С чего начать изучение электроники. Радиоэлектроника, или как я начал её постигать

Подборка простых и интересных схем для начинающих радиолюбителей. Основной акцент предлагаемых конструкций сделан именно на простоту и понимание работы основ электроники. Кроме того рассмотрены различные методы по проверки основных радиоэлектронных компонентов таких как диоды, транзисторы и оптопары, рассмотрена и работа последних.

В этой статье в простой и удобной форме вы овладеете навыками использования мультиметра. Узнаете о способах проверки основных радиокомпонентов из которых будем собирать наши первые электронные самоделки. Вы узнаете как прозвонить мультиметром собранную схему, проверить на работоспособность диод, транзистор и конденсатор.

В это статье начинающие радиолюбители смогут познакомится с принятым в мировой радиолюбительской практике условно-графическим обозначением различиных типов радиодеталей в принципиальных схемах

Простые схемы начинающих Ардуинщиков

Цикл статей и обучающих схем с радиолюбительскими экспериментами на плате Arduino для начинающих. Ардуино - радиолюбительская игрушка-конструктор, из которой без паяльника, травления печатных плат и тому подобного любой начинающий в электронике может собрать полноценное работающее устройство, подходящее для профессионального прототипирования так и для любительских опытов при изучении электроники. А кроме того Arduino полезная электронная штучка в умном домашнем хозяйстве.

Как устроен и работает полупроводниковый прибор называемый транзистором, почему он так часто встречается в радиаппаратуре и почему без него почти никогда нельзя обойтись.

Индикатор намагниченности - Обычный школьный компас чутко реагирует на магнитное поле. Достаточно, скажем, пронести перед его стрелкой намагниченный конец отвертки и стрелка отклонится. Но, к сожалению, после этого стрелка будет некоторое время по инерции раскачиваться. Поэтому пользоваться таким простейшим прибором определения намагниченности предметов неудобно. Необходимость же в таком измерительном устройстве возникает нередко. Собранный из нескольких деталей индикатор оказывается совершенно неинерционным и сравнительно чувствительным, чтобы, к примеру, определить намагниченность лезвия бритвы или часовой отвертки. Кроме того, подобный прибор пригодится в школе во время демонстрации явления индукции и самоиндукции
Индикатор переменного электромагнитного поля Вокруг проводника с током образуется магнитное поле. Если включить, скажем, настольную лампу, то такое поле будет вокруг проводов, подводящих к лампе сетевое напряжение. Причем поле будет переменным, изменяющимся с частотой сети 50 Гц. Правда, напряженность поля невелика, и обнаружить его можно лишь чувствительным индикатором
Искатель скрытой проводки . Переменное электромагнитное поле можно обнаружить с помощью электронных устройств, познакомимся с более чувствительным индикатором, способным уловить слабое поле сетевых проводов, по которым течет переменный ток. Речь пойдет об искателе скрытой проводки в вашей квартире. Такой индикатор предупредит о повреждении сетевых проводов при сверлении отверстий в стене
Индикатор потребляемой мощности «Показания» предыдущих индикаторов зависят от напряженности магнитного. либо электрического (как в последнем индикаторе) поля, создаваемого протекающим по проводам током. Чем больше ток, тем сильнее поле. А ведь ток - не что иное, как характеристика мощности, потребляемой нагрузкой от сети переменного тока. Поэтому нетрудно догадаться, что индикатор, к примеру с индуктивным датчиком, можно приспособить в схемах контроля и измерения потребляемой мощности. Кроме того, такая схема индикатора, установленная вблизи входной двери, будет сигнализировать перед уходом из квартиры об оставленных включенными приборах. Лучшее место установки датчика - у ввода проводов в квартиру, вблизи разветвительной коробки. Потому здесь протекает общий ток всех потребителей, включенных в любую розетку квартиры. Правда, переменное напряжение на выводах катушки датчика будет небольшим, и понадобится усилитель

Световой сигнализатор телефонных звонков Если в комнате громко работает телевизор телефонный звонок можно и не услышать. Вот здесь и нужен световой сигнализатор, который включит схему индикатора, как только будет телефонный звонок.

Основой схемы автомата-сигнализатора служит датчик, реагирующий на телефонные звонки, выполненный на катушке индуктивности. Она расположена рядом с телефонным аппаратом, поэтому ее витки находятся в магнитном поле электромагнита звонка вызова. Сигнал вызова индуцирует в катушке датчика переменную ЭДС.

«Бесшумный» звук схема начинающих Иногда хочется послушать радиоприемник, посмотреть телевизор, не мешая окружающим? Конечно, включить в дополнительные гнезда наушники - скажете вы. Все верно, однако подобная система связи неудобна - соединительный провод наушников не позволяет удаляться на значительное расстояние, а тем более ходить по комнате. Всего этого можно избежать, если воспользоваться «беспроводной» схемой связи, состоящей из передатчика и приемника.

Электронная «мина» Воспользовавшись принципом индуктивной связи, можно собрать своими руками интересную схему используемую в организации соревнований по поиску «мин»- замаскированных в земле или в помещении миниатюрных передатчиков, работающих на звуковой частоте.

Каждая такая «мина» представляет собой схему мультивибратора, работающего на частоте примерно 1000 Гц. В эмиттерную цепь транзистора схемы мультивибратора включен усилитель мощности с катушкой индуктивности в качестве нагрузки. Вокруг нее образуется электромагнитное поле звуковой частоты

    Прерывистая сирена Начнем с самой простой конструкции, имитирующей звук сирены. Встречаются сирены однотональные, издающие звук одной тональности, прерывистые, когда звук плавно нарастает и спадает, а затем прерывается либо становится однотональным, и двухтональные, в которых тональность звука периодически изменяется скачком.

    Схема прерывистой электронной сирены собрана на транзисторах VT 1 и VT 2 по схеме несимметричного мультивибратора. Простота схемы генератора объясняется использованием транзисторов разной структуры, что позволило обойтись без многих деталей, необходимых в схеме постройки мультивибратора на транзисторах одинаковой структуры.

    Двухтональная сирена. Взглянув на схему этого имитатора, нетрудно заметить уже знакомый узел - генератор, собранный на транзисторах VT 3 и VT 4. По такой схеме был собран предыдущий имитатор. Только в данном случае мультивибратор работает не в ждущем, а в обычном режиме. Для этого на базу первого транзистора (VT 3) подано напряжение смещения с делителя R 6 R 7. Заметьте, что транзисторы VT 3 и VT 4 поменялись местами по сравнению с предыдущей схемой из-за изменения полярности напряжения питания.

    Двигатель внутреннего сгорания. Так можно сказать про следующий имитатор послушав его звучание. И действительно, издаваемые динамической головкой звуки напоминают выхлопы, характерные во время работы двигателя автомобиля, трактора или тепловоза.

    Под звуки капели Кап... кап... кап... - доносятся звуки с улицы, когда идет дождь, весной падают с крыши капли тающего снега. Эти звуки на многих людей действуют успокаивающе, а по отзывам некоторых, даже помогают засыпать. Ну что ж, возможно, вам понадобится такой имитатор. На постройку схемы уйдет лишь с десяток деталей

    Имитатор звука подскакивающего шарика Хотите послушать, подскакивающий стальной шарик от шарикоподшипника на стальной и чугунной плите? Тогда соберите имитатор по этой схеме начинающих электронщиков.

    Морской прибой... в комнате Подключив небольшую приставку к усилителю радиоприемника, магнитофона или телевизора, вы сможете получить звуки, напоминающие шум морского прибоя. Схема такой приставки-имитатора состоит из нескольких узлов, но главный из них - генератор шума

    Костер... без пламени Почти в каждом пионерском лагере устраивают пионерский костер. Правда, не всегда удается собрать столько дров, чтобы пламя было высоким, а костер громко потрескивал.

    А если дров поблизости вообще нет? Или вы хотите соорудить незабываемый пионерский костер в школе? В этом случае поможет предлагаемый электронный имитатор, создающий характерный звук потрескивания горящего костра. Останется лишь изобразить«пламя» из красных лоскутов ткани, развеваемых скрытым на полу вентилятором.

    Как поет канарейка? Эта схема начинающего радиолюбителя сравнительно простого имитатора звуков канарейки. Это уже известная вам схема мультивибратор, но несимметричный ее вариант (сравните емкости конденсаторов С1 и СЗ частотозадающих цепей - 50 мкФ и 0,005 мкФ!). Кроме того, между базами транзисторов установлена цепочка связи из конденсатора С2 и резистора R3. Элементы мультивибратора подобраны так, что он генерирует сигналы, которые, поступая на головной телефон BF 1, преобразуются им в звуковые колебания, похожие на трели канарейки

    Трели соловья На разные голоса Использовав часть предыдущей конструкции, можно собрать новый имитатор - трелей соловья. В нем всего один транзистор, на котором выполнен блокинг-генератор с двумя цепями положительной обратной связи. Одна из них, состоящая из дросселя и конденсатора, определяет тональность звука, а вторая, составленная из резисторов и конденсатора, - период повторения трелей.

    Как стрекочет сверчок? Имитатор стрекота сверчка отличная схема начинающего электронщика состоит из мультивибратора и RC -генератора. Схема мультивибратора собрана на транзисторах. Отрицательные импульсы мультивибратора (когда закрывается один из транзисторов) поступают через диод VD1 на конденсатор С4, являющийся «аккумулятором» напряжения смещения транзистора генератора.

    Кто сказал «мяу»? Этот звук донесся из небольшой шкатулки, внутри которой разместился электронный имитатор. Схема его немного напоминает схему предыдущего имитатора, не считая усилительной части - здесь применена аналоговая интегральная микросхема.

    Звуколокатор Эта простая игрушка - всего лишь демонстрация «работы» звука. Названа она так потому, как и настоящий локатор излучает сигнал, а затем принимает его уже отраженным от каких-либо препятствий. Как только до какого-нибудь препятствия останется определенное расстояние, принятый звуковой сигнал возрастет до уровня, при котором сработает автоматика и выключит электродвигатель

    Автомат «Тише» Шум мешает любым занятиям - это ясно каждому. Но порою мы слишком поздно спохватываемся, когда в классе или другом помещении, где идет работа, уже давно громкость нашего разговора или спора превышает допустимую. Надо бы говорить тише, а мы увлеклись и не замечаем, что мешаем окружающим.

    Если же установить в помещении автомат, следящий за громкостью звука, то при достижении определенного, заранее заданного, уровня громкости автомат сработает и зажжет настенное табло «Тише» либо подаст звуковой сигнал.

    «Дрессированная змея» Акустический автомат, реагирующий на звуковой сигнал, может срабатывать не только при определенной громкости звука, но и при соответствующей частоте. Таким избирательным свойством обладает предлагаемая ниже схема игрушки.

    Одно, 2-х, 3-х, и 4-х канальный акустический выключатель А теперь поговорим об схемах автоматов, которые по звуковым сигналам способны включать и отключать нагрузку. Скажем, при одном сравнительно громком сигнале (хлопок в ладоши) автомат включает нагрузку в сеть, при другом выключает. Перерывы между хлопками могут быть сколь угодно большими, и все это время нагрузка будет либо включена, либо выключена. Подобный автомат и получил название акустический выключатель.

    Если автомат управляет только одной нагрузкой, его можно считать одноканальным, например схема одноканального акустического выключателя

Схема простого электромузыкального инструмента . Любой генератор звуковой частоты вырабатывает электрические колебания, которые, будучи поданными на усилитель ЗЧ, преобразуются его динамической головкой в звук. Тональность последнего зависит от частоты колебаний генератора. Когда в схеме генератора использован набор резисторов разных сопротивлений и их включают в частотозадающую схему обратной связи, получится простой электромузыкальный инструмент, на котором можно исполнять несложные мелодии.

Схема Терменвокс для начинающих Это первый инструмент, положивший начало новому направлению в радиоэлектронике - электронной музыке (сокращенно электромузыке). Разработал его в 1921 г. молодой петроградский физик Лев Термен. По имени изобретателя и был назван необычный электромузыкальный инструмент. Необычен же он тем, что не имеет клавиатуры, струн или труб, с помощью которых получают звуки нужной тональности. Игра на терменвоксе напоминает выступление фокусника-иллюзиониста - самые разнообразные мелодии звучат из динамической головки при едва заметных манипуляциях одной и двумя руками вблизи металлического прутка-антенны, торчащего на корпусе инструмента.

Электронный барабан схема начинающего электронщика Барабан - один из популярных, но в то же время громоздких музыкальных инструментов. Уменьшить его габариты и сделать более удобным в транспортировке - желание едва ли не каждого ансамбля. Если воспользоваться услугами электроники и собрать приставку к мощному усилителю (а он сегодня - неотъемлемая часть аппаратуры ансамбля), можно получить имитацию звучания барабана.

Если с помощью микрофона, усилителя и осциллографа «просмотреть» звук барабана, то удастся обнаружить следующее. Сигнал на экране осциллографа промелькнет в виде всплеска, напоминающего падающую каплю воды. Правда, падать она будет справа налево. Это значит, что левая часть «капли» имеет крутой фронт, обусловленный ударом по барабану, а затем следует затухающий спад - он определяется резонансными свойствами барабана. Внутри же «капля» заполнена колебаниями почти синусоидальной формы частотой 100...400 Гц - это зависит от размеров и конструктивных особенностей данного инструмента.

Приставки к электрогитаре Популярность электрогитары сегодня во многом объясняется возможностью подключать к ней электронные приставки, позволяющие получать самые разнообразные звуковые эффекты. Среди музыкантов-электрогитаристов можно услышать незнакомые для непосвященных слова «вау», «бустер», «дистошн», «тремоло» и другие. Все это - названия эффектов, получаемых во время исполнения мелодий на электрогитаре.

О некоторых приставках с подобным эффектом и пойдет рассказ. Все они рассчитаны на работу как с промышленными звукоснимателями, устанавливаемыми на обычную гитару, так и с самодельными, изготовленными по описаниям в популярной радиолюбительской литературе.

«Бустер»-приставка. Если ударить медиатором по одной из струн гитары и посмотреть на осциллографе форму электрических колебаний, снимаемых с выводов звукоснимателя, то она напомнит импульс с заполнением. Фронт «импульса» более крутой по сравнению со спадом, а «заполнение» - не что иное, как почти синусоидальные колебания, промодулированные по амплитуде. Это значит, что громкость звука при ударе по струне нарастает быстрее, чем спадает. Время нарастания звука музыканты называют атакой.

Динамика исполнения на гитаре возрастет, если ускорить атаку, т. е. увеличить скорость нарастания звука. Получающийся при этом эффект звучания получил название «бустер». Схема приставки для получения такого эффекта рассмотрена в этой статье. Она рассчитана на работу с бас-гитарой, которой обычно отводится важная роль в вокально-инструментальных ансамблях. Выполняя ритмический рисунок музыкальной композиции, бас-гитара нередко становится и солирующим инструментом.

    Цветомузыкальная приставка-индикатор Если встроить схему такой приставки в радиоприемник, то в такт с музыкой будет освещаться разноцветными огнями шкала настройки либо вспыхивать три цветовых сигнала на лицевой панели - приставка станет цветовым индикатором настройки. Как и в подавляющем большинстве цветомузыкальных приставок и установок, в предлагаемом устройстве применено частотное разделение сигналов звуковой частоты, воспроизводимых радиоприемником, по трем каналам.

    Приставка с малогабаритными лампами Предлагаемая схема приставки более серьезная конструкция, способная управлять разноцветным освещением небольшого экрана. Сигнал на вход приставки по-прежнему поступает с выводов динамической головки усилителя звуковой частоты радиоприемника или другого радиоустройства. Переменным резистором R1 устанавливают общую яркость экрана, особенно по каналу высших частот, собранному на транзисторе VT1. Яркость же свечения ламп других каналов можно устанавливать «своими» переменными резисторами - R2 и R3.

    Приставка с автомобильными лампами Многие из вас после изготовления простой цветомузыкальной приставки захотят сделать конструкцию, обладающую большей яркостью свечения ламп, достаточной освещения экрана внушительных размеров. Задача выполнимая, если воспользоваться автомобильными лампами мощностью 4...6 Вт. С такими лампами работает схема с автомобильнми лампами

    Приставка на тринисторах Увеличение числа ламп накаливания требует применения в выходных каскадах схемы транзисторов, рассчитанных на допустимую мощность в несколько десятков и даже сотен ватт. В широкую продажу подобные транзисторы не поступают, поэтому на помощь приходят тринисторы. В каждом канале достаточно использовать один тринистор - он обеспечит работу лампы (или ламп) накаливания мощностью от сотни до тысячи ватт! Маломощные нагрузки совершенно безопасны для тринистора, а для управления мощными его укрепляют на радиаторе, позволяющем отвести от корпуса тринистора излишнее тепло.

    Четырехканальная цветомузыкальная приставка Эту схему начинающего можно считать более совершенной (но и более сложной) по сравнению с предыдущей. Т.к она содержит не три, а четыре цветовых канала и в каждом канале установлены мощные осветители. Кроме того, вместо пассивных фильтров используются активные, обладающие большей избирательностью и возможностью изменять полосу пропускания (а это нужно в случае более четкого разделения сигналов по частоте).

Подборка несложных схем юных электронщиков от популярного журнала моделист-конструктор из старых выпусков.

Научиться можно только тому, что любишь.
Гёте И.

"Как самостоятельно изучить электронику с нуля?" — один из самых популярных вопросов на радиолюбительских форумах. При этом те ответы, которые я нашел, когда сам его задавал, мне мало помогли. Поэтому я решил дать свой.

Это эссе описывает общий подход к самообучению, а так как оно стало ежедневно получать множество просмотров, то я решил его развить и сделать небольшое руководство по самостоятельному изучению электроники и рассказать как это делаю я. Подписывайся на рассылку -- будет интересно!

Творчество и результат

Чтобы что-то изучить надо это полюбить, гореть интересом и регулярно упражняться. Кажется, я только что озвучил прописную истину... Тем не менее. Для того, чтобы с лёгкостью и удовольствием изучать электронику надо её любить и относится к ней с любопытством и восхищением. Сейчас уже для всех привычно иметь возможность отправить видеосообщение на другой конец земли и мгновенно получить ответ. А это одно из достижений электоники. 100 лет труда тысяч ученых и инженеров.

Как нас обычно учат

Классический подход, который проповедуется в школах и университетах всего мира можно назвать подходом снизу-вверх. Сначала тебе рассказывают что такое электрон, атом, заряд, ток, резистор, конденсатор, индуктивность, заставляют решить сотни задач на нахождение токов в резисторных цепях, потом ещё сложней и т.д. Такой подход схож с восхождением на гору. Но лезть в гору сложней, чем спускаться. И многие сдаются так и не добравшись до вершины. Это верно в любом деле.

А что если спускаться с горы? Главная идея в том, чтобы сначала получить результат, а затем разобрать детально почему работает именно так. Т.е. это классический подход детских радиокружков. Он даёт возможность получить ощущение победы и успеха, которые в свою очередь стимулируют желание изучать электронику дальше. Понимаешь, очень сомнительная польза в изучении одной теории. Надо обязательно практиковаться, так как не все из теории 100% ложится на практику.

Есть такая старая инженерная шутка гласит: "Раз ты хорош в математике, то тебе надо пойти в электронику". Типичная чушь. Электроника -- это творчество, новизна идей, практика. И не обязательно впадать в дебри теоритический расчетов, чтобы создавать электронные устройства. Ты вполне можешь освоить необходимые знания самостоятельно. А математику подтянешь в процессе творчества.

Главное -- это понять основной принцип, и только потом тонкости. Такой подход просто переворачивает мир самостоятельного изучения. Он не нов. Так рисуют художники: сначала набросок, затем детализация. Так проектируют различные большие системы и т.д. Такой подход похож на "метод тыка", но только если не искать ответа, а тупо повторять одно и тоже действие.

Понравилось устройство? Собирай, разбирайся почему оно сделано именно так и какие идеи заложены в его конструкцию: почему именно эти детали используются, почему именно так соединены, какие принципы используются? А можно ли что-нибудь улучшить или просто заменить какую-нибудь деталь?

Конструирование -- это творчество, но ему можно научиться. Для это надо только выполнять простые действия: читать, повторять чужие устройства, обдумывать результат, наслаждаться процессом, быть смелым и уверенным в себе.

Математика в электронике

В радиолюбительском конструировании считать несобственные интегралы вряд ли придётся, но знание закона Ома, правил Кирхгофа, формул делителя тока/напряжения , владение комплексной арифметикой и тригонометрией может пригодиться. Это азы азов. Хочешь уметь больше - люби математику и физику. Это не только полезно, но и чрезвычайно занимательно. Конечно, это не обязательно. Можно делать достаточно крутые устройства вообще ничего этого не зная. Только это будут устройства, придуманные кем-то другим.

Когда я, после очень длительного перерыва, понял, что электроника снова меня зовёт и манит в ряды радиолюбителей, то сразу стало ясно, что мои знания давно уже улетучились, а доступность компонентов и технологий стала шире. Что я стал делать? Путь был только один — признать себя полным нолём и стартовать из ничего: знакомых опытных электронщиков нет, какой-либо программы самообучения тоже нет, форумы я отбросил потому, что они представляют собой свалку информации и отнимают много времени (какой-то вопрос можно там узнать вкратце, но получить цельные знания очень сложно — там все такие важные, что лопнуть можно!)

И тогда япошел самым старым и простым путём: через книги. В хороших книгах тематика обсуждается наиболее полно и нет пустой болтовни. Конечно, в книгах есть и ошибки, и косноязычие. Просто надо знать какие книги читать и в каком порядке. После прочтения хорошо написанных книг и результат будет отличным.

Мой совет прост, но полезен — читайте книги и журналы. Я, к примеру, хочу не только повторять чужие схемы, а уметь конструировать свои. Создавать -- это интересно и весело. Именно таким должно быть моё хобби: интересным и занимательным. Да и ваше тоже.

Какие книги помогут освить электронику

Много времени я провел выискивая подходящие книги. И понял, что надо сказать спасибо СССР. Такой массив полезных книг после него остался! СССР можно ругать, можно хвалить. Смотря за что. Так вот за книги и журналы для радиолюбителей и школьников надо благодарить. Тиражи бешеные, авторы отборные. До сих пор можно найти книги для новичков, которые дадут фору всем современным. Поэтому есть смысл пройтись по букинистам и поспрашивать (да и скачать все можно).

  1. Климчевский Ч. - Азбука радиолюбителя.
  2. Эймишен. Электроника? Нет ничего проще.
  3. Б.С.Иванов. Осциллограф - ваш помощник (как работать с осциллографом)
  4. Хабловски. И. Электроника в вопросах и ответах
  5. Никулин, Повный. Энциклопедия начинающего радиолюбителя
  6. Ревич. Занимательная электроника
  7. Шишков. Первые шаги в радиоэлектронике
  8. Колдунов. Радиолюбительская азбука
  9. Бессонов В.В. Электроника для начинающих и не только
  10. В. Новопольский - Работа с осциллографом

Это мой список книг для самых "маленьких". Обязательно следует пролистывать и журналы Радио с 70х по 90е гг. После этого можно уже читать:

  1. Гендин. Советы по конструированию
  2. Кауфман, Сидман. Практическое руководство по расчетам схем в электронике
  3. Волович Г. Схемотехника аналоговых и аналого-цифровых электронных устройств
  4. Титце, Шенк. Полупроводниковая схемотехника. 12-е изд.
  5. Шустов М. А. Практическая схемотехника.
  6. Гаврилов С.А.-Полупроводниковые схемы. Секреты разработчика
  7. Барнс. Эллектронное конструирование
  8. Миловзоров. Элементы информационных систем
  9. Ревич. Практическое программирвоание МК AVR
  10. Белов. Самоучитель по Микропроцессорной технике
  11. Суэмацу. Микрокомпьютерные системы управления. Первое знакомство
  12. Ю.Сато. Обработка сигналов
  13. Д.Харрис, С.Харрис. Цифровая схемотехника и архитектура компьютера
  14. Янсен. Курс цифровой электроники

Думаю, эти книги ответят на множество вопросов. Более специальные знания можно почерпнуть из более специальных книг: по аудиоусилителям, по микроконтроллерам и т.д.

И конечно же нужно практиковаться. Без паяльника вся теория в прорубь. Это как водить машину в голове.
Кстати, более подробные обзоры некоторых книг из списка выше можешь .

Что еще следует делать?

Учиться читать схемы устройств! Учиться анализировать схему и стараться понять как работает устройство. Этот навык приходит только с тренировкой. Начинать надо с самых простых схем, постепенно наращивая сложность. Благодаря этому ты не только изучишь обозначения радиоэлементов на схемах, но и научишься их анализировать, а также запомнишь ходовые приемы и решения.

Дорого ли заниматься электроникой

К сожалению, деньги потребуются! Радиолюбительство не самое дешевое хобби и потребуется некоторый минимум фин. вложений. Но начать можно практически без вложений: книги можно доставать буккросингах или брать в библиотеках, читать в электронном виде, приборы можно купить для начала самые простые, а более продвинутые купить тогда, когда будет не хватать возможностей простых приборов.

Сейчас купить можно всё: осциллограф, генератор, источник питания и другие измерительные приборы для домашней лаборатории — всё это следует со временем приобрести (или сделать самому то, что в домашних условиях сделать можно)

Но когда ты маленький и начинающий можно обойтись пальником и деталями из сломанный техники, которую кто-нибудь выкидывает или просто валялась дома давно без дела. Главное иметь желание! А остальное приложится.

Что делать, если не получается?

Продолжать! Редко что-то получается хорошо с первого раза. А бывает так, что результатов нет и нет -- будто упёрся в невидимый барьер. Кто-то этот барьер преодолевает за полгода-год, а другие только через несколько лет.

Если сталкиваешься со сложностями, то не надо рвать волосы и думать о себе, что ты самый тупой на свете, так как Вася понимает, что такое обратный ток коллектора, а вот ты все никак не можешь понять почему он играет роль. Может быть Вася просто надувает щёки, а сам ни бум-бум =)

Качествои и скорость самообучения зависят не только от личных способностей, но и от окружения. Вот тут надо радоваться существованию форумов. На них все таки встречаются (и часто) вежливые профессионалы, готовые с радостью учить новичков. (Есть еще всякие грымзы, но считаю таких людей потерянной веткой эволюции. Мне их жаль. загибать пальцы — это понты самого низкого уровня. Лучше просто молчать)

Полезные программы

Обязательно следует ознакомиться с САПРами: рисовалками принципиальных схем и печатных плат, симуляторами, — полезные и удобные программы (Eagele, SprintLayout и т.д.). Я выделил на сайте целый раздел под них. Время от времени там будут появляться материалы по работе с программами, которые использую сам.

И самое главное — испытывайте радость творчества от радиолюбительства! На мой взгляд к любому делу следует относится как к игре. Тогда оно будет и занимательным и познавательным.

О практике

Обычно каждый радиолюбитель всегда знает какое устройство хочет сделать. Но если ты еще не определился, то я посоветую собрать источник питания, разобраться для чего нужна и как работает каждая его часть. Затем можно обратить внимание на усилители. И собрать, например, аудиоусилитель.

Можно поэксперементировать с самыми простыми электрическими цепями: делителем напряжения, диодным выпрямителем, фильтрами ВЧ/СЧ/НЧ, транзистором и однотранзисторными каскадами, простейшими цифровыми схемами, конденсаторами, индуктивностями. Всё это пригодится в дальнейшем, а знание таких основных цепей и компонентов придаст уверенность в своих силах.

Когда шаг за шагом идешь от простейшего к более сложному, тогда знания порционно накладываются друг на друга и легче освоить более сложные темы. Но иногда не ясно из каких кирпичиков и как следует сложить здание. Поэтому иногда следует действовать наоборот: поставить цель собрать какое-нибудь устройство и освоить множество вопросов при его сборке.

Да прибует с тобой Ом, Ампер и Вольт:

Давайте для начала рассмотрим обычную пальчиковую батарейку. На ее этикетке вы можете прочитать, что она имеет напряжение 1,5 вольта… так ли это на самом деле? Давайте проверим!

Для того чтобы это выяснить нам понадобится цифровой мультиметр. Для начала стоит приобрести недорогую модель, обязательно с ручным выбором диапазона измерения.

  • черный провод мультиметра необходимо подключить к разъему „COM”;
  • красный провод необходимо подключить к разъему для измерения напряжения „V” (Внимание ! Подключение проводов иным образом может привести к повреждению прибора!)
  • мы ожидаем получить значение около 1,5 вольта, поэтому ручку мультиметра устанавливаем на значение «20» в области DCV или V- (буква V с тире, означает постоянный ток) и если это необходимо, включаем прибор (некоторые модели включаются при повороте ручки), при этом мультиметр должен показать 0;
  • металлическими наконечниками щупов мультиметра касаемся выводов батарейки… но какой куда? Попробуйте обе комбинации – результат должен быть один и тот же, только в одном случае будет отражаться положительное число, а в другом случае то же число, но только со знаком минус.
  • считываем значение – в нашем случае напряжение новой батарейки составляет 1,62 вольт;
  • выключаем мультиметр.

ВНИМАНИЕ! Во время проведения измерений, чтобы не повредить мультиметр, всегда выбирайте диапазон измерения большее максимально ожидаемого результата! Если мы не знаем чего ожидать, то безопаснее будет выбрать более высокий диапазон и в дальнейшем уменьшить его для получения максимально точного результата.

Поскольку мы научились измерять напряжение мультиметром, то давайте померим и другие батарейки/аккумуляторы! Мы для тестирования выбрали:

  • заряженный аккумулятор 1,2 вольта, размер АА — мультиметр показал 1,34 вольт.
  • частично разряженный аккумулятор Ni-Mh (используемый в камере) — мультиметр наш показал 1,25 вольт.

Далее нам понадобятся 4 батарейки формата ААА, кассета для 4 батареек и макетная плата (что такое макетная плата и как ею пользоваться можно узнать ). Установим наши 4 батарейки в кассету. Затем концы проводов кассеты вставим в отверстия макетной платы так, как это показано на следующих фото:

Следующим шагом будет подготовка соединительных проводов (перемычек), их еще называют джамперами. Это такие провода, которые будут объединять отдельные радиодетали между собой на макетной плате.

Конечно же, какое-то количество джамперов входит в комплект вместе с макетной платой. Но если их у вас нет, то не беда, их можно сделать самим.

Для этого нам понадобится: компьютерный кабель, так называемая витая пара, ножницы или острый нож.

Для начала необходимо снять изоляцию с кабеля. Внутри кабеля мы видим скрученные между собой тонкие провода. Следующим шагом будет нарезка проводов необходимой длинны. И последнее что необходимо – это зачистить с обоих концов изоляцию примерно на 1 см.

Теперь мы на макетной плате соберем нашу первую схему. Возьмем резистор 22кОм с цветными полосками (красный-красный-оранжевый-золотой). А какое реальное сопротивление данного резистора? Давайте проверим это мультиметром!

  • красный провод подключите к разъему » Ω «
  • мы ожидаем получить значение около 22кОм, поэтому установите регулятор на значение 200к в секции Ω и, если это необходимо, включите прибор (некоторые модели включаются при повороте диска), который до измерения должен показать 0;
  • металлическими наконечниками щупов мультиметра коснитесь ножек резистора;
  • смотрим значение – у нас сопротивление составляет 22,1кОм;
  • выключаем мультиметр.

Как и в случае с батарейкой, значение, измеренное мультиметром, отличается от номинального значения тестируемого элемента (резистора). Напомним, что золотая полоска на резисторе (значение цветных полосок смотрите в этой ) означает допуск 5%, то есть 22кОм x 5% = 1,1кОм

Поэтому диапазон отклонения сопротивления для нашего резистора может быть в пределах от 20,9кОм до 23,1кОм.

Теперь соединим на макетной плате кассету с батарейками и резистор так, как показано на картинке ниже:

В электронике чтобы изобразить связи между отдельными элементами используют принципиальные схемы. В нашем случае схема будет выглядеть следующим образом:

Символ обозначенный как B1 — это наши батарейки, обеспечивающие общее напряжение: 4 х 1,5В = 6В. наш резистор на 22кОм обозначен символом R1.
В соответствии с :

I = U / R
I = 6В / 22кОм
I = 6В / 22000 Ом
I = 0,000273 А
I = 273мкА

Теоретически, ток в схеме должен составлять 273мкА. Вспомним, что сопротивление резистора может отличаться в пределах 5% (у нас это 22,1кОм). Напряжение, поступающее от батареек, также может отличаться от номинальных 6 вольт, и оно будет зависеть от степени разряда этих батареек.

Давайте посмотрим, какое реальное напряжения идет от 4 батареек по 1,5 В.

  • черный провод подключите к разъему „COM”;
  • красный провод подключите к разъему „V”
  • мы ожидаем получить значение около 6В, поэтому установите регулятор на значение «20» в секции DCV или V-, если это необходимо, включите прибор, который должен изначально показать 0;
  • металлическими наконечниками щупов мультиметра прикоснитесь проводов выходящих из кассеты батареек;
  • смотрим результат – у нас напряжение составляет 6,5 В;
  • выключаем мультиметр.

Подставим полученные значения в формулу, вытекающую из закона Ома:

I = U / R
I = 6,5 В / 22,1кОм
I = 6,5 В / 22100 Ом
I = 0,000294 А
I = 294мкА

Для подтверждения достоверности наших расчетов, нам не остается ничего другого, кроме как измерить фактический ток мультиметром.

  • черный провод подсоедините к разъему „COM”;
  • красный провод подключите к разъему „mA”;
  • мы ожидаем получить значение 294 мкА, поэтому устанавливаем регулятор на значение 2000µ в секции A-, если это необходимо, включите прибор, который должен изначально показать 0;
  • для измерения тока, необходимо мультиметр подключить в разрыв цепи. Металлическими наконечниками щупов мультиметра касаемся, ножки джемпера соединяющий положительный полюс батареи и ножки резистора;
  • считываем значение – у нас сила тока составляет 294 мкA;
  • выключаем мультиметр.

И под конец данного урока приведем схему, отражающую различия подключения мультиметра при измерении напряжения и силы тока:

Нетривиально занятие, скажу я вам. :) Дабы облегчить усвоение материала я вводил ряд упрощений. Совершенно бредовых и антинаучных, но более менее наглядно показывающих суть процесса. Методика «канализационной электрики» успешно показала себя в полевых испытаниях, а посему будет использована и тут. Хочу лишь обратить внимание, что это всего лишь наглядное упрощение, справедливое для общего случая и конкретного момента, чтобы понять суть и к реальной физике процесса не имеющая практически никакого отношения. Зачем оно тогда? А чтобы проще запомнить, что к чему и не путать напряжение и ток и понимать как на все это влияет сопротивление, а то я от студентов такого наслушался…

Ток, напряжение, сопротивление.

Если сравнить электроцепь с канализацией, то источник питания это сливной бачок, текущая вода – ток, давление воды-напряжение, а несущееся по трубам говнище – полезная нагрузка. Чем выше сливной бачок, тем больше потенциальная энергия воды, находящейся в нем, и тем сильней будет напор-ток проходящий по трубам, а значит больше дерьма-нагрузки он сможет смыть.
Кроме текущего дерьма, потоку препятствует трение о стенки труб, образуя потери. Чем толще трубы тем меньше потери (гы гы гы теперь ты помнимаешь почему аудиофилы для своей мощной акустики берут провода потолще;)).
Итак, подведем итог. Электроцепь содержит источник, создающий между своими полюсами разность потенциалов – напряжение. Под действием этого напряжения ток устремляется через нагрузку туда, где потенциал ниже. Движению тока препятствует сопротивление, образуемое из полезной нагрузки и потерь. В результате напряжение-давление ослабевает тем сильней, чем больше сопротивление. Ну, а теперь, положим нашу канализацию в математическое русло.

Закон Ома

Для примера просчитаем простейшую цепь, состоящую из трех сопротивлений и одного источника. Схему я буду рисовать не так как принято в учебниках по ТОЭ, а ближе к реальной принципиальной схеме, где принимают точку нулевого потенциала – корпус, обычно равный минусу питания, а плюс считают точкой с потенциалом равным напряжению питания. Для начала считаем, что напряжение и сопротивления у нас известны, а значит нам нужно найти ток. Сложим все сопротивления (о правилах сложения сопротивлений читай на врезке), дабы получить общую нагрузку и поделим напряжение на получившийся результат – ток найден! А теперь посмотрим как распределяется напряжение на каждом из сопротивлений. Выворачиваем закон Ома наизнанку и начинаем вычислять. U=I*R поскольку ток в цепи един для всех последовательных сопротивлений, то он будет постоянен, а вот сопротивления разные. Итогом стало то, что Uисточника = U1 +U2 +U3 . Исходя из этого принципа можно, например, соединить последовательно 50 лампочек рассчитанных на 4.5 вольта и спокойно запитать от розетки в 220 вольт – ни одна лампочка не перегорит. А что будет если в эту связку, в серединку, всандалить одно здоровенное сопротивление, скажем на КилоОм, а два других взять поменьше – на один Ом? А из расчетов станет ясно, что почти все напряжение выпадет на этом большом сопротивлении.

Закон Кирхгоффа.

Согласно этому закону сумма токов вошедших и вышедших из узела равна нулю, причем токи втекающие в узел принято обозначать с плюсом, а вытекающие с минусом. По аналогии с нашей канализацией – вода из одной мощной трубы разбегается по кучи мелких. Данное правило позволяет вычислять примерный потребляемый ток, что иногда бывает просто необходимо при расчете принципиальных схем.

Мощность и потери
Мощность которая расходуется в цепи выражается как произведение напряжения на ток.
Р = U * I
Потому чем больше ток или напряжение, тем больше мощность. Т.к. резистор (или провода) не выполняет какой либо полезной нагрузки, то мощность, выпадающая него это потери в чистом виде. В данном случае мощность можно через закон ома выразить так:
P= R * I 2

Как видишь, увеличение сопротивления вызывает увеличение мощности расходующееся на потери, а если возрастает ток, то потери увеличиваются в квадратичной зависимости. В резисторе вся моща уходит в нагрев. По этой же причине, кстати, аккумуляторы нагреваются при работе – у них тоже есть внутреннее сопротивление, на котором и происходит рассеяние части энергии.
Вот для чего аудиофилы для своих сверхмощных звуковых систем берут толстенные медные провода с минимальным сопротивлением, чтобы снизить потери мощности, так как токи там бывают немалые.

Есть закон полного тока в цепи, правда на практике мне он никогда не пригождался, но знать его не помешает, поэтому утяни из сети какой либо учебник по ТОЭ (теоретические основы электротехники) лучше для средних учебных заведений, там все гораздо проще и понятней описано – без ухода в высшую математику.

Этот видеокурс придется по вкусу всем любителям попаять. Радиоэлектроника научит вас основам, которые в дальнейшем позволят собрать любую схему и прибор.

Урок №1. Напряжение и ток. В чем разница?

Первое видео курса поведает о самых-самых базовых понятиях: токе и напряжении. Вы узнаете, зачем о них нужно знать и чем они отличаются.

Урок №2. Сопротивление. Закон Ома. Резистор.

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна сопротивлению этого участка. Если это предложение ни о чем вам не говорит, то стоит посмотреть следующее видео этого курса.

Урок №3. Параллельное и последовательное подключение

Не знаете, чем отличается параллельное и последовательное подключение элементов схемы? Как рассчитать необходимое сопротивление и как подключить резисторы? Обо всем этом вы узнаете из очередного видео.

Урок №4. Переменное напряжение. Частота.

Частота, переменное напряжение и ток. Что это, для чего нужно знать и как с ними работать – все это в новом уроке видеокурса.

Урок №5. Конденсатор

Конденсатор – деталь, которая используется очень и очень часто. Однако не все понимают для чего его используют. Этот урок расскажет об этом подробно и просто.

Урок №6. Конденсатор (продолжение)

Продолжение урока об электрическом конденсаторе. Для чего он нужен и с чем его паять.

Урок №7. Диод. Стабилитрон.

Диоды – тема нового видео. Как они устроены, как работают и для чего их используют.

Урок №8. Катушка индуктивности

Видеоурок наглядно покажет и расскажет, что такое катушка индуктивности. Вы ознакомитесь с ее свойствами и случаями использования.

Урок №9. Выпрямитель. Диодный мост.

О диодах и их устройстве вы теперь знаете, а вот что такое диодный мост, расскажет это видео. Также вы поймете для чего в выпрямителе используют конденсатор и диод.

Урок №10. Свободная энергия. Самозапитка???

Бесплатная энергия и способы ее получения, самозапитка, вечный двигатель, гравитационный и антигравитационный, магнитный и антимагнитный двигатель – то, о чем вы узнаете из видео.