Радиотехнические измерения. Учебник для профес

Допущено

Министерством связи СССР в качестве учебника для техникумов связи специальностей 0701, 0706

МОСКВА «СВЯЗЬ» 1980

Кушнир Ф. В. Радиотехнические измерения: Учебник для техникумов связи. Москва: Связь, 1980. - 176 с.

Излагаются основы радиотехнических измерений. Рассматриваются принципы и методы измерений радиотехнических величин, характеризующих параметры сигналов, систем и устройств радиосвязи и радиовещания во всем применяемом диапазоне частот. Приводятся сведения о построении структурных схем измерительных приборов, погрешностях и способах их учета и уменьшения влияния. Особое внимание уделено приборам цифровым и выполненным на микросхемах. Приведены краткие справочные данные о многих измерительных приборах.

Предназначается для учащихся техникумов связи, обучающихся по специальностям «Радиосвязь и радиовещание», «Телевизионная техника и радиорелейная связь».

Оглавление книги Радиотехнические измерения
Предисловие

Введение
В.1. Назначение и особенности радиотехнических измерений
В.2. Содержание и задачи предмета
В.3. Основные метрологические понятия
В.4. Погрешности измерений
В.5. Классификация радиоизмерительных приборов
Контрольные вопросы

Глава 1. Измерение тока и напряжения
1.1. Основные соотношения
1.2. Измерение тока
Общие сведения
Термоамперметры
Выпрямительные амперметры
Измерение больших токов
Косвенные измерения тока
1.3. Измерение напряжения
Общие сведения
Электронные вольтметры переменного напряжения
Импульсные вольтметры
Электронные вольтметры постоянного напряжения
Цифровые вольтметры
Погрешность измерений
Контрольные вопросы

Глава 2. Генераторы измерительных сигналов
2.1. Назначение. Классификация. Основные технические требования
2.2. Генераторы сигналов низкочастотные
2.3. Генераторы сигналов высокочастотные
2.4. Генераторы импульсных сигналов
2.5. Генераторы шумовых сигналов
Контрольные вопросы

Глава 3. Электронные осциллографы
3.1. Назначение. Классификация. Основные технические требования
3.2. Получение осциллограмм. Развертка изображения
3.3. Структурная схема осциллографа
3.4. Импульсные осциллографы
3.5. Измерение амплитудно-частотных характеристик
Контрольные вопросы

Глава 4. Измерение параметров компонентов цепей с сосредоточенными постоянными
4.1. Основные соотношения
4.2. Мостовой метод измерения параметров
4.3. Резонансный метод измерения
4.4. Измерение сопротивления заземления
Контрольные вопросы

Глава 5. Измерение параметров элементов и трактов с распределенными постоянными
5.1. Основные понятия и соотношения
5.2. Измерительная линия
5.3. Измерение коэффициента стоячей волны напряжения
5.4. Измерение сопротивления нагрузки
5 5. Понятие об автоматических измерительных приборах для измерения КСВН

Глава 6. Измерение мощности
6.1. Основные соотношения и методы измерений
6.2. Измерение поглощаемой мощности
6.3. Измерение проходящей мощности
Контрольные вопросы

Глава 7. Измерение частоты и интервалов времени
7.1. Общие сведения. Методы измерения
7.2. Метод сравнения
7.3. Метод дискретного счета
7.4. Резонансный метод
7.5. Понятие о мерах частоты и времени
Контрольные вопросы

Глава 8. Измерение фазового сдвига
8.1. Основные сведения. Методы измерения
8.2. Осциллографический метод
8.3. Компенсационный метод
8.4. Метод преобразования фазового сдвига в импульсы тока
8.5. Метод фазового детектора
8.6. Метод дискретного счета
8.7. Измерение фазового сдвига с преобразованием частоты
8.8. Понятие об измерении группового времени запаздывания
8.9. Фазовращатели
Контрольные вопросы

Глава 9. Измерение нелинейных искажений
9.1. Определения. Методы измерения
9.2. Гармонический метод
9.3. Комбинационный метод
Контрольные вопросы

Глава 10. Измерение параметров модулированных сигналов
10.1. Общие сведения
10.2. Измерение параметров амплитудномодулированного сигнала
10.3. Измерение параметров частотномодулированного сигнала
10.4. Измерение параметров импульсномодулированного сигнала
Контрольные вопросы

Глава 11. Измерение напряженности электромагнитного поля и радиопомех
11.1. Основные соотношения
11.2. Измерительные приемники и измерители напряженности поля
11.3. Измерители радиопомех
Контрольные вопросы
Список литературы

ВВЕДЕНИЕ

B.I. НАЗНАЧЕНИЕ И ОСОБЕННОСТИ РАДИОТЕХНИЧЕСКИХ ИЗМЕРЕНИЙ
Измерением называется физический опыт, в результате которого находят численное значение измеряемой физической величины. Измерения являются важнейшим этапом деятельности работников всех отраслей науки и техники. Измерительная аппаратура является основным оборудованием всех научно-исследовательских институтов, лабораторий, неотъемлемой частью оснастки любого технологического процесса, главным полезным грузом искусственных спутников Земли и космических станций. Уровень развития измерительной техники является одним из важнейших показателей научно-технического прогресса.

Измерения играют определяющую роль и в технике связи. Эксплуатация любых систем радиосвязи, радиовещания и телевидения невозможна без непрерывной информации о режимах работающих устройств, параметрах сигналов и условиях их передачи или приема. Эту информацию получают в результате измерений соответствующих величин.

Профилактический или аварийный ремонт радиоаппаратуры и нахождение неисправностей также невозможны без измерений. Для этих целей измеряют электрические параметры элементов (конденсаторов, резисторов и т. д.), проверяют режимы блоков, узлов и всей установки, снимают различные характеристики. Полученные количественные значения измеренных величин сопоставляют с приведенными в описаниях, спецификациях и на схемах, определяют причину и место неисправности и устраняют ее.

Производство радиоаппаратуры и особенно ее разработка сопровождаются непрерывными измерениями, так как рассчитанная схема всегда нуждается в практической проверке, а ее элементы в соответствующей подгонке. Приемо-сдаточные испытания различных радиотехнических объектов в основном представляют собой тщательно выполняемые измерения.

Измерения выполняются с помощью специальных технических средств, предназначенных для этой цели, которые называются средствами измерений.

В технике радиосвязи, радиовещания и телевидения все виды измерений можно разбить на измерения:
- параметров сигналов - тока, напряжения, мощности, частоты, модуляции, формы, фазового сдвига, отношения сигнал/шум, напряженности электромагнитного поля; параметров радиотехнических устройств - усиления, ослабления, отражения, согласования, искажения сигнала, входного (выходного) сопротивления;
- характеристик узлов и аппаратуры - частотных, амплитудных, модуляционных, временных;
- параметров элементов - сопротивлений резисторов, емкостей конденсаторов, индуктивностей и взаимоиндуктивностей одиночных и связанных катушек индуктивности и трансформаторов, полных сопротивлений двухполюсников и поверку средств измерений.

Измерения некоторых из перечисленных величин встречаются в курсе электрических измерений, но там они выполняются на постоянном токе или токе промышленной частоты (50 или 400 Гц). Радиотехнические измерения выполняются на переменном токе во всем диапазоне частот, используемом в радиотехнике, т. е. от долей терца до десятков гигагерц.

Широкий диапазон частот, большие пределы значений измеряемых величин, многообразие условий, в которых выполняются измерения, являются характерными особенностями радиотехнических измерений. Вследствие этих особенностей применяются различные методы и способы измерений и значительное число различных средств измерений.

Измерения, где бы и кем бы они не выполнялись, всегда должны быть достоверными, а их результаты - сопоставимыми. Единство измерений и единообразие средств измерений в стране обеспечивает Метрологическая служба СССР. В Министерстве связи СССР, как и в других министерствах, имеется ведомственная метрологическая служба. Основные задачи предприятий и организаций по метрологическому обеспечению определяются приказами министра связи СССР.

Метрологическую службу СССР возглавляет Государственный комитет СССР по стандартам. В его подчинении находятся научно-исследовательские институты и сеть республиканских и областных лабораторий государственного надзора. Основоположником отечественной метрологической службы был великий русский ученый Дмитрий Иванович Менделеев. В 1893 г. он возглавил и до конца жизни руководил организованной по его инициативе Главной палатой мер и весов - ныне научно-производственное объединение «Всесоюзный научно-исследовательский институт метрологии им. Д. И. Менделеева» (ВНИИМ), г. Ленинград.

Промышленность выпускает большое (количество первоклассных радиоизмерительных приборов для обеспечения растущих потребностей хозяйства связи и других областей народного хозяйства в точных измерениях. В этих приборах широко применяются полупроводниковые приборы, микросхемы и интегральные схемы, новые принципы конструирования. На этой базе интенсивно обновляется парк радиоизмерительной аппаратуры общего применения. Однако большое число приборов, снятых с производства, находится и еще длительное время будет находиться в эксплуатации.

Основными направлениями развития радиоизмерительной аппаратуры для Единой автоматизированной сети связи СССР, радиовещания и телевидения в настоящее время являются: автоматизация и убыстрение процессов измерения с одновременным повышением точности; выполнение измерений без перерыва связи или передачи радио- и телевизионных программ; улучшение технических и эксплуатационных характеристик приборов за счет внедрения новой элементной базы и повышение их надежности. Реализация этих направлений обеспечивает повышение эффективности и качества измерений, а вместе с тем, эффективности к качества радиосвязи, радиовещания и телевидения.

Кушнир Ф. В. Радиотехнические измерения . Издательство "Связь", Москва, 1980

Введение
Глава первая. Основные сведения о радиотехнических измерениях
1. Особенности радиотехнических измерений
2. Единицы измерений
3. Погрешности измерений
4. Классификация радиоизмерительных приборов и система их обозначений
Глава вторая. Измерение постоянных токов и напряжений
5. Общие сведения
6. Магнитоэлектрический индикатор
7. Измерение постоянного тока
8. Измерение постоянного напряжения
9. Ламповые вольтметры постоянного тока
Глава третья. Измерение электрических сопротивлений
10. Электрические пробники
11. Измерение сопротивлений
12. Измерение сопротивлений методом непосредственного отсчета
13. Ламповые омметры
14. Мостовой метод измерения сопротивлений
Глава четвертая. Измерение переменных токов и напряжений
15. Общие сведения
16. Измерение переменного тока высокой частоты
17. Детекторные приборы
18. Комбинированные приборы
19. Ламповые вольтметры переменного тока
Глава пятая. Испытания радиоламп и полупроводниковых приборов
20. Способы испытаний радиоламп
21. Универсальный испытатель ламп Л1-3 (МИЛУ-1)
22. Испытания полупроводниковых диодов
23. Испытания транзисторов
24. Испытатели параметров транзисторов
Глава шестая. Измерительные генераторы
25. Классификация и основные узлы
26. Возбудители измерительных генераторов
27. Звуковые генераторы
28. Высокочастотные генераторы
29. Импульсные генераторы
Глава седьмая. Осциллографы
30. Электроннолучевая трубка
31. Высоковольтный выпрямитель и блок развертки
32. Полная блок схема осциллографа
33. Электронный осциллограф Cl-8
34. Наблюдение импульсных процессов
35. Импульсный осциллограф С1-20 общего применения
36. Двухлучевые осциллографы
37. Применение электронных осциллографов
38. Измерение частотных характеристик
Глава восьмая. Измерение параметров катушек индуктивности и конденсаторов
39. Общие сведения
40. Метод вольтметра-амперметра
41. Метод моста
42. Резонансный метод
Глава девятая. Измерение частоты
43. Общие сведения
44. Непосредственный метод измерения частоты
45. Измерение частоты методом сравнения
46. Приборы, основанные на методе сравнения частот
47. Резонансный метод измерения частоты
Глава десятая. Измерение коэффициента модуляции
48. Осциллографический способ измерения
49. Измерение с помощью амперметра или вольтметра
50. Измерение девиации частоты
Глава одиннадцатая. Измерение нелинейных искажений
51. Общие сведения
52. Анализаторы спектра
53. Измерители нелинейных искажений
Глава двенадацатая. Измерения на сверхвысоких частотах
54. Особенности измерений на сверхвысоких частотах
55. Измерение мощности
56. Измерение частоты (длины волны)
57. Измерительные генераторы сверхвысоких частот
58. Измерительные линии
Глава тринадцатая. Измерение напряженности поля и помех
59. Общие сведения
60. Индикаторы поля
61. Измерители напряженности поля
62. Измерение помех
Литература

АНАЛОГОВЫЕ ЭЛЕКТРОМЕХАНИЧЕСКИЕ ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Общие сведения

В аналоговых электромеханических измерительных приборах непосредственной оценки электромагнитная энергия, подведенная к прибору непосредственно из измеряемой цепи, преобразуется в механическую энергию углового перемещения подвижной части относительно неподвижной.

Электромеханические измерительные приборы (ЭИП) применяют для измерения тока, напряжения, мощности, сопротивлений и других электрических величин на постоянном и переменном токах преимущественно промышленной частоты 50 Гц. Эти приборы относят к приборам прямого действия. Они состоят из электрического преобразователя (измерительной цепи), электромеханического преобразователя (измерительного механизма), отсчетного устройства (рис. 5.1).

Рис. 5.1. Структурная схема аналогового ЭИП

Измерительная цепь . Она обеспечивает преобразование электрической измеряемой величины X в некоторую промежуточную электрическую величину Y (ток или напряжение), функционально связанную с измеряемой величиной X. Величина Y непосредственно воздействует на измерительный механизм (ИМ).

По характеру преобразования измерительная цепь может представлять собой совокупность элементов (резисторов, конденсаторов, выпрямителей, термопар и др.). Различные измерительные цепи позволяют использовать один и тот же ИМ при измерениях разнородных величин, напряжения, тока, сопротивления, меняющихся в широких пределах.

Измерительный механизм . Являясь основной частью конструкции прибора, он преобразует электромагнитную энергию в механическую энергию, необходимую для угла отклонения а его подвижной части относительно неподвижной, т. е.

α = f(Y) = F(X).

Подвижная часть ИМ представляет собой механическую систему с одной степенью свободы относительно оси вращения. Момент количества движения равен сумме моментов, действующих на подвижную часть.

Дифференциальное уравнение моментов, описывающее работу ИМ, имеет вид

J(d 2 α/dt 2) = ΣM , (5.1)

где J - момент инерции подвижной части ИМ; α - угол отклонения подвижной части; d 2 α/dt 2 - угловое ускорение.

На подвижную часть ИМ при ее движении воздействуют:

вращающий момент М , определяемый для всех ЭИП скоростью изменения энергии электромагнитного поля w э, сосредоточенной в механизме, по углу отклонения α подвижной части. Вращающий момент является некоторой функцией измеряемой величины X, а следовательно, Y (тока, напряжения, произведения токов) и α:



М = (∂w э /∂α) = f (α) Y n , (5.2)

противодействующий момент М α , создаваемый механическим путем с помощью спиральных пружин, растяжек, подводящих проводов и пропорциональный углу отклонения α подвижной части:

М α = - W α, (5,3)

где W - удельный противодействующий момент на единицу угла закручивания пружины (зависит от материала пружины и ее геометрических размеров);

момент успокоения М усп, т. е. момент сил сопротивления движению, всегда направленный навстречу движению и пропорциональный угловой скорости отклонения:

М усп =- Р (d α/d t), (5.4)

где Р - коэффициент успокоения (демпфирования).

Подставив (5.2) - (5.4) в (5.1), получим дифференциальное уравнение отклонения подвижной части механизма:

J(d 2 α/dt 2) = М + М α + М усп, (5.5)

J(d 2 α/dt 2) + Р (d α/d t) + W α = M . (5.6)

Установившееся отклонение подвижной части ИМ определяется равенством вращающего и противодействующего моментов, т. е. М = М α , в том случае, если два первых члена левой части дифференциального уравнения (5.6) равны нулю. Подставив в равенство М = М α аналитические выражения моментов, получим уравнение шкалы прибора, показывающее зависимость угла отклонения а подвижной части от значения измеряемой величины и параметров ИМ.

В зависимости от способа преобразования электромагнитной энергии в механическое угловое перемещение подвижной части ИМ электромеханические приборы делят на магнитоэлектрические, электродинамические, ферродинамические, электромагнитные и др.

Отсчетное устройство аналоговых ЭИП . Чаще всего оно состоит из указателя, жестко связанного с подвижной частью ИМ, и неподвижной шкалы. Указатели бывают стрелочные (механические) и световые. Шкала представляет собой совокупность отметок, которые расположены вдоль какой-либо линии и изображают ряд последовательных чисел, соответствующих значениям измеряемой величины. Отметки имеют вид штрихов, черточек, точек и т. п.



По начертанию шкалы бывают прямолинейные (горизонтальные или вертикальные), дуговые (при дуге до 180° включительно) и круговые (при дуге более 180°).

По характеру расположения отметок различают шкалы равномерные и неравномерные, односторонние относительно нуля, двусторонние и безнулевые. Шкалы градуируют либо в единицах измеряемой величины (именованная шкала), либо в делениях (неименованная шкала). Числовое значение измеряемой величины равно произведению числа делений, прочитанных по шкале, на цену (постоянную) прибора. Цена деления- значение измеряемой величины, соответствующее одному делению шкалы.

Так как ЭИП являются приборами прямого действия, то чувствительность прибора S п определяется чувствительностью цепи S ц и чувствительностью измерительного механизма S и:

S п = S ц S и (5.7)

Классы точности аналоговых ЭИП: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0.

Узлы и детали измерительных приборов . Для большинства ЭИП, несмотря на разнообразие ИМ, можно выделить общие узлы и детали - устройства для установки подвижной части ИМ, для создания противодействующего момента, уравновешивания и успокоения

.

Рис. 5.2. Установка подвижной части измерительного механизма

Так как любой измерительный механизм ЭИП состоит из подвижной и неподвижной частей, то для обеспечения свободного перемещения подвижной части последнюю устанавливают на опорах (рис. 5.2,а), растяжках (рис. 5.2,6), подвесе (рис. 5.2,в). При транспортировке подвижную часть ИМ закрепляют неподвижно с помощью арретира.

Устройства для установки подвижной части на опорах представляют собой легкую алюминиевую трубку, в которую запрессовывают керны (стальные отрезки). Концы кернов затачивают и шлифуют на конус с закруглением. Опираются керны на агатовые или корундовые подпятники. При установке подвижной части ИМ на кернах между керном и подпятником возникает трение, что вносит погрешность в показания прибора. В приборах высокого класса точности (лабораторных) для уменьшения трения шкала устанавливается горизонтально, а ось вертикально. При этом нагрузка сосредоточена в основном на нижней опоре.

Устройства для установки подвижной части на растяжках представляют собой две тонкие ленты из бронзового сплава, на которых подвешивается подвижная часть ИМ.

Рис. 5.3. Общие детали подвижной части ИМ на опорах

Их наличие обеспечивает отсутствие трения в опорах, облегчает подвижную систему, повышает виброустойчивость. Растяжки используют для подведения тока к обмотке рамки и создания противодействующего момента.

Устройства для установки подвижной части на подвесах используют в особо чувствительных приборах. Подвижную часть ИМ подвешивают на тонкой металлической (иногда кварцевой) нити. Ток в рамку подвижной части подводят через нить подвеса и специальный безмоментный токоподвод из золота или серебра.

Для создания противодействующего момента в ИМ с установкой подвижной части на опорах (рис. 5.3) используют одну или две плоские спиральные пружины 5 и 6, выполненные из оловянно-цинковой бронзы. Пружины служат также в качестве токоподводов к обмотке рамки подвижной части. Одним концом пружину крепят к оси или полуоси, а другим - к поводку 4 корректора. Корректор, устанавливающий на нуль стрелку 3 невключенного прибора, состоит из винта 9 с эксцентрично расположенным пальцем 8 и вилки 7 с поводком. Винт 9 корректора выводится на переднюю панель корпуса прибора, вращаясь, он движет вилку 7, что вызывает закручивание пружины и соответственно перемещение стрелки 3. Ось 2 заканчивается кернами, опирающимися на подпятники 1.

Для уравновешивания подвижной части служат грузики-противовесы 10.

Рис. 5.4. Схемы магнитоиндукционного (а) и воздушного (б) успокоителей

Измерительный механизм считается уравновешенным, когда центр тяжести подвижной части совпадает с осью вращения. Хорошо уравновешенный измерительный механизм показывает при различных положениях одно и то же значение измеряемой величины.

Для создания необходимого успокоения ИМ снабжают успокоителями, развивающими момент, направленный навстречу движению (время успокоения не более 4 с). В ИМ наиболее часто применяют магнитоиндукционные и воздушные успокоители, реже - жидкостные (когда требуется очень большое успокоение).

Магнитоиндукционный успокоитель (рис. 5.4, о) состоит из постоянного магнита 1 и алюминиевого диска 2, жестко связанного с подвижной частью механизма и свободно перемещающегося в поле постоянного магнита. Успокоение создается за счет взаимодействия токов, индуцированных в диске при его перемещении в магнитном поле постоянного магнита с потоком этого же магнита.

Воздушный успокоитель (рис. 5.4, б) представляет собой камеру /, в которой перемещается легкое алюминиевое крыло (или поршенек) 2, жестко связанное с подвижной частью ИМ. При перемещении воздуха из одной части камеры в другую через зазор (между камерой и крылом) тормозится движение крыла и колебания подвижной части быстро затухают. Воздушные успокоители слабее магнитоиндукционных.


Логометры

Логометры - приборы электромеханической группы, измеряющие отношение двух электрических величин Y 1 и Y 2:

α = F(Y 1 / Y2) n , (5.41)

где n - коэффициент, зависящий от системы ИМ.

Особенность логометров заключается в том, что вращающий М и противодействующий М α моменты в них создаются электрическим путем, поэтому логометр имеет два воспринимающих элемента, на которые воздействуют величины Y 1 и Y 2 , составляющие измеряемое отношение. Направления величин Y 1 и Y 2 должны выбираться такими, чтобы моменты М и М α , действующие на подвижную часть, были направлены навстречу друг другу; при этом подвижная часть будет поворачиваться под действием большего момента. Для выполнения этих условий моменты М и М α должны по-разному зависеть от угла отклонения подвижной части прибора.

Источниками погрешности логометра служат неидентичное выполнение двух воспринимающих элементов, особенно при наличии ферромагнитных материалов; наличие в логометре дополнительных моментов М доп (от трения в опорах, безмоментных подводок, неуравновешенности подвижной части). Следовательно,

M = М α + М доп. (5.42)

Присутствие дополнительного момента М доп делает показания логометра зависящими от побочных факторов (например, напряжения). Поэтому на шкале логометра указывают рабочий диапазон напряжения, в пределах которого градуировка шкалы справедлива. Верхний предел напряжения определяется максимальной мощностью, выделяемой в цепях логометра, а нижний - М доп. Стрелка, не включенного под напряжение логометра, из-за отсутствия механического противодействующего момента занимает безразличное положение.

Рис. 5.18. Устройство механизма магнитоэлектрического логометра

Действие магнитоэлектрического логометра заключается в следующем.

В неравномерное магнитное поле постоянного магнита (рис. 5.18) помещают подвижную часть ИМ, содержащую две рамки, жестко скрепленные под углом d = 30°-90° и насаженные на общую ось. Токи I 1 и I 2 подводят к рамкам с помощью безмоментных токоподводов. Направление токов таково, что ток I 1 создает вращающий, а I 2 - противодействующий моменты:

M = I 1 (∂Ψ 1 /∂α); M α = I 2 (∂Ψ 2 /∂α), (5.43)

где Ψ 1 , Ψ 2 -потоки, создаваемые магнитом и сцепленные с рамками.

Моменты М и M α изменяются в зависимости от изменения угла α. Максимальные значения моментов будут сдвинуты на угол d, что позволяет получить на рабочем участке уменьшение М и увеличение M α . При равновесии I 1 (∂Ψ 1 /∂α) = I 2 (∂Ψ 2 /∂α), откуда

где f 1 (α), f 2 (α) - величины, определяющие скорость изменения потокосцепления.

Из равенства моментов следует, что

α = F(I 1 / I 2) (5.45)

Если отношение токов выразить через искомую величину X, то

α = F 1 (X). (5.46)

Существование данной функциональной зависимости возможно при выполнении основного условия работы логометра, т.е. при ∂Ψ 1 /∂α ≠ ∂Ψ 2 /∂α, которое обеспечивается при искусственно созданной неравномерности магнитного поля в воздушном зазоре логометра. Магнитоэлектрические логометры применяют для измерения сопротивлений, частоты и неэлектрических величин,

Электро- радиотехнические измерения

Cтраница 1


Радиотехнические измерения используют также весьма широко в различных отраслях народного хозяйства. Неэлектрические величины, такие как давление, влажность, температура, линейные удлинения, механические вибрации, число оборотов и другие, можно с помощью специальных датчиков преобразовать в электрические и оценивать их, применяя методы и приборы электрических и радиотехнических измерений.  

Радиотехнические измерения охватывают область электрических измерений и, кроме того, включают все виды специальных радиоизмерений.  

Радиотехнические измерения используют и для оценки неэлектрических величин. Такие величины как давление, температура, влажность, механические вибрации, линейные удлинения при нагревании и др. можно преобразовать с помощью специальных датчиков в электрические и оценивать их, используя приборы и методы электрических и радиотехнических измерений. Целью же измерений является получение численного значения измеряемой величины.  

Предмет радиотехнических измерений, в соответствии с программой, включает следующие разделы: основное метрологические понятия; краткие сведения о погрешностях измерений, способах их учета и уменьшения влияния на результаты измерения; измерение тока, напряжения и мощности в широком диапазоне частот; изучение генераторов измерительных сигналов; электронные осциллографы; измерение фазового сдвига, частоты и интервалов времени; измерение параметров модуляции, нелинейных искажений; измерения в радиотехнических цепях с сосредоточенными и распределенными параметрами; измерения напряженности электромагнитного поля и радиопомех.  


Особенности радиотехнических измерений напряжений и токов.  

В радиотехнических измерениях часто встречаются систематические погрешности, изменяющиеся во времени. Так, высокочувствительным приборам свойственна систематическая погрешность, вызванная регулярными помехами в виде импульсного или квазигармонического сигнала, наводимого на входные цепи прибора. Для уменьшения уровня наводок принимают конструктивные меры: экранируют входные цепи, рационально выбирают точку заземления. Общий метод уменьшения влияния периодических наводок заключается в усреднении результатов измерения на некотором интервале времени. Усреднение достигается двумя способами, часто используемыми совместно: предварительной фильтрацией входного сигнала и проведением многократных измерений с последующим вычислением среднеарифметического.  

При радиотехнических измерениях в диапазонах звуковых, низких и очень низких частот, главным образом, применяют С-генераторы, которые на этих частотах обладают существенными преимуществами по сравнению с LC-гене-раторами. Это объясняется тем, что элементы колебательных контуров LC-генераторов для звуковых частот слишком громоздки (прежде всего катушки индуктивности), а их параметры при изменении температуры нестабильны, что определяет низкую стабильность частоты генерируемых сигналов. Кроме того, частоту LC-генераторов в звуковом диапазоне перестраивать сложно.  

В обычных радиотехнических измерениях, производимых в лабораторных условиях, полагают Тт - 292 К (примерно комнатная температура 19 С), а отношение Тш вх / 292 называют шумовым числом.  


При электротехнических и радиотехнических измерениях принято на приборах указывать знак незаземленного провода по отношению к земле; таким образом, здесь применяют противоположное правило знаков.  

Внедрение техники радиотехнических измерений совпало с началом развития систем радиосвязи и радиоэлектроники.  

Широкое использование радиотехнических измерений в различных областях радиотехники влечет за собой появление новых методов измерений и специальных измерительных приборов. Наиболее специфичными являются измерения на сверхвысоких частотах, что объясняется конструктивными особенностями колебательных систем и линий передачи энергии этого диапазона.  

Степень точности радиотехнических измерений, так же как и электрических, определяется погрешностью, или ошибкой измерения.  

Излагаются основы радиотехнических измерений. Рассматриваются принципы и методы измерений радиотехнических величин, характеризующих параметры сигналов, систем и устройств радиосвязи и радиовещания во всем применяемом диапазоне частот. Приводятся сведения о построении структурных схем измерительных приборов, погрешностях и способах их учета и уменьшения влияния. Особое внимание уделено приборам цифровым и выполненным на микросхемах. Приведены краткие справочные данные о многих измерительных приборах.  

ОСНОВНЫЕ РАДИОЭЛЕКТРОННЫЕ ИЗМЕРЕНИЯ И ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Радиоэлектронные измерения и радиоизмерительные приборы широко используются в работе физика-экспериментатора и инженера-исследователя любой специальности. Измерение - это нахождение значения физической величины опытным путем с помощью специальных технических средств. В радиоэлектронике объектами измерений являются параметры и характеристики радиоэлектронных цепей и сигналов, а средствами измерений являются радиоизмерительные приборы. Радиоэлектронные измерения имеют следующие особенности.

1. Разнообразие по характеру.

С этой точки зрения радиоэлектронные измерительные приборы подразделяются на четыре группы:

Первая группа - измерительные генераторы. Они служат для имитации сигналов при наладке и настройке радиоэлектронной аппаратуры, измерения некоторых параметров сигналов методами сравнения, питания и калибровки измерительной аппаратуры.

Вторая группа - приборы для измерения параметров и характеристик сигналов. Особенностью этой группы приборов является необходимость подачи на вход прибора измеряемых сигналов. На выходе прибора получается количественная информация о том или ином параметре сигнала. К этой группе относятся такие измерительные приборы, как осциллографы, электронные вольтметры, частотомеры, фазометры, анализаторы спектра и др.

Третья группа - приборы для измерения характеристик и параметров четырехполюсников, а также различных узлов радиоэлектронных схем. Особенностью приборов этой группы является наличие в них генераторов сигналов определенной формы, питающих исследуемый четырехполюсник или узел, и измерительных устройств, позволяющих оценивать прохождение этих колебаний через данный четырехполюсник или узел. Примером приборов третьей группы являются измерительные мосты, Q-метры, измерители частотных характеристик (характериографы) и др.

Четвертая группа - элементы измерительных схем. К ней относятся выполненные отдельно и прокалиброванные аттенюаторы, фазовращатели, измерительные трансформаторы и пр.

2. Широкий диапазон измерительной величины, иногда достигающий 10-12 порядков.

3. Малая мощность измеряемых сигналов.

В процессе измерения определяемая величина сравнивается с известной величиной, принятой за единицу и называемой образцовой мерой. Для этого шкала измерительных приборов калибруется. При измерении снимается отсчет - число, указываемое индикатором прибора. Показание - физическая величина, соответствующая отсчету и получаемая в результате умножения отсчета на переводной множитель.

2.2. Измерительные генераторы .

В измерительном генераторе частота, форма и напряжение имитируемого сигнала устанавливаются равными необходимому значению и могут перестраиваться в широких пределах. По форме выходных сигналов измерительные генераторы подразделяются на генераторы синусоидальных сигналов, генераторы импульсных сигналов и генераторы шумовых сигналов.

Генераторы синусоидальных сигналов в свою очередь разделяются на низкочастотные (звуковые) с частотой 20 Гц ÷ 200 кГц, высокочастотные с частотой 100 кГц ÷ 30 МГц и сверхвысокочастотные.

Звуковые генераторы (ГЗ) вырабатывают сигнал напряжением от десятков микровольт до 30 вольт. Эти генераторы обычно выполнены по многокаскадной схеме (рис. 1), что позволяет устранить влияние нагрузки на стабильность вырабатываемого сигнала и получить на нагрузке достаточную мощность. Задающий генератор обычно представляет собой двухкаскадный RС-автогенератор с цепочкой Вина в обратной связи. Ступенчатое изменение частоты осуществляется переключением емкости С, а плавное - изменением сопротивления R. Широкополосный усилитель представляет собой двухтактный усилитель мощности, связанный с задающим автогенератором через фазоинверсный каскад.

Рис. 1. Структурная схема генератора синусоидальных сигналов

Далее сигнал поступает на выходное устройство, состоящее из аттенюатора и согласующего устройства. Аттенюатор - делитель напряжения с коэффициентом ослабления сигнала, не зависящим от частоты. Выходной аттенюатор изменяет напряжение ступенями, а в пределах каждой ступени (диапазона) плавная регулировка осуществляется в широкополосном усилителе. Измеритель напряжения включен к выходу усилителя, что значительно упрощает его конструкцию, так как в этом случае он работает только в одном диапазоне напряжений сигнала. Напряжение на выходе равно напряжению на измерителе, умноженному на коэффициент деления аттенюатора. Для стабильности коэффициента деления аттенюатора нагрузка на его выходе должна быть постоянной (обычно 600 Ом). При отличии сопротивления нагрузки от этого значения оно согласуется с аттенюатором с помощью согласующего устройства, состоящего из трансформатора и внутренней нагрузки. Внутренняя нагрузка включается, если сопротивление нагрузки с учетом коэффициента трансформации существенно превышает 600 Ом. Трансформаторный выход, кроме того, позволяет легко получить симметричный выход. В последнем случае заземляется середина вторичной обмотки выходного трансформатора. При измерениях часто используется не напряжение сигнала, а его уровень в децибелах, определяемый по формуле:

U=20 lg(U/U 0) (дБ).

За нулевой уровень принимают чаще всего такое напряжение U 0 , которое на сопротивлении 600 Ом создает рассеиваемую мощность 1 мВт. Иногда за нулевой уровень принимают напряжение, равное одному вольту.

Генераторы стандартных сигналов (ГСС, группа Г4) выдают калиброванные по частоте, выходному напряжению и форме синусоидальные сигналы высокой частоты (несущей), которые могут быть промоделированы как от внутреннего, так и от внешнего генератора низкой частоты. Источником высокочастотного напряжения является перестраиваемый автогенератор высокой частоты (рис. 2), который представляет собой LС-генератор синусоидальных колебаний.

Рис. 2. Структурная схема генератора стандартных сигналов

Усилитель-модулятор представляет собой усилитель высокой частоты, который в режиме модуляции выполняет и функции модулятора. Выходное устройство состоит из плавного аттенюатора, затем ступенчатого и иногда выносного делителя, находящегося на конце кабеля. Положение плавного аттенюатора калибруется с помощью шкалы. Измеритель напряжения несущей и глубины модуляции представляет собой электронный вольтметр с детекторами высокочастотного (ВЧ) и низкочастотного (НЧ) сигналов. Выходное сопротивление ГСС в большинстве случаев составляет десятки Ом и согласовано с кабелем.



Генераторы импульсов (ГИ, группа Г5) являются источником импульсных сигналов определенной формы (чаще всего прямоугольной). Схема типичного ГИ приведена на рис. 3. Задающий генератор вырабатывает импульсы, необходимые для запуска блока формирования импульсов, а также для выхода синхроимпульсов от данного прибора. В качестве задающего генератора могут использоваться автогенераторы синусоидальных колебаний с последующим двухсторонним ограничением или релаксационные генераторы. Запуск формирователя основного импульса осуществляется с устанавливаемой задержкой во времени относительно выхода импульса синхронизации. Задержка основного импульса относительно импульса синхронизации широко используется при применении генераторов. Так, при использовании осциллографа синхроимпульсом запускается развертка осциллографа, а основной импульс подается на исследуемую схему и через нее на осциллограф. При этом на экране осциллографа хорошо виден передний фронт импульса.

Рис. 3. Структурная схема генератора импульсов

Принцип действия блока формирования импульсов состоит в следующем. Запускающий импульс, поступая на релаксатор и вызывая его опрокидывание, формирует передний фронт измерительного импульса. Одновременно запускающий импульс, проходя через внутреннюю линию задержки, равную длительности импульса τ, подается на другой вход данного релаксатора, вызывая его опрокидывание в первоначальное состояние и тем самым формируя задний фронт основного импульса длительностью τ. Выходной усилитель представляет собой широкополосный усилитель, обеспечивающий получение на выходе измерительных импульсов нужной амплитуды. Выходное устройство состоит из фазоинверсного каскада для получения на выходе импульсов нужной полярности, эмиттерного повторителя для обеспечения заданной величины внутреннего сопротивления генератора и аттенюатора. Измерители амплитуды работают обычно по методу сравнения с образцовым напряжением.

2.3. Электронно-лучевые осциллографы .

Осциллограф предназначен для визуального наблюдения электрических сигналов и измерения их параметров. Это универсальный прибор, позволяющий измерять напряжение, частоту, разность фаз, временные интервалы и другие параметры сигналов. На рис. 4 приведена структурная схема осциллографа. Основным узлом осциллографа является электронно-лучевая трубка, формирующая узкий электронный луч, попадающий на люминесцирующий экран и описывающий форму исследуемого сигнала, подаваемого на вертикально отклоняющие пластины при условии, что на горизонтально отклоняющие пластины подано линейно изменяющееся напряжение, обеспечивающее движение электронного луча в горизонтальном направлении с постоянной скоростью, т. е. прямо пропорционально времени. Формирование электронного луча осуществляется модулятором (М), работающим по аналогии с управляющей сеткой электронной лампы и регулирующим количество электронов в луче (яркость). Аноды A1 и А2 предназначены для фокусировки электронов на экране трубки. Анод АЗ служит для увеличения скорости электронов в луче, что важно для возбуждения люминофора экрана.

Рис. 4. Структурная схема электронно-лучевого осциллографа

Рассмотрим кратко работу и назначение остальных узлов осциллографа. Исследуемый сигнал по коаксиальному кабелю через входной делитель подается на эмиттерный повторитель, нагрузкой которого является линия задержки (обычно отрезок кабеля). Эмиттерный повторитель имеет высокое входное сопротивление и малую входную емкость, что способствует отсутствию искажения слабых сигналов. Благодаря своему низкому выходному сопротивлению он согласован с волновым сопротивлением линии задержки. Задержка поступления сигнала относительно начала действия развертки дает возможность наблюдать передний фронт сигнала, особенно в режиме внутреннего запуска развертки от самого исследуемого сигнала при достижении им определенного уровня. После усиления сигнал поступает на вертикально отклоняющие пластины трубки, отклоняя луч на экране по вертикали пропорционально напряжению сигнала. Горизонтальное смещение луча, пропорциональное времени, осуществляется пилообразным напряжением, вырабатываемым генератором развертки и подаваемым на горизонтально отклоняющие пластины. Режим запуска генератора развертки может быть ждущим и периодическим. Запуск развертки при ждущем режиме осуществляется либо от внешнего синхронизирующего сигнала с входа Х (внешний запуск), либо от исследуемого сигнала (внутренний запуск). При периодическом режиме генератор развертки запускается периодически либо от сети, либо работает автоматически с собственной, но регулируемой частотой. Некоторые осциллографы имеют усилитель горизонтального отклонения (усилитель Х), который может подключаться к горизонтально отклоняющим пластинам вместо генератора развертки. В этом случае отклонение луча по горизонтали становится пропорциональным напряжению на входе Х. Это позволяет получать на экране зависимости сигнала Y от сигнала X, например, вольт-амперные характеристики устройств. К вспомогательным устройствам относятся калибраторы амплитуды и длительности. У многолучевых осциллографов электронно-лучевая трубка имеет несколько формирователей электронных лучей, общие для всех лучей горизонтально отклоняющие пластины, но отдельные для каждого луча вертикально отклоняющие пластины. При этом имеется несколько входов Y и несколько усилителей вертикального отклонения (по числу лучей). Эти осциллографы позволяют получать одновременно развертку нескольких сигналов. У многоканальных осциллографов трубка обычная, однолучевая, только сигналы на нее подаются поочередно от нескольких входов Y с помощью коммутатора. Запоминающие осциллографы имеют устройство памяти, запоминающее сигнал и затем подающее его на пластины уже после действия сигнала. Это позволяет наблюдать развертку сигналов очень малой длительности (наносекунды) в течение продолжительного времени (минуты).

2.4. Измерения напряжения и тока.

Измерения тока и напряжения являются основными при исследовании различных устройств и контроле их работы. Однако в радиотехнике преобладающее значение имеет измерение напряжения, а к измерению токов прибегают в довольно редких случаях, стараясь заменить измерением напряжения на известном сопротивлении и затем определяя ток по закону Ома. Измеряемые переменные напряжение и ток оцениваются следующими параметрами (рис. 5): амплитудой, средним, средневыпрямленным и действующим (эффективным) значениями.

Рис. 5. Параметры переменного напряжения

Амплитуда (пиковое значение) U m определяется как наибольшее значение напряжения за период. Для несимметричного относительно нуля напряжения вводят понятия пиковых отклонений вверх U m+ и вниз U m- . Среднее значение переменного напряжения U ср есть его постоянная составляющая:

.

Средневыпрямленное значение U св определяется как постоянная составляющая напряжения после его двухполупериодного выпрямления:

.

Действующее или эффективное значение U эф оценивается по среднеквадратичному значению измеряемого напряжения:

.

Закону изменения напряжения соответствуют определенные количественные соотношения между U m , U св, U эф, оцениваемые коэффициентами амплитуды К а = U m / U эф и формы К ф = U эф / U св. Так, для гармонического напряжения К а =1.41, К ф =1.11.

Прямоугольное колебательное напряжение - меандр - без постоянной составляющей характеризуется как К а =К ф =1. При достаточно большой мощности измеряемого напряжения и тока они могут быть измерены приборами магнитоэлектрической системы в сочетании с дополнительными устройствами. Так, постоянный ток и среднее значение переменного тока (и напряжения) могут быть измерены непосредственно магнитоэлектрическим прибором.

Средневыпрямленное значение измеряют приборами магнитоэлектрической системы в сочетании с диодным выпрямителем мостового типа.

Рис. 6. Термоэлектрический преобразователь

Эффективные значения токов и напряжений измеряют приборами магнитоэлектрической системы с термоэлектрическими преобразователями, представляющими собой сочетание термопары и подогревателя, по которому протекает ток (рис. 6). Подогреватель 1 соединен с рабочим (горячим) спаем термопары. К нерабочим (холодным) спаям подключен магнитоэлектрический прибор. Из-за тепловой инерции подогревателя можно считать, что его температура в установившемся режиме практически не меняется при изменении мгновенной мощности, так что прибор измеряет эффективное значение тока. Термопреобразователь часто помещают в вакуум для уменьшения теплоотдачи и увеличения чувствительности. Частотный диапазон (до 200 МГц) ограничен емкостью прибора относительно земли, собственной индуктивностью и скин-эффектом в подогревателе.

Электронные вольтметры (В2 - постоянного тока, В3 - переменного, В4 - импульсного, В5 - фазочувствительные, В6 - селективные, В7 - универсальные).

С целью повышения чувствительности и расширения диапазона измеряемых значений напряжений разработаны специальные приборы - электронные вольтметры. В соответствии с измеряемым параметром различаются вольтметры амплитудного значения (пиковые), среднего (постоянного напряжения), средневыпрямленного и действующего значений. Электронные вольтметры обладают большим входным сопротивлением, достигающим 10 МОм, имеют широкий частотный диапазон до 1-3 ГГц, способны выдерживать большие нагрузки. Типичные структурные схемы электронных вольтметров приведены на рис. 7. Входное устройство электронных вольтметров состоит из эмиттерного повторителя, чаще всего смонтированного в выносном пробнике для уменьшения влияния проводов на высоких частотах, и аттенюатора, представляющего собой резистивный делитель напряжения.

Рис. 7. Структурные схемы электронных вольтметров:

а) переменного напряжения; б) постоянного напряжения;

в) переменного и постоянного напряжения

Усилители в электронных вольтметрах предназначены для повышения чувствительности при измерении малых напряжений. Для повышения стабильности коэффициента усиления усилителя и уменьшения нелинейных искажений обычно используется многокаскадный усилитель, охваченный отрицательной обратной связью.

Детектор вольтметра предназначен для преобразования измеряемого напряжения в постоянную или пульсирующую форму, измеряемую магнитоэлектрическим прибором. В зависимости от закона преобразования детекторы подразделяются на пиковые (амплитудные), детекторы действующего значения и детекторы средневыпрямленного значения.

Рис. 8. Схема пикового детектора и график напряжений

В пиковом детекторе параметры схемы (рис. 8) подобраны так, что постоянная времени заряда конденсатора τ 3 = R i* С (R i - внутреннее сопротивление диода) намного меньше постоянной цепи разряда τ р = R * С, которая много больше периода колебаний входного напряжения: τ р >>Т. Вследствие этого через несколько периодов колебаний конденсатор зарядится до напряжения U с со средним значением U ср, близким к амплитудному значению U m .

Детектор действующего значения должен иметь квадратичную вольт-амперную характеристику.

Рис. 9. Схема квадратичного детектора с кусочно-гладкой аппроксимацией ВАХ

Квадратичным участком вольт-амперной характеристики обладают почти все активные элементы: лампы, транзисторы, диоды; однако протяженность этого участка небольшая. Для ее увеличения применяют кусочно-гладкую аппроксимацию параболической кривой на К-участках, каждый из которых обеспечивается начальным квадратичным участком данного активного элемента. На рис. 9 показана схема такого детектора. Количество участков аппроксимации соответствует количеству диодных цепочек, в которых на каждый последующий диод подается ступенчато увеличивающееся напряжение обратного смещения (Е см), что вызывает открытие каждого из них при входном U вх >Е см.

Рис. 10. Схема детектора средневыпрямленного значения

Детектор средневыпрямленного значения представляет собой двухполупериодный выпрямитель, собранный обычно по мостовой схеме (рис. 10). Чтобы ток в этом детекторе был пропорционален средневыпрямленному значению измеряемого напряжения, необходимо, чтобы амплитуда входного напряжения, подаваемая на диоды, значительно превышала квадратичный участок вольт-амперной характеристики диода, т. е. чтобы детектирование было линейным, а не квадратичным. Рассмотрим некоторые специальные типы вольтметров.

Избирательный (селективный) электронный вольтметр предназначен для измерения синусоидального напряжения определенной (избранной) частоты в спектре других частот. Принцип действия такого вольтметра основан на выделении напряжения нужной частоты из спектра других частот, усилении и дальнейшем измерении напряжения выделенной частоты.

Цифровые вольтметры.

Применение цифрового отсчета повышает скорость и точность измерения, позволяет автоматизировать процесс измерения. Основным узлом цифровых приборов является аналого-цифровой преобразователь, преобразующий непрерывную измеряемую величину в цифровой код. Рассмотрим структурную схему цифрового вольтметра с времяимпульсным преобразователем (рис. 11).

Рис. 11. Структурная схема цифрового вольтметра

В начале цикла измерения импульс от управляющего устройства сбрасывает на нуль показания электронного счетчика и запускает схему генератора линейно-изменяющегося напряжения, одновременно открывая электронный ключ. С момента открытия электронного ключа на вход электронного счетчика через электронный ключ поступают счетные импульсы с частотой следования f от генератора счетных импульсов. Линейно-изменяющееся напряжение подается на один из входов сравнивающего устройства, на второй вход которого поступает измеряемое напряжение. Сравнивающее устройство в момент равенства измеряемого и линейно-изменяющегося напряжения выдает импульс, закрывающий электронный ключ. Таким образом, измеряемое напряжение будет пропорционально интервалу времени Dt работы электронного ключа, а следовательно, и количеству счетных импульсов, зарегистрированных электронным счетчиком. При большом числе счетных импульсов (большая их частота) точность измерения напряжения будет высокой.

2.5. Измерение частоты.

Измерение частоты является одной из важнейших задач, решаемых в радиоэлектронике, так как, с одной стороны, частота является одной из основных характеристик сигнала, а с другой - техника измерения частоты является наиболее точной по сравнению с техникой измерений любой другой величины, что и послужило предпосылкой для сведения измерений других физических величин к измерению частоты и временных интервалов. Разработаны несколько методов измерения частоты: мостовой, заряда и разряда конденсаторов, резонансный, гетеродинный, электронно-счетный.

R 3 /R 4 =(R 1 +1/(iω 0 C 1))/(1/ R 2 + iω 0 C 2) -1 или R 3 /R 4 = R 1 /R 2 +С 1 / С 2 +i(R 1 ω 0 C 2 -1/(R 2 ω 0 C)).

Приравнивая действительную и мнимую части, получим

R 1 /R 2 + С 2 / С 1 = R 3 /R 4 и R 1 ω 0 C 2 -1/(R 2 ω 0 C 1)=0.

Из второго равенства определяется частота, при которой наступает равновесие моста:

ω 0 =1/(R 1 R 2 С 2 С 1) 1/2 .

Рис. 12. Схема моста Вина для измерения частоты

Условие равновесия моста R 1 R 2 фиксируется по минимуму показания индикаторного прибора (ИП) при изменении значения сопротивлений R 1 R 2 и емкостей С 1 С 2 . Обычно R 1 =R 2 =R, С 1 =С 2 =С, ω 0 =1/(RС), значения R и С градуируют в значениях частоты, причем R 1 и R 2 изменяются одновременно и имеют плавную регулировку, а С 1 и С 2 являются множителями для шкалы частот при одновременном скачкообразном изменении.

Метод заряда и разряда конденсатора основан на измерении среднего тока заряда или разряда конденсатора, который при неизменном напряжении источника сигнала пропорционален его частоте (рис. 13). Усилитель-ограничитель усиливает слабые и ограничивает сильные сигналы до определенной амплитуды U 0 , одинаковой для всех сигналов. Постоянную времени заряда конденсатора С выбирают много меньшей половины периода входного напряжения, так что конденсатор даже на самых высоких частотах успевает разрядиться.

Рис. 13. Схема периодического заряда и разряда конденсатора

Количество электричества перезаряда равно Q =СU 0 . Таким образом, среднее значение тока i=fQ=cfU 0 , проходящего через диод и магнитоэлектрический прибор, пропорционально частоте. Частотомеры данного типа работают в диапазоне от десятков герц до единиц мегагерц. Переход с предела на предел достигается сменой емкости.

Рис. 14. Резонансный волномер:

а) структурная схема; б) колебательная система с контуром; в) коаксиальный резонатор

Резонансный волномер основан на получении явления резонанса на измеряемой частоте в перестраиваемой колебательной системе. Этот метод применяется на высоких и сверхвысоких частотах, начиная от 50 кГц. На частотах до сотни мегагерц применяются резонансные контуры с сосредоточенными параметрами, а на более высоких частотах - резонаторы или отрезки коаксиального кабеля. Состояние резонанса определяется магнитоэлектрическим прибором по максимуму напряжения. Значение измеряемой частоты считывается со шкалы конденсатора. В коаксиальном резонаторе длина волны определяется по механическому перемещению поршня. Условие резонанса - l=(kλ)/2, где k - целое число. Добротность коаксиального резонатора - 10 3 -10 4 .

Гетеродинный частотометр основан на сравнении измеряемой частоты с известной частотой перестраиваемого калиброванного генератора (гетеродина).

Рис. 15. Структурная схема гетеродинного частотометра

При измерении на смеситель поступает напряжение измеряемой частоты с входного устройства и напряжение от гетеродина переменной частоты. Меняя частоту гетеродина, добиваются появления на выходе нулевых биений, регистрируемых индикатором (телефоны или стрелочный индикатор). Получение на выходе нулевых биений свидетельствует о равенстве измеряемой частоты с частотой гетеродина, которая определяется по шкале. Для градуировки шкалы гетеродина служит кварцевый генератор, напряжение с выхода которого подается на смеситель. Частота гетеродина устанавливается равной частоте кварцевого генератора (или его гармоники) подстройкой с помощью построечных конденсаторов.

Электронно-счетный частотометр.

Обычно схема прибора (рис. 16) строится таким образом, чтобы можно было измерять непосредственно как частоту, так и период колебаний.

Рис. 16. Структурная схема цифрового частотометра

При измерении частоты f x напряжение неизвестной частоты подается на вход 1. Входное устройство представляет собой делитель напряжения и широкополосный усилитель для усиления напряжения до величины, достаточной для работы формирующего устройства. Формирующее устройство преобразует синусоидальное напряжение в прямоугольные импульсы с крутыми фронтами, постоянной амплитуды, с частотой, равной частоте сигнала. Эти импульсы через электронный ключ подаются на электронный счетчик. С другой стороны, на электронный ключ через управляющее устройство поступают импульсы калиброванных интервалов времени длительностью Δt, которые формируются декадными делителями частоты из высокостабильных по частоте колебаний, вырабатываемых кварцевым генератором. Эти импульсы открывают электронный ключ на время Δt, в течение которого на электронный счетчик подаются счетные импульсы измеряемой частоты; последние подсчитываются и на устройстве цифрового отсчета выдаются в виде отсчета f x =n/Δt. При измерении периода колебаний напряжение неизвестной частоты подается на вход 2 и далее на формирующее устройство, вырабатывающее интервалы времени Δt=Т x , в течение которых управляющее устройство открывает электронный ключ. Счетными импульсами в данном случае являются калиброванные во времени прямоугольные импульсы, полученные в формирующем устройстве после предварительного умножения частоты высокостабильного кварцевого генератора. Количество этих импульсов, поступающих за время Δt на электронный счетчик, и будет пропорционально периоду неизвестной частоты Т x =n/f. Точность измерения периода тем выше, чем больше период, т. е. ниже частота сигнала, в то время как точность измеряемой частоты по входу 1 тем выше, чем выше частота сигнала.

2.6. Измерение разности фаз .

Измерение разности фаз между двумя гармоническими напряжениями одной частоты широко применяется в радиоэлектронике при исследовании различных четырехполюсников. Рассмотрим некоторые методы измерения разности фаз. Осциллографические методы наглядно представлены на рис. 17.

Рис. 17. Осциллографические методы измерения разности фаз:

а) развертка обоих сигналов на двухлучевом (двухканальном) осциллографе Δφ=2π Δt/T;

б) использование фигур Лиссажу при одинаковом усилении по X и Y (одноканальный осциллограф с усилителем по X), sinφ=h/H, tg(φ/2)=b/a,

где a и b – большая и малая полуоси эллипса

Метод сравнения (компенсации) состоит в сравнении измеряемого фазового сдвига на выходе исследуемого четырехполюсника с фазовым сдвигом калиброванного фазовращателя, питаемых от одного источника гармонических колебаний (pис.18).

Рис. 18. Структурная схема измерителя фазового сдвига по методу компенсаций

Напряжение, прошедшее исследуемый четырехполюсник, и такое же напряжение, прошедшее калиброванный фазовращатель и регулятор амплитуды, подаются на компенсационный узел, представляющий собой обычный дифференциальный трансформатор. При равенстве входных напряжений по фазе и амплитуде напряжение на выходе компенсационного узла равно нулю, о чем свидетельствуют нулевые показания индикатора напряжения. Сдвиг фазы определяется по шкале фазовращателя, затухание сигнала в четырехполюснике определяется по шкале регулятора амплитуды.

Цифровой метод (метод дискретного счета) основан на измерении количества счетных импульсов калиброванной частоты за время Δt=T Δφ/2π, пропорциональное фазовому сдвигу.

Рис. 19. Структурная схема цифрового фазометра

Формирователи преобразуют гармонические колебания, между которыми нужно измерить сдвиг фаз, в остроконечные однополярные импульсы, передний фронт которых соответствует моментам перехода гармонических колебаний через нуль. Управляющее устройство открывает электронный ключ на время сдвига Δt между импульсами с различных входов, и счетчик подсчитывает количество прошедших за это время импульсов.

Отметим, что при измерении разности фаз на высоких и сверхвысоких частотах предварительно производится понижение частоты с помощью гетеродинного преобразователя, имеющего два одинаковых смесителя и один общий гетеродин (рис. 20). Затем в области низких частот производится измерение разности фаз одним из рассмотренных выше способов.

Рис. 20. Схема преобразования частоты

Сдвиг фазы напряжений на выходе смесителя такой же, как и входных напряжений:

U 1 = U 1 sin[(ω-ω r)t+φ 1 -φ r ]; U 2 = U 2 sin[(ω-ω r)t+φ 2 -φ r ].

2.7. Спектроанализаторы .

Спектроанализаторы предназначены для визуального наблюдения спектра сигнала. Наиболее часто применяют спектроанализаторы последовательного анализа с двумя структурными схемами: схемой с перестраиваемым фильтром и супергетеродинной схемой.

В спектроанализаторе с перестраиваемым фильтром спектр исследуемого сигнала просматривают путем автоматической перестройки фильтра, выделения составляющих спектра, детектирования, усиления и наблюдения на кране ЭЛТ (рис. 21).

Рис. 21. Спектроанализатор с перестраиваемым фильтром

Перестройка фильтра осуществляется изменяющимся напряжением развертки, вследствие чего изображение спектра на экране получается неподвижным. Недостатком схемы является ее узкодиапазонность.

Супергетеродинная схема (рис. 22) обеспечивает электрическую перестройку в широком диапазоне частот. Принцип действия ее сводится к линейному последовательному переносу спектра исследуемого сигнала в область промежуточной частоты и перемещению его относительно средней частоты настройки фильтра. При этом фильтр неизменно настроен на промежуточную частоту, а последовательное перемещение спектра сигнала получается благодаря изменению частоты гетеродина, представляющего собой генератор качающейся частоты (ГКЧ), управляемый напряжением генератора развертки. За период качания ГКЧ на экране ЭЛТ наблюдается спектр исследуемого сигнала в виде светящихся линий, каждая из которых пропорциональна средней мощности для данной гармоники спектра исследуемого сигнала.

Рис. 22. Схема спектроанализатора супергетеродинного типа

2.8. Измерители амплитудно-частотных характеристик (характериографы).

Применение характериографов позволяет заменить довольно длительный и трудоемкий процесс снятия по точкам амплитудно-частотных характеристик с помощью измерительного генератора и вольтметра непосредственным наблюдением амплитудно-частотной характеристики (АЧХ) на экране электронно-лучевой трубки. Особенно очевидно преимущество характериографов при использовании их для настройки четырехполюсников, так как влияние изменения тех или иных параметров в процессе настройки сразу же видно на экране характериографа по изменению формы амплитудно-частотной характеристики.

Рис. 23. Схема измерителя амплитудно-частотных характеристик

Качание частоты автогенератора обычно осуществляется с помощью варикапа или магнитного модулятора. Так как прибором перекрывается широкий диапазон частот, то некоторые узлы в измерителе выполнены по принципу преобразования частоты - на смеситель подается два сигнала: один от диапазонного генератора, другой - от частотно-модулированного генератора (ГКЧ). На выходе смесителя фильтры низких частот выделяют разностную частоту с таким же качанием, как и в ГКЧ. С переключателя частотно-модулированный сигнал поступает на широкополосный усилитель с системой автоматической регулировки усиления (АРУ), где усиливается до напряжения 1 В, и далее через аттенюатор подается на исследуемый четырехполюсник. С выхода четырехполюсника сигнал поступает на детекторную головку, а после детектирования - на усилитель вертикального отклонения ЭЛТ. Так как развертка трубки по горизонтали осуществляется синхронно с модуляцией (качанием) частоты автогенератора, то на экране воспроизводится АЧХ исследуемого четырехполюсника.

Для калибровки частоты в схеме могут формироваться частотные метки, которые образуются в блоке меток в результате нулевых биений между ГКЧ и гармониками калиброванных частот: 0,1; 0,5; 1; 5 МГц.

2.9. Измерение параметров элементов радиотехнических цепей (R, L, С, tgδ=1/Q)

Метод вольтметра-амперметра не требует специальных приборов (рис. 24).

Рис. 24. Схема измерения комплексного сопротивления методом вольтметра-амперметра

При питании схемы от источника переменного тока с частотой f можно определить модуль полного сопротивления:

,

где R U - внутреннее сопротивление вольтметра. Активную часть сопротивления определяют измерением на постоянном напряжении. После этого можно рассчитать реактивную часть сопротивления. Обычно используют электронный вольтметр и термоэлектрический амперметр. При включении в качестве конденсатора или катушки индуктивности, зная частоту f питающего генератора, можно определить L и C: 1) X c =1/(ωC)=U/I и C=I/wU, 2) X L =ωL=U/I и L=U/wI.

Мостовые методы применяются в диапазоне низких радиочастот и позволяют достичь наибольшей точности измерения полных сопротивлений. Индикатор равновесного состояния должен иметь большое сопротивление, чтобы исключить влияние его на работу моста. Таким индикатором может быть электронный осциллограф или вольтметр. Равновесие моста наступает при условии

Z 1 Z 3 e i(φ1+φ3) = Z 2 Z 4 e i(φ2+φ4) ,

отсюда Z 1 Z 3 = Z 2 Z 4 ; φ1+φ3= φ2+φ4. Если принять за измеряемое сопротивление , а за образцовое - , то в мосте переменного тока для достижения равновесия должны быть две регулировки: модуля образцового сопротивления Z 2 и его аргумента φ 2 . Следует учитывать, что эти параметры при регулировке взаимосвязаны. Отсюда следует, что балансировку моста необходимо вести методом последовательного приближения, одновременно регулируя активную и реактивную составляющие.

Рис. 25. Схема моста переменного тока

Резонансным методом можно измерять индуктивности, емкости, сопротивления потерь в них, а также активную и реактивную составляющие комплексного сопротивления любого двухполюсника. Так как почти во всех случаях при определении названных параметров приходится измерять добротность эквивалентного контура, то такие приборы получили название измерителей добротности или куметров.

Рис. 26. Принципиальная схема куметра

В измерительный последовательный колебательный контур, состоящий из образцовой (L 0 R 0) или измеряемой (L x R x) катушки индуктивности и образцового прокалиброванного конденсатора переменной емкости С 0 , вводится определенное калиброванное напряжение U 1 от генератора, имеющего широкий диапазон частот. Сопротивление R 1 весьма малой величины ставится для уменьшения сопротивления источника, чтобы не ухудшать параметры контура. При подключении измеряемой катушки индуктивности L x R x куметр позволяет непосредственно измерить добротность контура L x R x С 0: Q=U c /U 1 . Вследствие этого вольтметр, измеряющий U c , обычно прокалиброван в значении добротности. Учитывая, что образцовый конденсатор и сопротивление R 1 имеют очень малые потери, найденная добротность контура будет равна добротности катушки. При резонансе в контуре, отмечаемом по максимуму, показания вольт-метра U c , можно записать как

Q=U c /U 1 =ω 0 L x /R x =1/(ω 0 C 0 R x).

Отсюда, зная С 0 , Q и регистрируя резонансную частоту ω 0 , можно определить L x и R x . При измерении неизвестной емкости С х в контур включается образцовая индуктивность L о R o и далее по резонансной частоте и значению добротности определяется емкость С х =1/(ω 0 QR 0).

С помощью куметра можно также измерять активную и реактивную части комплексного сопротивления любого двухполюсника. При его индуктивном характере двухполюсник подключается вместо L x R x , при емкостном характере - вместо С х.

Гетеродинный метод основан на зависимости частоты колебаний автогенератора от индуктивности и емкости его колебательного контура и сравнении частоты данного генератора с частотой перестраиваемого с помощью образцового конденсатора С 0 генератора по нулевым биениям, что позволяет получить высокую точность.

Рис. 27. Схема гетеродинного метода измерения емкости и индуктивности

До подключения измеряемой индуктивности или емкости оба генератора с помощью образцового конденсатора С 0 настраиваются на одну частоту, что фиксируется по нулевым биениям. При подключении С х частота генератора 2 изменяется и тогда конденсатор С 0 подстраивается, чтобы частоты совпали. При одинаковых индуктивностях в контурах измеряемая емкость будет равна изменению емкости образцового конденсатора. Погрешность 0.2-0.5%.

Метод дискретного счета (цифровой) основан на подсчете калиброванных по частоте импульсов в течение определенного интервала времени. В зависимости от того, как формируется этот интервал, применяют две разновидности схем: 1) схема, в которой используется апериодический разряд конденсатора на резистор с использованием временного интервала, равного постоянной времени разряда; 2) схема, в которой используется процесс затухания колебаний в колебательном контуре. В первой схеме, в зависимости от того, что выбрано эталонным (R 0 или С 0), можно измерять С х и R x . Перед началом измерений конденсатор С x заряжается до напряжения Е (переключатель в положении 1). Затем переключатель переводится в положение 2 и начинается разряд конденсатора С x на резистор R 0 по экспоненциальному закону U c =E e - t / τ . В момент переброса переключателя в положение 2 на цифровой измеритель временных интервалов поступает импульс, открывающий счет времени. С делителя R 1 R 2 на второй вход сравнивающего устройства подается напряжение E . 2 /(R 1 +R 2) = E/2.72. Момент, когда напряжение на конденсаторе в процессе его разряда достигнет значения Е/2,72, наступает при t = τ = С x R 0 . В это время сравнивающее устройство выдает второй импульс, прекращающий счет времени. Погрешность измерения ±0,1 %.

По второй схеме строятся цифровые куметры (рис. 29).

Рис. 28. Схема измерения С x R х по постоянной времени τ = С x R х

Принцип действия основан на следующем: отношение двух амплитуд затухающего колебания, разделенных временным интервалом, равным одному периоду, равно Δ = U 1 /U 2 =e δT , где δ=R x /(2L x) – декремент затухания, Т - период колебаний. Отсюда Т=lnΔ/ δ, так что добротность контура равна

Q=(2π L x)/(TR x)= (2L x /R x)(π δ/ lnΔ)=π/ lnΔ.

Отсюда lnΔ≈π/Q и D≈exp(π/Q). Отношение амплитуд затухающих колебаний первой и n-й равно Δ n =U 1 /U n =e n / Q . При n=Q имеем D n = e π =23,14, откуда U n = Q =0.0432.

Рис. 29. Структурная схема цифрового куметра

От генератора импульсов с большой скважностью заряжается конденсатор контура С 0 до амплитуды U 1 , после чего начинается затухающий колебательный процесс в контуре, образованном С 0 , L х и R x . Одновременно пороговое устройство 1 открывает временной селектор и счетчик импульсов считает количество периодов импульсных колебаний, сформированных в формирующем устройстве из затухающих колебаний в контуре. Когда амплитуда затухающих колебаний достигнет значения 0,0432 U 1 , при котором n=Q, пороговое устройство 2 закрывает селектор и счет импульсов прекращается. Показания счетчика через некоторое время, определяемое линией задержки, сбрасываются. Погрешность измерения 0,1-0,2% и зависит только от точности срабатывания пороговых устройств.