j = 1, 2, …, n). Координаты любой точки, принадлежащей области определения, являются допустимым решением задачи.

Для нахождения экстремального значения целевой функции при графическом решении задач ЛП используют вектор-гради­ент, координаты которого являются частными производными целевой функции, т.е.


Этот вектор показывает направление наискорейшего измене­ния целевой функции. Прямая с 1 х 1 + с 2 х 2 = f(х 0) , перпендикуляр­ная вектору-градиенту, является линией уровня целевой функции. В любой точке линии уровня целевая функция принимает одно и то же значение. Приравняем целевую функцию постоянной величине «а» . Меняя значение «а», получим семейство параллельных прямых, каждая из которых является линией уровня целевой функции.

Важное свойство линии уровня линейной функции состоит в том, что при параллельном смещении линии в одну сторону уро­вень только возрастает, а при смещении в другую сторону - только убывает.

С геометрической точки зрения в задаче линейного программи­рования ищется такая угловая точка или набор точек из допусти­мого множества решений, на котором достигается самая верхняя (нижняя) линия уровня, расположенная дальше (ближе) осталь­ных в направлении наискорейшего роста.

Графический метод решения ЗЛП состоит из следующих этапов.

1. Строится многоугольная область допустимых решений (ОДР) ЗЛП.

2. Строится вектор-градиент целевой функции (ЦФ) в какой-нибудь точке х 0 , принадлежащей ОДР:

3. Линия уровня с 1 х 1 + с 2 х 2 = а (а - постоянная величина) - прямая, перпендикулярная вектору-градиенту , - передви­гается в направлении этого вектора в случае максимизации f(x 1 , х 2) до тех пор, пока не покинет пределов ОДР. Предельная точка (или точки) области при этом движении и является точ­кой максимума f(x 1 , х 2).

4. Для нахождения координат точки максимума достаточно решить два уравнения прямых, получаемых из соответствую­щих ограничений и дающих в пересечении точку максимума. Значение f(x 1 , х 2), найденное в получаемой точке, является мак­симальным.

При минимизации (максимизации) функции f(x 1 , х 2) линия уровня перемещается в направлении, противоположном вектору-градиенту. Если прямая, соответствующая линии уровня, при своем движении не покидает ОДР, то минимум (максимум) функ­ции f(x 1 , х 2) не существует.

Если линия уровня параллельна какому-либо функциональ­ному ограничению задачи, то оптимальное значение ЦФ будет достигаться в любой точке этого ограничения, лежащей между двумя оптимальными угловыми точками, и, соответственно, любая из этих точек является оптимальным решением ЗЛП. Возможные ситуации графического решения задач ЛП представлены в табл. 1.3.

Таблица 1.3

Вид ОДР Вид оптимального решения Примечания
Многоугольная замкнутая Единственное решение
Единственное решение
Многоугольная ЦФ не ограничена снизу
ЦФ не ограничена сверху
Многоугольная незамкнутая Единственное решение
Бесконечное множество решений
Отрезок Единственное решение

Рассмотрим графическое решение задач линейного программирования на следующем примере.

Пример 1.1. Планирование выпуска продукции пошивочного предприятия (задача о костюмах).

Намечается выпуск двух видов костюмов – мужских и женских. На женский костюм требуется 1м шерсти, 2м лавсана и 1 чел./день трудозатрат. На мужской костюм – 3,5м шерсти, 0,5м лавсана и 1 чел./день трудозатрат. Всего имеется 350м шерсти, 240м лавсана и 150 чел./дней трудозатрат. Требуется определить, сколько костюмов каждого вида необходимо сшить, чтобы обеспечить максимальную прибыль, если прибыль от реализации женского костюма составляет 10 денежных единиц, а от мужского – 20 денежных единиц. При этом следует иметь в виду, что необходимо сшить не менее 60 мужских костюмов.

Введем следующие обозначения: х 1 - число женских костюмов; х 2 – число мужских костюмов. Прибыль от реализации женских костюмов составляет 10х 1 , а от реализации мужских - 20х 2 , т.е. необходимо максимизировать целевую функцию:

10х 1 + 20х 2

Ограничения задачи имеют вид:

х 1 + х 2 150,

2 х 1 + 0,5х 2 240,

х 1 + 3,5х 2 350,

х 2 60,

х 1 0.

Первое ограничение по труду х 1 + х 2 150. Прямая х 1 + х 2 = 150 проходит через точки (150; 0) и (0; 150) (рис. 1.2).

Второе ограничение по лавсану 2 х 1 + 0,5х 2 240. Прямая 2 х 1 + 0,5х 2 = 240 проходит через точки (120; 0) и (0; 480). Третье ограничение по шерсти х 1 + 3,5х 2 350. Добавим четвертое ограничение по количеству мужских костюмов х 2 60. Решением этого неравенства является полуплоскость, лежащая выше прямой х 2 = 60. На рис. 1.3 заштрихована область допустимых решений. Для определения направления движения к оптимуму построим вектор-градиент , координаты которого являются частными производными целевой функции, т.е.

Чтобы построить такой вектор, нужно соединить точку (10;20) с началом координат. При максимизации целевой функции необходимо двигаться в направлении вектора-градиента, а при минимизации – в противоположном направлении. Для удобства можно строить вектор, пропорциональный вектору . Так, на рис. 1.4 изображен вектор-градиент (30;60).

Для определения направления движения к оптимуму построим вектор-градиент , координаты которого являются частными производными целевой функции, т.е.

В нашем случае движение линии уровня будем осуществлять до ее выхода из области допустимых решений. В крайней, угловой, точке достигается максимум целевой функции. Для нахождения координат этой точки достаточно решить два уравнения прямых, получаемых из соответствующих ограничений и дающих в пере­сечении точку максимума:

х 1 + 3,5х 2 = 350,

х 1 + х 2 = 150.

Отсюда легко записать решение исходной ЗЛП: max f(x) = 2300 и достигается при х 1 = 70 и х 2 = 80 (см. рис. 1.4).

1.3.ТЕХНОЛОГИЯ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ С ПОМОЩЬЮ НАДСТРОЙКИ ПОИСК РЕШЕНИЯ В СРЕДЕ EXCEL

1.3.1. Общие сведения о работе с табличным процессором Excel

Рассмотрим некоторые аспекты работы с табличным процессором Excel, которые позволят упростить расчеты, необ­ходимые для решения оптимизационных задач. Табличный процессор - это программный продукт, предназначенный для ав­томатизации обработки данных табличной формы.

Элементы экрана Excel. После запуска Excel на экране появля­ется таблица, вид которой показан на рис 1.5.

Это изображение называют рабочим листом. Оно представляет собой сетку строк и столбцов, пересечения которых образуют пря­моугольники, называемые ячейками. Рабочие листы предназначены для ввода данных, выполнения расчетов, организации информа­ционной базы и т.п. Окно Excel отображает основные программные элементы: строку заголовка, строку меню, строку состояния, кноп­ки управления окнами.

Работа с формулами. В программах электронных таблиц формулы служат для выполнения множества разнообразных расчетов. С помощью Excel можно быстро создать формулу. Формула состоит из трех основных частей:

1) знака равенства;

2) совокупности значений или ссылок на ячейках, с которыми выполняются расчеты;

3) операторов.

4) Если знак равенства отсутствует, то Excel интерпретирует данные не как формулу, а как ввод данных в ячейку. Формулы можно вводить непосредственно в ячейку или в строку формул – как текст, так и число. При этом нужно выполнить следующие действия:

· выделить ячейку, которая должна содержать формулу и ввести знак (=);

· ввести оператор или знак действия;

· выделить другую ячейку, включаемую в формулу;

· нажать на клавишу Enter.

В строке формул появится введенная формула, в ячейке – результат расчета.

Использование в формулах функций. Чтобы облегчить ввод формул, можно воспользоваться функциями Excel. Функции - это встроенные в Excel формулы. Excel содержит множество формул. Они сгруппированы по различным типам: логические, математи­ческие, инженерные, статистические и др.

Для активизации той или иной формулы следует нажать кноп­ки Вставка, Функции. В появившемся окне Мастер функций слева содержится перечень типов функций. После выбора типа справа будет помещен список самих функций. Выбор функции осуществ­ляется щелчком клавиши мыши на соответствующем названии.

Различные функции выполняют разные типы вычислений по определенным правилам. Когда функция является единичным объектом в ячейке рабочего листа, она начинается со знака (=), далее следует название функции, а затем - аргументы функции, заключенные в скобки.

Поиск решения - это надстройка Excel, которая позволяет решать оптимизационные задачи. Если в меню Сервис отсутствует коман­да Поиск решения, значит, необходимо загрузить эту надстройку. Выберите команду Сервис => Надстройки и активизируйте над­стройку Поиск решения. Если же этой надстройки нет в диалоговом окне Надстройки, то вам необходимо обратиться к панели управления Windows, щелкнуть на пиктограмме Установка и уда­ление программ и с помощью программы установки Excel (или Office) установить надстройку Поиск решения.

После выбора команд Сервис => Поиск решения появится диало­говое окно Поиск решения.

В диалоговом окне Поиск решения есть три основных пара­метра;

Установить целевую ячейку.

Изменяя ячейки.

Ограничения.

Сначала нужно заполнить поле Установить целевую ячейку. Во всех задачах для средства Поиск решения оптимизируется результат в одной из ячеек рабочего листа. Целевая ячейка связана с другими ячейками этого рабочего листа с помощью формул. Средство Поиск решения использует формулы, которые дают результат в целевой ячейке, для проверки возможных решений. Можно выбрать по­иск наименьшего или наибольшего значения для целевой ячейки или установить конкретное значение.

Второй важный параметр средства Поиск решения - это пара­метр Изменяя ячейки. Здесь указываются ячейки, значения в которых будут изменяться для того, чтобы оптимизировать ре­зультат в целевой ячейке. Для поиска решения можно указать до 200 изменяемых ячеек. К этим ячейкам предъявляется два основ­ных требования: они не должны содержать формул и изменение их значений должно отражаться на изменении результата в целе­вой ячейке. Другими словами, целевая ячейка зависит от изменя­емых ячеек.

Третий параметр, который нужно вводить на вкладке Поиск решения, - это ограничения.

Для решения задачи необходимо:

1) указать адреса ячеек, в которые будет помещен результат реше­ния (изменяемые ячейки);

2) ввести исходные данные;

3) ввести зависимость для целевой функции;

4) ввести зависимости для ограничении,

5) запустить команду Поиск решений;

6) назначить ячейку для целевой функции (установить целевую ячейку);

7) ввести ограничения;

8) ввести параметры для решения ЗЛП.

Рассмотрим технологию решения, используя условия примера 1.1 (задача о костюмах).

Экономико-математическая модель задачи

Пусть х 1 - число женских костюмов; х 2 - число мужских костюмов,

10 х х 1 + 20 х х 2 max

Ограничения задачи имеют вид:

х 1 + х 2 150 - ограничение по труду;

2 x х 1 + 0,5 х х 2 240 - ограничение по лавсану;

х 1 + 3,5 х х 2 350 - ограничение по шерсти;

х 2 60 - ограничение по мужским костюмам;

х 1 0 - ограничение по женским костюмам.

1. Указать адреса ячеек, в которые будет помещен результат решения (изменяемые ячейки).

Обозначьте через x 1 , х 2 количество костюмов каждого типа. В нашей задаче оптимальные значения вектора = (х 1 , х 2) будут помещены в ячейках А2:В2, оптимальное значение целевой функ­ции - в ячейке СЗ.

2. Ввести исходные данные.

Введите исходные данные задачи, как показано на рис. 1.6.

3. Ввести зависимость для целевой функции.

· Поместить курсор в ячейку «СЗ», произойдет выделение ячейки.

· Поместить курсор на кнопку Мастер функций, расположенную на панели инструментов.

· Ввести Enter. На экране появляется диалоговое окно Мастер функ­ций шаг 1 из 2.

· В окне Функции выбрать строку СУММПРОИЗВ (рис. 1.7). На экране

· появляется диалоговое окно СУММПРОИЗВ (рис. 1.8).

· В строку Массив 1 ввести А2:В2 .

· В строку Массив 2 ввести АЗ:ВЗ.

Массив 1 будет использоваться при вводе зависимостей для ограничений, поэтому на этот массив надо сделать абсолютную ссылку. На рис. 1.9 показано, что в ячейку СЗ введена функция.

5. Ввести зависимости для ограничений (рис 1.10).

· Поместить курсор в ячейку СЗ.

· На панели инструментов кнопка Копировать в буфер.

· Поместить курсор в ячейку С4.

· Поместить курсор в ячейку С5.

· На панели инструментов кнопка Вставить из буфера.

· Поместить курсор в ячейку Сб.

· На панели инструментов кнопка Вставить из буфера.

· Поместить курсор в ячейку С7.

· На панели инструментов нажать кнопку Вставить из буфера. (Содержимое ячеек С4-С7 необходимо проверить. Они обяза­тельно должны содержать информацию, как это показано для примера на рис. 1.11; в качестве примера представлено содер­жимое ячейки С5.)

· В строке Меню указатель мышки поместить на Сервис. В развер­нутом меню выбрать команду Поиск решения. Появляется диа­логовое окно Поиск решения (рис. 1.12).

5. Запустить команду Поиск решения.

6. Назначить ячейку для целевой функции (установить целевую ячейку), указать адреса изменяемых ячеек.

· Поместить курсор в строку Установить целевую ячейку.

· Ввести адрес ячейки $С$3.

· Ввести тип целевой функции в зависимости от условия вашей задачи. Для этого отметьте, чему равна целевая функция - Максимальному значению или Минимальному значению.

· Поместить курсор в строку Изменяя ячейки.

· Ввести адреса искомых переменных А$2:В$2 (рис. 1.13).

7. Ввести ограничения.

· Поместить указатель мыши на кнопку Добавить. Появляется диалоговое окно Добавление ограничения.

· Ввести знак ограничения.

· В строке Ограничение ввести адрес $D$4 (рис. 1.14).

· Поместить указатель мыши на кнопку Добавить. На экране вновь появится диалоговое окно Добавление ограничения.

· Ввести остальные ограничения задачи по вышеописанному алгоритму.

· После введения последнего ограничения нажать на кнопку ОК. На экране появится диалоговое окно Поиск решения с введенны­ми условиями (рис. 1.15).

8. Ввести параметры для решения задачи линейного программирования.

· В диалоговом окне поместить указатель мышки на кнопку Пара­метры. На экране появится диалоговое окно Параметры поиска решения (рис. 1.16).

· Установить флажки в окнах Линейная модель (это обеспечит применение симплекс-метода) и Неотрицательные значения.

· Поместить указатель мыши на кнопку ОК. На экране появится диалоговое окно Поиск решения.

· Поместить указатель Мыши на кнопку Выполнить.

Через непродолжительное время появятся диалоговое окно Результаты поиска решения и исходная таблица с заполненными ячейками АЗ:ВЗ для значений х i и ячейка СЗ с максимальным значением целевой функции (рис. 1.17).

Если указать тип отчета Устойчивость, то можно получить до­полнительную информацию об оптимальном решении (рис. 1.18).

В результате решения задачи был получен ответ: необходимо сшить 70 шт. женских костюмов и 80 шт. мужских костюмов, чтобы получить максимальную прибыль 2300 у.е.

1.4. ДВОЙСТВЕННОСТЬ В ЗАДАЧАХ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ. АНАЛИЗ ПОЛУЧЕННЫХ ОПТИМАЛЬНЫХ РЕШЕНИЙ

В 1975 г. наш соотечественник Л.В. Канторович был удостоен Нобелевской премии по экономике (совместно с американским экономистом Т. Купмансом) за разработку теории оптимального использования ресурсов (см. Приложение 1).

С каждой задачей линейного программирования тесно связа­на другая линейная задача, называемая двойственной; первона­чальная задача называется исходной, или прямой. Связь исходной и двойственной задач заключается, в частности, в том, что решение одной из них может быть получено непосредственно из решения другой.

Переменные двойственной задачи y i называются объективно обусловленными оценками, или двойственными оценками, или «ценами» ресурсов, или теневыми ценами.

Каждая из задач двойственной пары фактически является са­мостоятельной задачей линейного программирования и может быть решена независимо от другой.

Двойственная задача по отношению к исходной составляется согласно следующим правилам:

1) целевая функция исходной задачи формулируется на макси­мум, а целевая функция двойственной задачи - на минимум, при этом в задаче на максимум все неравенства в функцио­нальных ограничениях имеют вид (), в задаче на минимум - вид ( );

2) матрица А, составленная из коэффициентов при неизвестных в системе ограничений исходной задачи, и аналогичная мат­рица А Т в двойственной задаче получаются друг из друга транс­понированием;

3) число переменных в двойственной задаче равно числу функци­ональных ограничений исходной задачи, а число ограничений в системе двойственной задачи - числу переменных в исходной;

4) коэффициентами при неизвестных в целевой функции двой­ственной задачи являются свободные члены в системе ограни­чений исходной задачи, а правыми частями в ограничениях двойственной задачи - коэффициенты при неизвестных в це­левой функции исходной; j 0.

Две приведенные задачи образуют пару симметричных двой­ственных задач. Основные утверждения о взаимно двойственных задачах содержатся в двух следующих теоремах.

Первая теорема двойственности. Для взаимно двойственных за­дач имеет место один из взаимоисключающих случаев.

1. В прямой и двойственной задачах имеются оптимальные решения,
при этом значения целевых функций на оптимальных решениях
совпадают

2. В прямой задаче допустимое множество не пусто, а целевая функция на этом множестве не ограничена сверху. При этом у двойственной задачи будет пустое допустимое множество.

3. В двойственной задаче допустимое множество не пусто, а целе­вая функция на этом множестве не ограничена снизу. При этом у прямой задачи допустимое множество оказывается пустым.

4. Обе из рассматриваемых задач имеют пустые допустимые мно­жества.

Вторая теорема двойственности (теорема о дополняющей неже­сткости). Пусть = (x 1 ,х 2 ,..., х п) - допустимое решение прямой задачи, a = (у 1 ,у 2 ,…,у т) - допустимое решение двойственной задачи. Для того чтобы они были оптимальными решениями соот­ветственно прямой и двойственной задач, необходимо и достаточ­но, чтобы выполнялись следующие соотношения:

(1.4)

(1.5)

Условия (1.4) и (1.5) позволяют, зная оптимальное решение одной из взаимно двойственных задач, найти оптимальное реше­ние другой задачи.

Рассмотрим еще одну теорему, выводы которой будут исполь­зованы в дальнейшем.

Теорема об оценках. Значения переменных y i в оптимальном реше­нии двойственной задачи представляют собой оценки влияния сво­бодных членов b i системы ограничений (неравенств) прямой задачи на величину

Решая ЗЛП симплекс-методом, мы одновременно решаем двой­ственную ЗЛП. Переменные двойственной задачи y i называют объективно обусловленными оценками.

Рассмотрим экономическую интерпретацию двойственной за­дачи на примере задачи о коврах.

Пример 1.2. Используя постановку задачи о коврах, выполнить следующие задания.

1. Сформулировать экономико-математическую модель задачи о коврах на максимум общей стоимости продукции, используя данные табл. 1.1.

2. Используя Поиск решения, найти такой план выпуска продук­ции, при котором общая стоимость продукции будет макси­мальной.

3. Сформулировать экономико-математическую модель двой­ственной задачи к задаче о коврах.

4. Найти оптимальный план двойственной задачи, используя теоремы двойственности, пояснить равенство нулю Х 1 и Х 4 .

5. Используя протоколы Поиска решения, выполнить анализ по­лученного оптимального решения исходной задачи.

6. Определить, как изменится общая стоимость и план выпуска продукции при увеличении запаса ресурса труб на 12 ед.

1. Сформулируем экономико-математическую модель задачи.

Обозначим через Х 1 , Х 2 , Х 3 , Х 4 число ковров каждого типа. Целевая функция имеет вид

F(X) = ЗХ 1 + 4Х 2 + ЗХ 3 + Х 4 max,

а ограничения по ресурсам

7Х 1 + 2Х 2 + 2Х 3 + 6Х 4 80,

5Х 1 + 8Х 2 + 4 Х 3 + ЗХ 4 480,

2Х 1 + 4 Х 2 + Х 3 + 8X 4 130,

Х 1 , X 2 , X 3 , Х 4 0.

2. Поиск оптимального плана выпуска.

Решение задачи выполним с помощью надстройки Excel Поиск решения. Технология решения задачи была подробно рассмотрена в задаче о костюмах. В нашей задаче оптимальные значения вектора Х=(Х 1 , X 2 , X 3 , Х 4) будут помещены в ячейках ВЗ:ЕЗ, оптимальное значение целевой функции - в ячейке F4 .

Введем исходные данные. Сначала опишем целевую функцию с помощью функции - СУММПРОИЗВ (рис. 1.19). А потом введем данные для левых частей ограничений. В Поиске решения введем направление целевой функции, адреса искомых переменных, до­бавим ограничения. На экране появится диалоговое окно Поиск решения с введенными условиями (рис. 1.20).

После ввода параметров для решения ЗЛП следует нажать кнопку Выполнить. На экране появится сообщение, что решение найдено (рис. 1.21).

Полученное решение означает, что максимальный доход 150 тыс. руб. фабрика может получить при выпуске 30 ковров второго вида и 10 ковров третьего вида. При этом ресурсы «труд» и «оборудование» будут использованы полностью, а из 480 кг пряжи (ресурс «сырье») будет использовано 280 кг.

Создание отчета по результатам поиска решения. Excel позволяет представить результаты поиска решения в форме отчета (табл. 1.4). Существует три типа таких отчетов:

· Результаты (Answer). В отчет включаются исходные и конечные значения целевой и изменяемых ячеек, дополнительные све­дения об ограничениях.

· Устойчивость (Sensitivity). Отчет, содержащий сведения о чувстви­тельности решения к малым изменениям в изменяемых ячей­ках или в формулах ограничений.

· Пределы (Limits). Помимо исходных и конечных значений из­меняемых и целевой ячеек, в отчет включаются верхние и ниж­ние границы значений, которые могут принимать влияющие ячейки при соблюдении ограничений.

Краткая теория

Линейное программирование - раздел математического программирования, применяемый при разработке методов отыскания экстремума линейных функций нескольких переменных при линейных дополнительных ограничениях, налагаемых на переменные. По типу решаемых задач его методы разделяются на универсальные и специальные. С помощью универсальных методов могут решаться любые задачи линейного программирования (ЗЛП). Специальные методы учитывают особенности модели задачи, ее целевой функции и системы ограничений. Особенностью задач линейного программирования является то, что экстремума целевая функция достигает на границе области допустимых решений.

Графический метод решения задач линейного программирования дает возможность наглядно представить их структуру, выявить особенности и открывает пути исследования более сложных свойств. Задачу линейного программирования с двумя переменными всегда можно решить графически. Однако уже в трехмерном пространстве такое решение усложняется, а в пространствах, размерность которых больше трех, графическое решение, вообще говоря, невозможно. Случай двух переменных не имеет особого практического значения, однако его рассмотрение проясняет свойства ограничений ЗЛП, приводит к идее ее решения, делает геометрически наглядными способы решения и пути их практической реализации.

Если ограничения и целевая функция содержит более двух переменных, тогда необходимо (или методом последовательного улучшения решения) - он универсален и им можно решить любую ЗЛП. Для некоторых прикладных задач линейного программирования, таких как , разработаны специальные методы решения.

Пример решения задачи

Условие задачи

Предприятие выпускает два вида продукции: Изделие 1 и Изделие 2. На изготовление единицы Изделия 1 требуется затратить кг сырья первого типа, кг сырья второго типа, кг сырья третьего типа. На изготовление единицы Изделия 2 требуется затратить кг первого типа, сырья второго типа, сырья третьего типа. Производство обеспечено сырьем каждого типа в количестве кг, кг, кг соответственно. Рыночная цена единицы Изделия 1 составляет тыс руб., а единицы Изделия 2 - тыс. руб.

Требуется:

  • Построить математическую модель задачи.
  • Составить план производства изделий, обеспечивающий максимальную выручку от их реализации при помощи графического метода решения задачи линейного программирования.

Чтобы решение задачи по линейному программированию было максимально точным и верным, многие недорого заказывают контрольную работу на этом сайте. Подробно (как оставить заявку, цены, сроки, способы оплаты) можно почитать на странице Купить контрольную работу по линейному программированию...

Решение задачи

Построение модели

Через и обозначим количество выпускаемых изделий 1-го и 2-го типа.

Тогда ограничения на ресурсы:

Кроме того, по смыслу задачи

Целевая функция экономико-математической модели, выражающая получаемую от реализации выручку:

Получаем следующую экономико-математическую модель:

Построение области допустимых решений

Решим полученную задачу линейного программирования графическим способом:

Для построения области допустимых решений строим в системе координат соответствующие данным ограничениям-неравенствам граничные прямые:

Найдем точки, через которые проходят прямые:

Решением каждого неравенства системы ограничений ЗЛП является полуплоскость, содержащая граничную прямую и расположенная по одну сторону от нее.

Для определения полуплоскости возьмём любую точку, например , не принадлежащую прямой (1), подставим координаты (0;0) в соответствующее неравенство. Т.к. неравенство верно:

Области решений соответствующего 1-го неравенства соответствует левая полуплоскость

Возьмём любую точку, например , не принадлежащую прямой (2), подставим координаты (0;0) в соответствующее неравенство. Т.к. неравенство верно:

Возьмём любую точку, например , не принадлежащую прямой (3), подставим координаты (0;0) в соответствующее неравенство. Т.к. неравенство верно:

Области решений соответствующего 2-го неравенства соответствует левая полуплоскость

Областью допустимых решений является фигура .

Нахождение решения задачи ЛП

Строим вектор , координаты которого пропорциональны коэффициентам целевой функции. Здесь - коэффициент пропорциональности.

Перпендикулярно к построенному вектору проводим линию уровня .

Перемещаем линию уровня в направлении вектора так, чтобы она касалась области допустимых решений в крайней точке. Решением на максимум является точка , координаты которой находим как точку пересечения прямых (2) и (1).

Ответ

Таким образом необходимо выпускать 56 изделий 1-го вида и 64 изделия 2-го вида. При этом выручка от реализации изделий будет максимальна и составит 5104 ден.ед.

Метод графического решения, если задача с двумя переменными имеет линейные ограничения, а целевая функция - квадратичная, подробно рассмотрен здесь
На странице подробно разобрано решение задачи линейного программирования симплексным методом, кроме того, показано построение двойственной задачи линейного программирования и нахождение ее решения по решению прямой задачи.

Транспортная задача и метод потенциалов
Подробно рассмотрена транспортная задача, ее математическая модель и методы решения - нахождение опорного плана методом минимального элемента и поиск оптимального решения методом потенциалов.

Выпуклое программирование - графический метод
Приведен образец решения задачи квадратичного выпуклого программирования графическим методом.

Важным методом научного анализа статистического материала выступают графические изображения. Первые попытки использования графических методов в экономических исследованиях начались еще в 1780-х годах. Однако более широкого применения графический метод получил позже - в середине XVIII в., Особенно после впервые в истории сделанной статистики докладе представителя Берлинского статистического бюро Швабе "Теория графических изображений" на 8-м Международном статистическом конгрессе (Петербург, 1872 г.). По известному выражению немецкого физика Ф. Ауэрбаха, XX в. ознаменовалось "триумфальной поступью графического метода в науке".

Что же такое график? График - это форма наглядного представления статистических данных о социально-экономические явления и процессы через геометрические образы, рисунки или схематические географические карты и пояснения к ним.

График имеет пять основных элементов общей конструкции: поле, координатную сетку, графические знаки и их размещения в поле графика, масштаб и экспликация (рис. 10.3).

Рис. 10.3. Основные элементы графика

Каждый из этих элементов имеет свое назначение и выполняет соответствующую роль в построении и интерпретации. Поле графика - это пространство, на котором размещаются геометрические и другие знаки, составляющие графическое изображение.

Графический образ - это совокупность различных символических знаков, с помощью которых отражаются статистические данные. Эти знаки могут изображаться в формах: линий, точек, геометрических, графических, а иногда негеометричних фигур.

Координатная сетка - это прямоугольная система координат, в которой на оси абсцисс откладывается время, а на оси ординат - количественные показатели по масштабу.

Масштаб - условная мера перевода числовой величины статистического явления в графическую и наоборот. Он служит для установки числовых значений явлений, выраженных на графике.

Экспликация графика - словесное объяснение его конкретного содержания, которое обычно включает:

1) заголовок с необходимыми дополнительными пояснениями;

2) точное объяснение сущности, условно предоставляется в данном графике его графическим знакам (геометрическим, изобразительным, фоновым, чисто условным)

3) другие объяснения, примечания и т.

Кроме того, на поле графика можно наносить некоторые дополнительные сведения, например числовые данные, которые сказываются у некоторых графических знаков и повторяют в цифровой форме их точные значения, выраженные графически.

Графики играют особенно важную роль в изучении сложных взаимосвязей социально-экономических явлений и процессов, выявлении тенденций, закономерностей и изменения показателей динамики, а также в текущем анализе. Основными отличиями и преимуществами графического метода по сравнению с другими является: лучшая наглядность; возможность в целом охватить данные изучаемых; возможность выражения некоторых аналитических зависимостей, которые не очень четкие и тяжелые для выявления при других способах представления данных.

С помощью графиков можно осуществлять оперативный контроль за производством, реализацией продукции, выполнением договорных обязательств и поставленных задач. Таким образом, графики назначены:

Для обобщения и анализа данных;

Изображение распределения данных;

Выявление закономерностей развития исследуемых явлений и процессов в динамике;

Отражение взаимосвязей показателей;

Осуществление контроля за производством, выполнением договоров по сбыту продукции и тому подобное.

Есть различные классификации графиков - по форме графических образов, по содержанию, характеру поставленных задач.

По форме графических образов различают следующие типы графиков:

1) точечные;

2) линейные;

3) плоскостные;

4) объемные;

5) художественные (изобразительные, условные).

В точечных графиках объем совокупности выражается или одной точкой, или накоплением точек. Одна точка может означать один случай или несколько (например, один завод, 500 работников).

Линейные графики состоят из одних линий: отрезков прямой, ломаных, ступенчатых, плавных кривых (в основном для передачи динамики совокупности). Часто отрезки прямой заменяют полосками одинаковой ширины, которые выступают также как графические знаки но одним измерением (длиной). В таких случаях графики называют столбиковой, если полоски размещены вертикально, или ленточными, когда полоски лежат горизонтально.

В свою очередь колонке графики делятся на колонке диаграммы: простые и сплошные, из групп столбиков и т.д., а ленточные - на ленточные диаграммы: простые и ступенчатые, компонентнипарни, скользящие, двусторонне направлены (например, "возрастная пирамида" состава населения).

К специальным видам линейных графиков относятся спиральные (для явлений, которые неограниченно развиваются во времени и по нарастающей величине), радиальные диаграммы (для отображения закономерностей периодически повторяющихся явлений, их ритмичности, сезонности).

Плоскостные графики - это графики двух измерений в виде плоскостей разных геометрических форм. В зависимости от этого они могут быть квадратными, круговыми, секторными. Эти графики целесообразно использовать для сравнения явлений, представленных абсолютными и относительными величинами.

Важными особенностями плоскостных графиков является двухмерный "знак Варзара", ленточная или текущая диаграмма и балансовая диаграмма.

Двухмерный "знак Варзара" (по имени его изобретателя русского статистика В.Е. Варзара) - это прямоугольник с основанием а высотой Ь и площадью Sab, который является полезным для графического выражения довольно частых подобных соотношений трех величин a, by S.

Ленточная, или текущая, диаграмма применяется для схематического выражения объема и состава грузопотоков между двумя пунктами в одном и втором направлениях.

Балансовая диаграмма - это двусторонняя ленточная диаграмма, ленты которой разветвляются в две стороны на более узкие полоски, своей шириной выражают соответствующие величины статей доходов и расходов, статей актива и пассива и тому подобное.

Объемные - трехмерные графики, которые используются редко, поскольку они менее выразительные по сравнению с линейными и плоскостными.

Художественные (изобразительные, условные) - графики с условными графическими знаками, которые отражают совокупности или ее отдельные значения в виде фигур людей, контуров животных, схематических рисунков предметов и т.

Большое значение имеет классификация графиков по их содержанию. Учитывая это графики делятся на два класса - диаграммы и статистические карты.

Диаграмма - это графическое выражение объемов и особенностей одной или нескольких совокупностей с помощью количественных графических знаков (геометрических, художественных, фоновых, чисто условных).

Однако диаграмма не дает графического представления о территориальное размещение изображаемых совокупностей или территориальную изменение их признаков. Для этого используются статистические карты, предназначенные для изображения территориального размещения совокупностей или территориальной изменения их признаков. Они делятся на два класса - картограммы и картодиаграммы.

Картограммы - контурные географические карты, на которых с помощью графических знаков представлена количественная территориальная характеристика совокупности.

Картодиаграммы - контурные географические карты, где отдельные районы (области, пункты) территории нанесены одинакового вида диаграммы (одна или несколько), изображающие объем и территориальные особенности однотипных совокупностей в этих районах. Так, например, изображаются потоки грузов, перевозимых пассажиров, население, мигрирует и тому подобное.

Диаграммы и статистические карты выполняют такие важные задачи по исследованию совокупности:

Общее их сравнения;

Изучение структуры;

Изучение динамики;

Изучение взаимосвязей их признаков;

Измерение степени выполнения хозяйственных планов, договорных обязательств в планово-экономической практике.

В свою очередь и диаграммы, и картограммы в зависимости от их назначения делятся на подклассы, группы и формы (табл. 10.27).

При построении графиков следует соблюдать следующие требования:

1) опираться на достоверные числовые данные;

2) графики должны быть значимыми по замыслу и интересными по содержанию;

3) должны быть построенными в соответствии с поставленными задачами и их практического назначения;

4) быть предельно экономными - содержать максимум сведений, идей при минимуме средств их графического выражения, простыми, четкими, понятными;

5) технически хорошо выполненными.

Рассмотрим подробнее основные виды и формы диаграмм и статистических карт, которые чаще всего используются в практике аналитической работы.

Линейная диаграмма - один из самых распространенных видов графиков, который служит для изображения динамики исследуемых явлений. Для его построения используется прямоугольная система координат. На оси абсцисс откладывают равные отрезки - периоды времени (дни, месяцы, годы и т. П.), А на оси ординат - принят масштаб, характеризующий единицы измерения. На координатном поле наносят точки, равны величине показателя на определенный период. Затем все точки соединяются прямыми линиями, в результате чего получают ломаную линию, которая характеризует изменение изучаемого явления за определенный период времени (табл. 10.28, рис. 10.4).

Подкласс

Разновидности и графическая форма, чаще всего встречается

Диаграммы

И. Диаграммы общего сравнения совокупностей

1. однородных совокупностей

Колонке, ленточные, художественные

2. Разнородных совокупностей

Колонке, ленточные, плоскостные

II. Диаграммы структуры

1. Диаграммы распределения численности

Полигон, гистограмма, кумулята, огива, кривая распределения, график Лоренца, корреляционное поле

2. Диаграммы группам

Диаграммы из столбиков, лент, разделенных на абсолютные или процентные части, секторные, балансовые диаграммы, "возрастная пирамида» и др.

III. Диаграммы динамики

1. Диаграммы динамики объемов

Колонке, линейные, кумулятивные, спиральные, художественные диаграммы

2. Диаграммы динамики структуры

Диаграммы из столбиков с процентным делением, по кругам с разделением на сектора и др.

3. Диаграммы сезонных колебаний

Линейные, столбиковые, радиальные диаграммы

IV. Диаграммы

взаимосвязей

признаков

1. Диаграммы конфигурации совокупности

Точечные, фоновые

2. Диаграммы формы связи

Диаграммы с ломаных или с плавных кривых

3. Диаграммы степени тесноты связи

Замкнутые контуры корреляционного поля в виде ступенчатых ломаных или эллипсообразных кривых и т.д.

V. Диаграммы выполнения планов

1. Диаграммы текущего выполнения

Линейные диаграммы, графики Ганта

2. Диаграммы выполнения от начала периода

Кумуляты, кумулятивные графики Ганта, графики Лоренца

Статистические карты

VI. Картограммы

1. Картограммы размещения единиц совокупности

Точечные картограммы

2. Картограммы размещения совокупного объема признаки

Точечные картограммы

3. Картограммы изменения сводных признаков

Точечные, фоновые картограммы

4. Изолинийни картограммы

Линейные картограммы

5. Центрограмы

Точечные картограммы

Таблица 10.28. Инвестиции в основной капитал в жилищное строительство Украины в 2000-2005 pp., В фактических ценах, млн грн

Данные графика свидетельствуют, что объемы инвестиций в основной капитал в жилищное строительство Украины в фактических ценах росли с 2000 в 2005

Рис. 10.4. Динамика объема инвестиций в основной капитал в жилищное строительство Украины в 2000-2005 гг., В фактических ценах, млн грн

Планово-линейные графики строят на специально разработанной сетке, где по горизонтали откладывают единицы времени, а по вертикали размещают объекты исследования. Причем, каждый отрезок по горизонтали соответствует 100% -му выполнению планового задания. Эти отрезки делятся на 5 равных частей, каждая из которых соответствует 20% планового задания.

Степень выполнения плана на графике изображается двумя линиями: тонкой прерывистой - за единицу времени (день, декаду) и сплошной жирной - за отчетный период в целом.

Рассмотрим порядок построения планово-линейного графика на примере.

Пример. Построить линейный график выполнения планового задания бригадой рабочих из строительно-монтажных работ, используя данные табл. 10.29.

Таблица 10.29. Выполнение планового задания бригадой рабочих из строительно-монтажных работ

График выполнения планового задания бригадой строителей по строительно-монтажных работ представлен на рис. 10.5.

Тонкая непрерывный линия первого дня соответствует 90% выполнения плана и занимает четыре с половиной ячейки, а линия второго дня - 80% и занимает четыре клетки, линия третий день протянулась ровно на пять, а четвертого - на пять ячеек (100%) плюс еще дополнительный отрезок ниже, который занимает 20% и т.п.

Изображение уровня выполнения плана нарастающим итогом требует некоторых дополнительных расчетов. Так, за первый день сплошная жирная линия будет такой длины, как и тонкая непрерывный - 90% и займет четыре с половиной клетки. Далее следует сделать следующие расчеты: за два дня фактически выполнено 513 м 2 (225 + 288). Из этой суммы 250 м 2 относят в счет выполнения плана за первый день. Тогда в счет второго дня останется 263 м 2, что согласно плану в этот день составляет 91% (263 288).

Согласно жирная линия занимает пять ячеек первого дня и 91% второго. За три дня фактически было выполнено 923 м 2 (225 + 288 + 410). В счет выполнения плана первых двух дней записывается 610 м 2, а в счет третьего дня - 313 м 2, что согласно плану на этот день составляет 76% (313: 410). Жирная линия займет по 5 ячеек первого и второго дней и 76% третьему. Аналогично проводятся все дальнейшие расчеты. Степень выполнения плана за каждый день на жирной линии сказывается точками.

Колонке диаграммы - очень распространенный вид графиков в одном измерении благодаря их наглядности и простоте. Статистические данные в них изображаются в виде прямоугольников одинаковой ширины, расположенных вертикально по горизонтальной прямой (рис. 10.6).

Высота столбиков должна соответствовать величине изображенных явлений. Если же столбики размещают горизонтально, то такой график называется ленточным (рис. 10.7).

Колонке и ленточные диаграммы позволяют сравнивать величины разного значения, характеризовать одно и то же явление в динамике; характеризовать совокупность.

Секторные диаграммы (или круговые) - диаграммы, предназначенные для отображения структуры исследуемых явлений и процессов. Они изображаются в виде круга, разделенного на сектора, величины которых соответствуют размерам изображаемых явлений (рис. 10.8).

Как свидетельствуют данные графика (рис. 10.8), основным источником финансирования лизинговых операций в Украине выступают банковские кредиты (80,9%), затем - собственные средства (16,1%). Заемные средства юридических лиц составляют лишь 3,6%.

Рис. 10.6. Динамика объема инвестиций в основной капитал в жилищное строительство Украины в 2000-2005 pp., В фактических ценах, млн грн

Рис. 10.7. Динамика объема инвестиций в основной капитал в жилищное строительство Украины в 2000-2005 pp., В фактических ценах, млн грн

В современных условиях развития информационно-компьютерных систем появилась возможность строить графики с помощью пакетов компьютерных программ, в том числе электронных таблиц EXCEL, "Statistica-6" и др. Они удобны в использовании и значительно упрощают эту работу.

Рис. 10.8. Структура источников финансирования лизинговых операций в Украине на начало 2005 p.,%

В линейном программировании используется графический метод, с помощью которого определяют выпуклые множества (многогранник решений). Если основная задача линейного программирования имеет оптимальный план, то целевая функция принимает значение в одной из вершин многогранника решений (см. рисунок).

Назначение сервиса . С помощью данного сервиса можно в онлайн режиме решить задачу линейного программирования геометрическим методом, а также получить решение двойственной задачи (оценить оптимальность использования ресурсов). Дополнительно создается шаблон решения в Excel .

Инструкция . Выберите количество строк (количество ограничений).

Количество ограничений 1 2 3 4 5 6 7 8 9 10
Если количество переменных больше двух, необходимо систему привести к СЗЛП (см. пример и пример №2). Если ограничение двойное, например, 1 ≤ x 1 ≤ 4 , то оно разбивается на два: x 1 ≥ 1 , x 1 ≤ 4 (т.е. количество строк увеличивается на 1).
Построить область допустимого решения (ОДР) можно также с помощью этого сервиса .

Вместе с этим калькулятором также используют следующие:
Симплексный метод решения ЗЛП

Решение транспортной задачи
Решение матричной игры
С помощью сервиса в онлайн режиме можно определить цену матричной игры (нижнюю и верхнюю границы), проверить наличие седловой точки, найти решение смешанной стратегии методами: минимакс, симплекс-метод, графический (геометрический) метод, методом Брауна.
Экстремум функции двух переменных
Вычисление пределов

Решение задачи линейного программирования графическим методом включает следующие этапы :

  1. На плоскости X 1 0X 2 строят прямые.
  2. Определяются полуплоскости.
  3. Определяют многоугольник решений;
  4. Строят вектор N(c 1 ,c 2), который указывает направление целевой функции;
  5. Передвигают прямую целевую функцию c 1 x 2 + c 2 x 2 = 0 в направлении вектора N до крайней точки многоугольника решений.
  6. Вычисляют координаты точки и значение целевой функции в этой точке.
При этом могут возникать следующие ситуации:

Пример . Компания изготавливает два вида продукции - П1 и П2. Для производства продукции используются два вида сырья - С1 и С2. Оптовые цены единицы продукции равна: 5 д.е. для П1 и 4 д.е. для П2. Расход сырья на единицу продукции вида П1 и вида П2 дан в таблице.
Таблица - Расход сырья на производство продукции

Установлены ограничения на спрос продукции: ежедневный объем производства продукции П2 не должен превышать ежедневный объем производства продукции П1 не более чем на 1 тонну; максимальный ежедневный объем производства П2 не должен превышать 2 т.
Требуется определить:
Какое количество продукции каждого вида должно производить предприятие, чтобы доход от реализации продукции был максимальным?
  1. Сформулировать математическую модель задачи линейного программирования.
  2. Решить задачу линейного программирования графическим способом (для двух переменных).
Решение.
Сформулируем математическую модель задачи линейного программирования.
x 1 - производство продукции П1, ед.
x 2 - производство продукции П2, ед.
x 1 , x 2 ≥ 0

Ограничения по ресурсам
6x 1 + 4x 2 ≤ 24
x 1 + 2x 2 ≤ 6

Ограничения по спросу
x 1 +1 ≥ x 2
x 2 ≤ 2

Целевая функция
5x 1 + 4x 2 → max

Тогда получаем следующую ЗЛП:
6x 1 + 4x 2 ≤ 24
x 1 + 2x 2 ≤ 6
x 2 - x 1 ≤ 1
x 2 ≤ 2
x 1 , x 2 ≥ 0
5x 1 + 4x 2 → max