ГлаваI. Компьютерное моделирование

КОМПЬЮ́ТЕРНОЕ МОДЕЛИ́РОВАНИЕ (англ. computational simulation), построение с помощью компьютеров и компьютерных устройств (3D-сканеров, 3D-принтеров и др.) символьных [см. Символьное моделирование (s-моделирование)] и физических моделей объектов, изучаемых в науке (физике, химии и др.), создаваемых в технике (напр., в авиастроении, робототехнике), медицине (напр., в имплантологии, томографии ), искусстве (напр., в архитектуре , музыке) и др. областях деятельности людей.

К. м. позволяет многократно сократить затраты на разработку моделей по сравнению с некомпьютерными методами моделирования и проведением натурных испытаний. Оно делает возможным построение символьных компьютерных моделей объектов, для которых невозможно построить физические модели (напр., моделей объектов, изучаемых в климатологии ). Служит эффективным средством моделирования сложных систем в технике, экономике и др. областях деятельности. Является технологической основой систем автоматизированного проектирования (САПР).

Физические компьютерные модели изготавливаются на основе символьных моделей и являются прототипами моделируемых объектов (деталей и узлов машин, строительных конструкций и др.). Для изготовления прототипов могут быть применены 3D-принтеры, реализующие технологии послойного формирования неплоских объектов. Символьные модели прототипов могут быть разработаны с помощью САПРов, 3D-сканеров или цифровых камер и фотограмметрического программного обеспечения.

Система К. м. – это человеко-машинный комплекс, в котором построение моделей осуществляется с помощью компьютерных программ, реализующих математические (см. Моделирование математическое ) и экспертные (напр., имитационные) методы моделирования. В режиме вычислительного эксперимента исследователь имеет возможность, изменяя исходные данные, за относительно короткое время получить и сохранить в системе компьютерного моделирования большое число вариантов модели объекта.

Уточнение представлений об исследуемом объекте и совершенствование методов его моделирования могут сделать необходимым изменение программных средств системы компьютерного моделирования, а аппаратные средства при этом могут остаться без изменений.

Высокая результативность компьютерного моделирования в науке, технике и др. областях деятельности стимулирует развитие аппаратных средств (включая суперкомпьютеры) и программного обеспечения [в т. ч. инструментальных систем (см. Инструментальная система в информатике ) разработки параллельных программ для суперкомпьютеров].

В наши дни компьютерные модели – быстро растущая часть арсенала

Компьютерное моделирование является одним из эффективных методов изучения физических систем. Часто компьютерные модели проще и удобнее исследовать, они позволяют проводить вычислительные эксперименты, реальная постановка которых затруднена или может дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемых объектов, исследовать отклик физической системы на изменения ее параметров и начальных условий.

Компьютерное моделирование требует абстрагирования от конкретной природы явлений, построения сначала качественной, а затем и количественной модели. За этим следует проведение серии вычислительных экспериментов на компьютере, интерпретация результатов, сопоставление результатов моделирования с поведением исследуемого объекта, последующее уточнение модели и т.д.

К основным этапам компьютерного моделирования относятся: постановка задачи, определение объекта моделирования; разработка концептуальной модели, выявление основных элементов системы и элементарных актов взаимодействия; формализация, то есть переход к математической модели; создание алгоритма и написание программы; планирование и проведение компьютерных экспериментов; анализ и интерпретация результатов.

Различают аналитическое и имитационное моделирование. Аналитическими называются модели реального объекта, использующие алгебраические, дифференциальные и другие уравнения, а также предусматривающие осуществление однозначной вычислительной процедуры, приводящей к их точному решению. Имитационными называются математические модели, воспроизводящие алгоритм функционирования исследуемой системы путем последовательного выполнения большого количества элементарных операций.

Принципы моделирования состоят в следующем:

  • 1. Принцип информационной достаточности. При полном отсутствии информации об объекте построить модель невозможно. При наличии полной информации моделирование лишено смысла. Существует уровень информационной достаточности, при достижении которого может быть построена модель системы.
  • 2. Принцип осуществимости. Создаваемая модель должна обеспечивать достижение поставленной цели исследования за конечное время.
  • 3. Принцип множественности моделей. Любая конкретная модель отражает лишь некоторые стороны реальной системы. Для полного исследования необходимо построить ряд моделей исследуемого процесса, причем каждая последующая модель должна уточнять предыдущую.
  • 4. Принцип системности. Исследуемая система представима в виде совокупности взаимодействующих друг с другом подсистем, которые моделируются стандартными математическими методами. При этом свойства системы не являются суммой свойств ее элементов.
  • 5. Принцип параметризации. Некоторые подсистемы моделируемой системы могут быть охарактеризованы единственным параметром: вектором, матрицей, графиком, формулой.

Компьютерное моделирование систем часто требует решения дифференциальных уравнений. Важным методом является метод сеток, включающий в себя метод конечных разностей Эйлера. Он состоит в том, что область непрерывного изменения одного или нескольких аргументов заменяют конечным множеством узлов, образующих одномерную или многомерную сетку, и работают с функцией дискретного аргумента, что позволяет приближенно вычислить производные и интегралы. При этом бесконечно малые приращения функции f = f(x, y, z, t) и приращения ее аргументов заменяются малыми, но конечными разностями.

В последнее десятилетие компьютерный эксперимент занял заметное место в физических исследованиях. Компьютерное моделирование физических систем позволяет получать числовую информацию о них, а также на основе графических изображений дает возможность составить представление об объекте, с помощью которого могут быть разработаны оптимальные пути исследования объекта. Среди математических методов описания физических систем и явлений и их численного анализа одним из основных становится моделирование этих объектов и процессов на основе метода Монте-Карло. Этот метод особенно полезен для сложных физических систем с громоздким математическим описанием. Серьезный прогресс в использовании метода Монте-Карло связан в большой степени с новыми возможностями современной вычислительной техники. Если двадцать лет назад на начальной стадии моделирования исследуемый объект мог быть разбит в одном измерении примерно на сотню шагов Монте-Карло, то теперь в простых моделях масштаб одного измерения составляет миллионы шагов Монте-Карло. Существенно возросли и скорости получения информации. В результате этого имеется возможность исследовать свойства физических систем на реалистичных моделях. В настоящее время возможности компьютерного моделирования при решении целого ряда задач существенно превышают возможности эксперимента как по скорости получения информации, так и по ее стоимости. Это повышает роль компьютерного эксперимента в современной физике, и в ряде направлений физики наши современные представления опираются главным образом на информацию, полученную на основе компьютерного моделирования.

Ясно, что для прогресса в рассматриваемой области наряду с совершенной вычислительной техникой необходимо иметь алгоритмы и подходы, позволяющие эффективно ею распорядиться. Эти проблемы вместе с анализом соответствующих физических систем и составляют современное содержание компьютерного моделирования методом Монте-Карло.

Компьютерное моделирование в физике.

Калёнов М.Ю.

Балакин М.А.

Худяков А.Б.

МБОУ Лицей №38

Нижний Новгород

3. Тематическое планирование факультатива - "компьютерное моделирование в физике".

5. Первые результаты полученные при проведении курса "компьютерное моделирование в физике".

1. Роль компьютерного моделирования в физике.

Болонская конвенция, подписанная в 2003 году министром образования Российской Федерации, существенно меняет положение физики , как предмета, изучаемого в средней школе и на нефизических факультетах вузов. Следуя положениям Сорбонской декларации, российское государство в срок до 2010 года берет на себя обязательства трансформировать физику из важнейшего общекультурного и образовательного компонента личности в один из предметов, выбираемых студентом в соответствии с личной образовательной траекторией.

Выбранный курс реформирования образования вызывает справедливую и обоснованную обеспокоенность в среде педагогической общественности. В то же время, нельзя не признать, что он согласуется с проводимыми в стране административной, финансовой, законодательной и другими реформами: необходимые объем и глубину знаний по физике должны определять потребности рынка, а не планы создания абстрактного человека будущего .

Вместе с тем, необходимо отметить, что никакие реформы физического образования не способны изменить объективный статус физики как фундаментальной основы всех областей современного научного знания. Самые первые попытки философов древности объяснить устройство мира были не чем иным, как занятиями физикой, а современная цивилизация, существующая в едином глобальном информационном пространстве, приобрела свои характерные черты также благодаря развитию физической науки. История физики - это история человечества, познающего Вселенную и создающего неприродную реальность, изучение физики развивает интеллект и формирует мировоззрение.

Помимо требований модернизации обучения, обусловленных современными тенденциями развития образования, традиционно актуальной является необходимость обеспечения содержательной и методологической преемственности в изучении физических явлений, процессов и закономерностей при их рассмотрении в курсах общей физики. Формализованное изложение учебного материала и алгоритмизация учебной исследовательской деятельности студентов, свойственные как для курса общей физики, так и для дисциплин, развивающих его положения, ведут к тому, что понимание физической сущности предмета уступает место усвоению готовых знаний и приобретению ограниченного числа навыков . В то же время, современные тенденции развития физического образования нацелены на формирование у учащихся умений нестандартно мыслить, использовать интеллектуальные и коммуникативные способности для успешной организации профессиональной и социальной деятельности в непрерывно меняющихся многофакторных ситуациях.

Компьютерное моделирование, являющееся составной частью и инструментом компьютерного обучения, содержит в себе потенциальные возможности повышения эффективности изучения физических основ в курсах общей физики. К этим возможностям относятся:

Повышение наглядности , вариативности, интерактивности и информационной емкости предоставляемого учебного материала, компенсация, посредством этого, сокращения количества часов аудиторных занятий;

Проведение экспериментальной деятельности, затрудненной, невозможной или небезопасной в условиях учебной лаборатории, обеспечение множественности и вариативности экспериментов;

Модернизация натурного лабораторного исследования посредством применения компьютерных моделей для наглядного представления;

Повышение эффективности самостоятельной работы студентов через предоставление возможности выбора и реализации индивидуального маршрута самостоятельного обучения, соответствующего уровню знаний, темпераменту и особенностям мышления учащихся;

Развитие у учащихся навыков самостоятельной работы с важнейшей формой представления информации - моделью, выработка навыков применения математической модели при планировании, постановке и интерпретации результатов учебного натурного эксперимента, умение производить оценку области применения модели;

Создание условий для реализации личностно-ориентированного подхода к обучению;

Рационализация труда учащегося и педагога через передачу рутинных функций расчета и проверки и сосредоточение внимания на творческом аспекте учебного исследования.

2. Задачи, цели и методы проекта - "компьютерное моделирование в физике".

Цели:

    Развить у учащихся навык создания программ на языке Pascal .

    Развить у учащихся навык моделирования физических процессов, решения задач необходимых для создания моделей.

    Мотивировать учащихся к исследовательской деятельности.

    Укрепить и развить базу знаний учащихся по физике и информатике.

    Пополнить базу демонстрационных экспериментов используемых на уроках физики.

Задачи:

    Создание плана факультативных занятий с учащимися по теме «Компьютерное моделирование в физике».

    Подготовка необходимых материалов для осуществления курса, и привлечение на него учащихся.

    Организация обучения учащихся основам компьютерного программирования на языке Pascal .

    Организация исследовательской деятельности учащихся в компьютерном моделировании.

    Отбор задач для применения на уроках физики.

Методы.

Методом решения поставленных задач для достижения заданных целей мы избрали исследовательскую работу учащихся. В этом случае учитель выполняет роль помощника и лишь корректирует мыслительную деятельность учащихся. Это не освобождает учителя от его обязанностей, но дает учащимся большую свободу для проявления творческих способностей.

Однако практические занятия буду сменять и лекционные, для достижение учащимися лучших результатов и увеличения теоретической базы.

Решение каждой из учебных задач осуществляется согласно следующему плану:

    Введение в задачу.

Объясняется суть задачи, ее практический смысл.

    Теория вопроса.

Обсуждаются все вопросы, связанные с теорией рассматриваемого физического явления/процесса.

    Обсуждение.

Обсуждение путей решения и методов моделирования.

    Теория создания программы.

Обсуждаются все необходимые вопросы для успешного написания учащимися компьютерной программы на языке Pascal .

    Практическая часть.

Создание компьютерное модели учащимися.

    Выводы.

Обсуждение полученных результатов.

Курс начинается с задач на численное интегрирование и дифференцирование, для того чтобы в дальнейшем применять эти наработки при создании физических моделей. В дальнейшем учащиеся знакомятся с моделированием движения тел в поле действия силы тяжести (10 класс), знакомятся с задачей Кеплера, колебательным движением(11 класс) и волновыми явлениями(11 класс). Эти темы для были выбраны для изучения исходя из того, что они по нашему мнению наиболее просты для учащихся и наиболее наглядны. Сложность курса вводит ограничение по возрасту: так участвовать в факультативных занятиях приглашаются учащиеся только 10 и 11 классов.

За теоретическую основу курса компьютерного моделирования в физике мы взяли книги авторов Х.Гулд, Я.Тобочник. «Компьютерное моделирование в физике.»;

3. Тематическое планирование факультатива - "компьютерное моделирование в физике". 68 часов.

Тема

Количество часов

Значение компьютеров в физике. Важность графики. Язык программирования Pascal

Повторение основ языка Pascal . Процедуры и функции. Постоянные и переменные. Основные алгоритмические структуры.

Численное интегрирование

Понятие интеграла. Простые одномерные методы численного интегрирования.

Числовой пример.

Численное интегрирование многих интегралов.

Вычисление интегралов методом Монте-Карло.

Анализ погрешности метода Монте-Карло.

Задача об остывании кофе.

Основные понятия. Алгоритм Эйлера.

Программа для решения задачи.

Устойчивость и точность.

Простейшая графика.

Падение тел.

Основные понятия. Сила, действующая на падающее тело.

Численное решение уравнений.

Одномерное движение.

Двумерные траектории.

Задача Кеплера.

Введение. Уравнение движения планет.

Движение по окружности.

Эллиптические орбиты.

Астрономические единицы. Замечания по программированию.

Численное моделирование орбиты.

Возмущение.

Пространство скоростей.

Солнечная система в миниатюре.

Колебания.

Простой гармонический осциллятор.

Численное моделирование гармонического осциллятора.

Математический маятник. Замечания по программированию.

Затухающие колебания. Линейный отклик на внешнюю силу.

Принципы суперпозиции. Колебания во внешних цепях.

Волновые явления.

Введение. Связанные осцилляторы.

Фурье-анализ.

Волновое движение.

Интерференция и дифракция.

Поляризация.

Геометрическая оптика.

4. Примеры задач решаемых учащимися.

Ранее мы уже интегрировали отдельные задачи из курса компьютерного моделирования в физике в факультативные занятия по информатике.

Результаты полученные нами и вдохновили нас на организацию отдельного факультативного курса. Участники решавшие задачи по моделированию физических процессов лучше осваивали новый материал, с легкостью решали задачи связанные с темами к которым они создавали физические модели.

Пример. Моделирование гармонических колебаний.

Пример программы созданной одним из учащихся изображен на рисунке № 1

Рисунок 1.

Одновременно с этим учащиеся 11-х классов писали проверочную работу по теме «Механические колебания, волны, звук»

Результаты были следующими

Средний балл за проверочную работу учащихся участвовавших в курсе - 4,5

Средний балл за проверочную работу всех учащихся 11 классов МОУ лицей № 38 - 3,9

Кроме того повышалась и успеваемость учащихся по информатике.

Итак мы видим что качество знаний по теме гармонические колебания учащихся участвовавших в курсе было оказалось среднего показателя. Что подтверждает эффективность данного курса.

Созданную учащимися модель может так же использовать учитель как демонстрационный эксперимент на уроках физике в теме «Механические колебания, волны, звук.»

4. Выводы.

В настоящее время падает качество знаний учащихся по основным и необходимым как воздух в современном мире, наполненном инновациями, предметам. (Физика, информатика, математика) Способов борьбы с этим множество.

Однако курс факультативных занятий который был разработан нами не только подстегивает интерес учащихся к физике, но так же укрепляет теоретическую и практическую базу знаний по этому предмету, попутно улучшая практические навыки учащихся по информатике и математике. Совместно с этим ширится инструментарий педагога который он может использовать для демонстрационных экспериментов на уроках физики.

Благодаря всем этим особенностям мы достигаем высоких результатов качества знаний сразу по нескольким предметам.

Литература:

    Д.Хеерман. Методы компьютерного эксперимента в статистической физике. Перевод с англ., "Наука", Москва, 1990.

    К.Биндер, Д.Хеерман. Моделирование методом Монте-Карло в статистической физике. Перевод с англ., "Наука", Москва, 1995.

    Методы Монте-Карло в статистической физике. Под.ред. К.Биндера, Москва, Мир, 1982.

    Х.Гулд, Я.Тобочник. Компьютерное моделирование в физике. В 2-ух томах, Москва, Мир, 1990.

    M.P.Allen, D.J.Tildesley. Computer simulation of liquids. Clarendon Press, Oxford, 1987.

    K.Binder (editor), Applications of the Monte Carlo method in statistical physics, Springer-Verlag, 1987.

    M.P.Allen, D.J.Tildesley (eds.). Computer simulation in Chemical Physics. Kluwer Academic Publishers, 1993.

    Monte Carlo and Molecular Dynamics Simulations in Polymer Science. K.Binder (ed.), Oxford University Press, 1995.

    Monte Carlo and Molecular Dynamics of Condensed Matter Physics, edited by K.Binder and G.Ciccotti, (proceedings of the conference in Como, Italy), 1996.

    D.Frenkel, B.Smit, Understanding molecular simulation: from algorithms to applications. Academic Press, 1996.

Моделирование является одним из способов познания мира.

Понятие моделирования достаточно сложное, оно включает в себя огромное разнообразие способов моделирования: от создания натуральных моделей (уменьшенных и или увеличенных копий реальных объектов) до вывода математических формул.

Для различных явлений и процессов бывают уместными разные способы моделирования с целью исследования и познания.

Объект, который получается в результате моделирования, называется моделью . Должно быть понятно, что это совсем не обязательно реальный объект. Это может быть математическая формула, графическое представление и т.п. Однако он вполне может заменить оригинал при его изучении и описании поведения.

Хотя модель и может быть точной копией оригинала, но чаще всего в моделях воссоздаются какие-нибудь важные для данного исследования элементы, а остальными пренебрегают. Это упрощает модель. Но с другой стороны, создать модель – точную копию оригинала – бывает абсолютно нереальной задачей. Например, если моделируется поведение объекта в условиях космоса. Можно сказать, что модель – это определенный способ описания реального мира.

Моделирование проходит три этапа:

  1. Создание модели.
  2. Изучение модели.
  3. Применение результатов исследования на практике и/или формулирование теоретических выводов.

Видов моделирования огромное количество. Вот некоторые примеры типов моделей:

Математические модели . Это знаковые модели, описывающие определенные числовые соотношения.

Графические модели . Визуальное представление объектов, которые настолько сложны, что их описание иными способами не дает человеку ясного понимания. Здесь наглядность модели выходит на первый план.

Имитационные модели . Позволяют наблюдать изменение поведения элементов системы-модели, проводить эксперименты, изменяя некоторые параметры модели.

Над созданием модели могут работать специалисты из разных областей, т.к. в моделировании достаточно велика роль межпредметных связей.

Особенности компьютерного моделирования

Совершенствование вычислительной техники и широкое распространение персональных компьютеров открыло перед моделированием огромные перспективы для исследования процессов и явлений окружающего мира, включая сюда и человеческое общество.

Компьютерное моделирование – это в определенной степени, то же самое, описанное выше моделирование, но реализуемое с помощью компьютерной техники.

Для компьютерного моделирования важно наличие определенного программного обеспечения.

При этом программное обеспечение, средствами которого может осуществляться компьютерное моделирование, может быть как достаточно универсальным (например, обычные текстовые и графические процессоры), так и весьма специализированными, предназначенными лишь для определенного вида моделирования.

Очень часто компьютеры используются для математического моделирования. Здесь их роль неоценима в выполнении численных операций, в то время как анализ задачи обычно ложится на плечи человека.

Обычно в компьютерном моделировании различные виды моделирования дополняют друг друга. Так, если математическая формула очень сложна, что не дает явного представления об описываемых ею процессах, то на помощь приходят графические и имитационные модели. Компьютерная визуализация может быть намного дешевле реального создания натуральных моделей.

С появлением мощных компьютеров распространилось графическое моделирование на основе инженерных систем для создания чертежей, схем, графиков.

Кобельницкий Владислав

Компьютерное моделирование. Моделирование физический и математических процессов на компьютере.

Скачать:

Предварительный просмотр:

Исследовательская работа

«КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ»

ВыпоЛНИЛ:

КОБЕЛЬНИЦКИЙ ВЛАДИСЛАВ

УЧЕНИК 9 КЛАССА

МКОУ ООШ №17

РУКоводитель:

учитель математики и информатики

тВОРОЗОВА Е.С.

кАНСК, 2013

  1. вВЕДЕНИЕ……………………………………………………………………3
  2. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ…………………………………...5
  3. ПРАКТИЧЕСКАЯ ЧАСТЬ…………………………………………………..10
  4. ЗАКЛЮЧЕНИЕ……………………………………………………………...18
  5. СПИСОК ЛИТЕРАТУРЫ…………………………………………………...20

ВВЕДЕНИЕ

В большинстве сфер человеческой деятельности в настоящее время применяется компьютерная техника. Например, в парикмахерской можно с помощью компьютера подобрать заранее ту прическу, которая понравится клиенту. Для этого клиента фотографируют, фотографию в электронном виде вводят в программу, содержащую самые разнообразные прически, на экране отображается фото клиента, к которому можно «примерить» любую прическу. Также легко можно подобрать цвет волос, макияж. С помощью компьютерной модели можно заранее увидеть, подойдет ли клиенту та или иная прическа. Конечно, этот вариант лучше, нежели проводить эксперимент реально, в реальной жизни исправить нежелательную ситуацию гораздо сложнее.

Изучая тему по информатике, «Компьютерное моделирование», меня заинтересовал вопрос – «Любой ли процесс, или явление можно смоделировать с помощью ПК?». Это и послужило выбором моего исследования.

Тема моего исследования: «Компьютерное моделирование».

Гипотеза: любой процесс или явление можно смоделировать с помощью ПК.

Цель работы – изучить возможности компьютерного моделирования, использование его в различных предметных областях.

Для достижения данной цели в работе решаются следующие задачи:

– дать теоретические сведения о моделировании;

– описать этапы моделирования;

– привести примеры моделей процессов или явлений из различных предметных областей;

Сделать общий вывод о компьютерном моделировании в предметных областях.

Я решил подробнее рассмотреть компьютерное моделирование в программах MS Excel и «Живая математика». В работе рассмотрены преимущества программы MS Excel. С помощью данных программ, мной были построены компьютерные модели из различных предметных областей, таких как математика, физика, биология.

Построение и исследование моделей – это один из важнейших методов познания, умение использовать компьютер для построения моделей – одно из требований сегодняшнего дня, поэтому я считаю данную работу актуальной. Она является важной для меня, так как я хочу продолжить свое дальнейшее обучение в этом направлении, а также рассмотреть другие программы при разработке компьютерных моделей, это цель на дальнейшее продолжение этой работы.

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

Анализируя литературу по теме исследования, я выяснил, что практически во всех естественных и социальных науках построение и использование моделей, является мощным инструментом исследований. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения оказывается построение модели, отображающей лишь какую-то часть реальности и потому многократно более простой, чем эта реальность.

Модель (лат. modulus - мера) - это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Модель - создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающий свойства, характеристики и связи объекта – оригинала произвольной природы, существенные для задачи, решаемой субъектом.

Моделирование – процесс создания и использования модели.

Цели моделирования

  1. Познание действительности
  2. Проведение экспериментов
  3. Проектирование и управление
  4. Прогнозирование поведения объектов
  5. Тренировка и обучения специалистов
  6. Обработка информации

Классификация по форме представления

  1. Материальные - воспроизводят геометрические и физические свойства оригинала и всегда имеют реальное воплощение (детские игрушки, наглядные учебные пособия, макеты, модели автомобилей и самолетов и прочее).
  1. a) геометрически подобные масштабные, воспроизводящие пространственно- геометрические характеристики оригинала безотносительно его субстрату (макеты зданий и сооружений, учебные муляжи и др.);
  2. b) основанные на теории подобия субстратно подобные, воспроизводящие с масштабированием в пространстве и времени свойства и характеристики оригинала той же природы, что и модель, (гидродинамические модели судов, продувочные модели летательных аппаратов);
  3. c) аналоговые приборные, воспроизводящие исследуемые свойства и характеристики объекта оригинала в моделирующем объекте другой природы на основе некоторой системы прямых аналогий (разновидности электронного аналогового моделирования).
  1. Информационные - совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также их взаимосвязь с внешним миром).
  1. 2.1. Вербальные - словесное описание на естественном языке).
  2. 2.2. Знаковые - информационная модель, выраженная специальными знаками (средствами любого формального языка).
  1. 2.2.1. Математические - математическое описание соотношений между количественными характеристиками объекта моделирования.
  2. 2.2.2. Графические - карты, чертежи, схемы, графики, диаграммы, графы систем.
  3. 2.2.3. Табличные - таблицы: объект-свойство, объект-объект, двоичные матрицы и так далее.
  1. Идеальные – материальная точка, абсолютно твердое тело, математический маятник, идеальный газ, бесконечность, геометрическая точка и прочее...
  1. 3.1. Неформализованные модели - системы представлений об объекте оригинале, сложившиеся в человеческом мозгу.
  2. 3.2. Частично формализованные .
  1. 3.2.1. Вербальные - описание свойств и характеристик оригинала на некотором естественном языке (текстовые материалы проектной документации, словесное описание результатов технического эксперимента).
  2. 3.2.2. Графические иконические - черты, свойства и характеристики оригинала, реально или хотя бы теоретически доступные непосредственно зрительному восприятию (художественная графика, технологические карты).
  3. 3.2.3. Графические условные - данные наблюдений и экспериментальных исследований в виде графиков, диаграмм, схем.
  1. 3.3. Вполне формализованные (математические) модели.

Свойства моделей

  1. Конечность : модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
  2. Упрощенность : модель отображает только существенные стороны объекта;
  3. Приблизительность : действительность отображается моделью грубо или приблизительно;
  4. Адекватность : насколько успешно модель описывает моделируемую систему;
  5. Информативность : модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модел;
  6. Потенциальность : предсказуемость модели и её свойств;
  7. Сложность : удобство её использования;
  8. Полнота : учтены все необходимые свойства;
  9. Адаптивность .


Так же необходимо отметить:

  1. Модель представляет собой «четырехместную конструкцию», компонентами которой являются субъект; задача, решаемая субъектом; объект-оригинал и язык описания или способ воспроизведения модели. Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла.
  2. Каждому материальному объекту, вообще говоря, соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами.
  3. Паре задача-объект тоже соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения.
  4. Модель по определению всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего. Это ее фундаментальное свойство.
  5. Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование.
  6. Частным, но весьма важным для развитых в теоретическом отношении научных и технических дисциплин является случай, когда роль объекта-моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некий идеальный конструкт, т.е. по сути дела другая модель, созданная ранее и практически достоверная. Подобное вторичное, а в общем случае n-кратное моделирование может осуществляться теоретическими методами с последующей проверкой получаемых результатов по экспериментальным данным, что характерно для фундаментальных естественных наук. В менее развитых в теоретическом отношении областях знания (биология, некоторые технические дисциплины) вторичная модель обычно включает в себя эмпирическую информацию, которую не охватывают существующие теории.

Процесс построения модели называется моделированием.

В силу многозначности понятия «модель» в науке и технике не существует единой классификации видов моделирования: классификацию можно проводить по характеру моделей, по характеру моделируемых объектов, по сферам приложения моделирования (в технике, физических науках, кибернетике и т. д.). Например, можно выделить следующие виды моделирования:

  1. Информационное моделирование
  2. Компьютерное моделирование
  3. Математическое моделирование
  4. Математико-картографическое моделирование
  5. Молекулярное моделирование
  6. Цифровое моделирование
  7. Логическое моделирование
  8. Педагогическое моделирование
  9. Психологическое моделирование
  10. Статистическое моделирование
  11. Структурное моделирование
  12. Физическое моделирование
  13. Экономико-математическое моделирование
  14. Имитационное моделирование
  15. Эволюционное моделирование
  16. Графическое и геометрическое моделирование
  17. Натурное моделирование

Компьютерное моделирование включает в себя процесс реализации информационной модели на компьютере и исследование с помощью этой модели объекта моделирования - проведение вычислительного эксперимента . С помощью компьютерного моделирования решаются многие научные и производственные вопросы.

Выделение существенных сторон реального объекта и отвлечение от его второстепенных свойств с точки зрения поставленной задачи, позволяет развить аналитические способности. Реализация модели объекта на компьютере требует знания прикладных программ, а также языков программирования.

В практической части я строил модели по следующей схеме:

  1. Постановка задачи (описание задачи, цели моделирования, формализация задачи);
  2. Разработка модели;
  3. Компьютерный эксперимент;
  4. Анализ результатов моделирования.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Моделирование различных процессов и явлений

Работа 1 «Определение удельной теплоемкости вещества».

Цель работы: экспериментальным путем определяеть удельную теплоемкость данного вещества.

Первый этап

Второй этап

  1. Введение значений измеряемых величин.
  2. Введение формул для вычисления значения удельной теплоемкости вещества.
  3. Расчет удельной теплоемкости.

Третий этап . Сравнить табличное и экспериментальное значение теплоемкости.

Определение удельной теплоемкости вещества

Обмен внутренней энергией между телами и окружающей средой без совершения механической работы называется теплообменом.

При теплообмене взаимодействие молекул тел, имеющих различную температуру, приводит к передаче энергии от тела с большей температурой к телу с меньшей температурой.

Если между телами происходит теплообмен, то внутренняя энергия всех нагревающихся тел увеличивается на столько, на сколько уменьшается внутренняя энергия остывающих тел.

Порядок выполнения работы:

Взвесьте внутренний алюминиевый сосуд калориметра. Налейте в него воды, примерно до половины сосуда и вновь взвесьте, чтобы определить массу воды в сосуде. Измерьте начальную температуру воды в сосуде.

Из общего для всего класса сосуда с кипящей водой, аккуратно, чтобы не обжечь руку, достаньте проволочным крючком металлический цилиндр и опустите его в калориметр.

Следите за повышением температуры воды в калориметре. Когда температура достигнет максимального значения и перестанет повышаться, запишите ее значение в таблицу.

Достаньте цилиндр из сосуда, осушив его фильтровальной бумагой, взвесьте его и запишите массу цилиндра в таблицу.

Из уравнения теплового баланса

c 1 m 1 (T-t 1 )+c 2 m 2 (T-t 1 )=cm(t 2 -T)

вычислите удельную теплоемкость вещества, из которого изготовлен цилиндр.

m 1 – масса алюминиевого сосуда;

c 1 – удельная теплоемкость алюминия;

m 2 - масса воды;

с 2 - удельная теплоемкость воды;

t 1 - начальная температура воды

m - масса цилиндра;

t 2 - начальная температура цилиндра;

Т- общая температура

Работа 2 «Изучение колебаний пружинного маятника»

Цель работы: определить экспериментальным путем жесткость пружины и определить частоту колебаний пружинного маятника. Выяснить зависимость частоты колебаний от массы подвешенного груза.

Первый этап . Составляется математическая модель.

Второй этап . Работа с составленной моделью.

  1. Введите формул для вычисления значения коэффициента жесткости пружины.
  2. Введение в ячейки формул для вычисления теоретического и экспериментального значения частоты колебаний пружинного маятника.
  3. Проведение опытов, подвешивая к пружине грузы различной массы. Результаты занесите в таблицу.

Третий этап . Сделать вывод о зависимости частоты колебаний от массы подвешенного груза. Сравнить теоретическое и экспериментальное значение частот.

Описание работы в лабораторном практикуме:

Груз, подвешенный на стальной пружине и выведенный из состояния равновесия, совершает под действием сил тяжести и упругости пружины гармонические колебания. Собственная частота колебаний такого пружинного маятника определяется выражением

где k – жесткость пружины; m – масса тела.

Задача лабораторной работы заключается в том, чтобы экспериментально проверить полученную теоретически закономерность. Для решения этой задачи сначала необходимо определить жесткость k пружины, применяемой в лабораторной установке, массу m груза и вычислить собственную частоту  0 колебаний маятника. Затем, подвесив груз массой m на пружину, экспериментально проверить полученный теоретически результат.

Выполнение работы.

1. Укрепите пружину в лапке штатива и подвесьте к ней груз массой 100 г. Рядом с грузом укрепите вертикально измерительную линейку и отметьте начальное положение груза.

2. Подвесьте к пружине еще два груза по 100 г. и измерьте ее удлинение вызванное действием силы F2Н. Занесите значение силы F и удлинения x в таблицу и вы получите значение жесткости k пружины, вычисленную по формуле

3. Зная величину жесткости пружины, вычислите собственную частоту  0 колебаний пружинного маятника массой 100, 200, 300 и 400 г.

4. Для каждого случая экспериментально определите частоту колебаний  маятника. Для этого измерьте интервал времени t, за который маятник совершит 10-20 полных колебаний, и вы получите значение частоты, вычисленное по формуле

где n – число колебаний.

5. Сравните расчетные значения собственной частоты  0 колебаний пружинного маятника с частотой , полученной экспериментально.

Работа 3 «Закон сохранения механической энергии»

Цель работы: экспериментальным путем проверить закон сохранения механической энергии.

Первый этап . Составление математической модели.

Второй этап . Работа с составленной моделью.

  1. Введение данных в электронную таблицу.
  2. Введите формул для вычисления значения потенциальной и кинетической энергии.
  3. Проведение опытов. Результаты занесите в таблицу.

Третий этап . Сравните кинетическую энергию шарика и изменение его потенциальной энергии, сделайте вывод.

Описание работы в лабораторном практикуме

ПРОВЕРКА ЗАКОНА СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ.

В работе необходимо экспериментально установить, что полная механическая энергия замкнутой системы остается неизменной, если между телами действуют только силы тяготения и упругости.

Установка для опыта показана на рисунке 1. При отклонении стержня А от вертикального положения шарик на его конце поднимется на некоторую высоту h относительно начального уровня. При этом система взаимодействующих тел Земля –шарик приобретает дополнительный запас потенциальной энергии ΔEp=mgh .

Если стержень освободить, то он возвратится в вертикальное положение до специального упора. Считая силы трения и изменения потенциальной энергии упругой деформации стержня очень малыми, можно принять, что во время движения стержня на шарик действуют только гравитационные силы и силы упругости. На основании закона сохранения механической энергии можно ожидать, что кинетическая энергия шарика в момент прохождения исходного положения будет равна изменению его потенциальной энергии:

Для определения кинетической энергии шарика необходимо измерить его скорость. Для этого укрепляют прибор в лапке штатива на высоте H над поверхностью стола, отводят стержень с шариком в сторону и затем отпускают. При ударе стержня об упор шарик соскакивает со стержня и продолжает вследствие инерции двигаться со скоростью v в горизонтальном направлении. Измерив дальность полета шарика l при его движении по параболе, можно определить горизонтальную скорость v:

где t -время свободного падения шарика с высоты H .

Определив массу шарика m с помощью весов, можно найти его кинетическую энергию и сравнить ее с изменением потенциальной энергии ΔEp .

В практической части данной работы мной были построены модели физических процессов, а также математические модели, приведены описание лабораторных работ.

В результаты работы, я построил следующие модели:

Физические модели движения тел (Ms Excel, предмет физика)

Равномерного прямолинейного движения, равноускоренного движения (Ms Excel, предмет физика);

Движения тела, брошенного под углом к горизонту (Ms Excel, предмет физика);

Движения тел с учетом силы трения (Ms Excel, предмет физика);

Движения тел с учетом многих сил действующих на тело (Ms Excel, предмет физика);

Определение удельной теплоемкости вещества (Ms Excel, предмет физика);

Колебания пружинного маятника (Ms Excel, предмет физика);

Математическая модель вычисления арифметической и алгебраической прогрессии; (Ms Excel, предмет алгебра);

Компьютерной модели модификационной изменчивости (Ms Excel, предмет биология);

Построение и исследование графиков функций в программе «Живая математика».

После построение моделей, можно сделать вывод: чтобы правильно построить модель, необходимо поставить цель, я придерживался схемы, представленной в теоретической части.

Заключение

Мной были выявлены преимущества использования программы Excel:

а) функциональные возможности программы Excel заведомо перекрывают все потребности по автоматизации обработки данных эксперимента, построению и исследованию моделей; б) обладает понятным интерфейсом; в) изучение Excel предусматривается программами общего образования по информатике, следовательно, возможно эффективное использование Excel; г) данная программа отличается доступностью в изучении и простотой в управлении, что принципиально важно как для меня, как ученика; д) результаты деятельности на рабочем листе Excel (тексты, таблицы, графики, формулы) «открыты» пользователю.

Cреди всех известных программных средств Excel обладает едва ли не самым богатым инструментарием для работы с графиками. Программа позволяет с использованием приемов автозаполнения представлять данные в табличной форме, оперативно их преобразовывать с использованием огромной библиотеки функций, строить графики редактировать их практически по всем элементам, увеличивать изображение какого-либо фрагмента графика, выбирать функциональные масштабы по осям, экстраполировать графики и т.д.

Подводя итог работы, хотелось бы сделать вывод: цель, поставленная в начале этого исследования, была достигнута. Моё исследования показало, что действительно можно смоделировать любой процесс или явление. Гипотеза поставленная мною, верна. В этом я убедился, когда построил достаточное количество таких моделей. Чтобы построить любую модель, нужно придерживаться определенных правил, которые описаны мною в практической части данной работы.

Данное исследование будет продолжено, будут изучены другие программы, позволяющие моделировать процессы.

СПИСОК ЛИТЕРАТУРЫ

  1. Дегтярев Б.И., Дегтярева И.Б., Пожидаев С.В. , Решение задач по физике на программируемых калькуляторах, М., Просвещение, 1991 г.
  2. Демонстрационный эксперимент по физике в старших классах средней школы. Под ред. Покровского А.А., М.Просвещение, 1972 г.
  3. Долголаптев В. Работа в Excel 7.0. для Windows 95.М., Бином, 1995 г
  4. Ефименко Г.Е. Решение задач по экологии с помощью электронных таблиц. Информатика, №5 – 2000г.
  5. Златопольский Д.М., Решение уравнений с помощью электронных таблиц. Информатика,№41 – 2000г.
  6. Иванов В. Microsoft Office System 2003 .Русская версия. Издательский дом «Питер», 2005 г.
  7. Извозчиков В.А., Слуцкий А.М., Решение задач по физике на компьютере, М., Просвещение, 1999г.
  8. Нечаев В.М. Электронные таблицы и базы данных. Информатика, №36- 1999г.
  9. Программы для общеобразовательных учреждений. Физика 7-11классы, М., Дрофа, 2004 г.
  10. Сайков Б.П. Excel: построение диаграмм. Информатика и образование №9 – 2001 г.
  11. Сборник задач по физике. Под ред. С.М.Козела, М., Наука, 1983 г.
  12. Семакин И.Г. , Шеина Т.Ю, Преподавание базового курса информатики в средней школе., М., изд-во Бином, 2004 г.
  13. Урок физики в современной школе. Под ред. В.Г.Разумовского, М.Просвещение, 1993 г.