Метод однократного замещения базиса онлайн. Решение задач линейного программирования методом искусственного базиса

Метод искусственного базиса (М-задача).

Для многих задач линейного програм­мирования, записанных в форме основной задачи и имеющих опорные планы, среди векторов P j не всегда есть m единичных.

Рассмотрим такую задачу:

Пусть требуется найти максимум функции

F = c 1 x 1 + c 2 x 2 + ……+ c n x n (1)

при условиях

……………………………………… (2)

где b i  0 (i =l, m), m <.>n и среди векторов P 1 , P 2 , …, P n нет m единичных.

Определение . Задача, состоящая в определении максимального значения функции

F = c 1 x 1 + c 2 x 2 + ……+ c n x n x n +1 - …- М x n + m (3)

при условиях

……………………………………… (4)

где M - некоторое достаточно большое положительное число, конкретное значение которого обычно не задается, называется расширенной задачей (М-задачей) по отношению к задаче (1) - (2).

Расширенная задача имеет опорный план

Х=(0; 0; ...; 0; b 1 ; b 2 ; ...;b m).

определяемых системой единичных векторов P n +1 ; Р п+2 , … Р п+т , образующих базис m-ro векторного пространства, который назы­вается искусственным. Сами векторы, так же как и переменные x n + i (i =l, m ), называются искусственными. Так как расширенная задача имеет опорный план, то ее решение может быть найдено симплексным методом.

Теорема Если в оптимальном плане X*=(x* 1 , x * 2 , ...; x * n , x * n +1 ; ...; x * n + m) расширенной задачи (3) - (4) значения ис­кусственных переменных x * n + i =0 (i =1, m ), то X*=(x* 1 , x * 2 , ...; x * n) является оптимальным планом задачи (1) - (2).

Таким образом, если в найденном оптимальном плане расши­ренной задачи, значения искусственных переменных равны ну­лю, то тем самым получен оптимальный план исходной задачи.

Значения индексной строки ∆ 0 , ∆ 1 , …, ∆ n состоят из двух частей, одна из кото­рых зависит от M, а другая - нет. Заполняют симплекс - таблицу, которая содер­жит на одну строку больше, чем обычная симплексная табли­ца. При этом в (m+2)-ю строку помещают коэффициенты при M, а в (m+1)-ю – слагаемые, не содержащие M. При переходе от одного опорного плана к другому в базис вводят вектор, соответствующий наибольшему по абсолютной величине отрицательному числу (m+2)-й строки. Искусствен­ный вектор, исключенный из базиса, в следующую симплекс-таблицу не записывают. Пересчет симплекс-таблиц при переходе от одного опорного плана к другому производят по общим правилам симплексного метода.

Итерационный процесс по (m+2) -и строке ведут до тех пор, пока:

    либо все искусственные векторы не будут исключены из базиса;

    либо не все искусственные векторы исключены, но (m+2)-я строка не содержит больше отрицательных элементов в индексах ∆ 1 , …, ∆ n .

В первом случае базис отвечает некоторому опорному пла­ну исходной задачи и определение ее оптимального плана про­должают по (m+1)-й строке.

Во втором случае, если значение ∆ 0 отрицательное, исходная задача не имеет решения; если же ∆ 0 =0, то найденный опорный план исходной задачи является вырожденным и базис содержит по крайней мере один из векторов искусственного базиса.

Этапы нахождения решения задачи (1) - (2)

методом искусственного базиса:

    Составляют расширенную задачу (3) - (4).

    Находят опорный план расширенной задачи.

    С помощью обычных вычислений симплекс-метода исклю­чают искусственные переменные из базиса. В результате либо на­ходят опорный план исходной задачи (1) - (2), либо уста­навливают ее неразрешимость.

    Используя найденный опорный план задачи (1) - (2), либо находят симплекс-методом оптимальный план исходной задачи, либо устанавливают ее неразрешимость.

Пример.

Найти минимум функции F = - 2x 1 + 3x 2 - 6x 3 - x 4

при ограничениях:

2x 1 +x 2 -2x 3 +x 4 =24

x 1 +2x 2 +4x 3 ≤22

x 1 -x 2 +2x 3 ≥10

x i ≥0, i =1,4

Решение.

Запишем данную задачу в форме основной задачи: найти максимум функции F = 2x 1 - 3x 2 + 6x 3 + x 4

при ограничениях:

2x 1 +x 2 -2x 3 +x 4 =24

x 1 +2x 2 +4x 3 +x 5 =22

x 1 -x 2 +2x 3 - x 6= 10

x i ≥0, i =1, 6

В системе уравнений последней задачи рассмотрим векторы из коэффициентов при неизвестных:

Среди векторов P 1 , Р 2 , … P 6 только два единичных (P 4 и P 5). Поэтому в левую часть третьего уравнения системы ограничений задачи добавим дополнительную неотрицательную переменную х 7 и рассмотрим расширенную задачу, состоящую в максимизации функции

F = 2x 1 - 3x 2 + 6x 3 + x 4 - Мх7

при ограничениях:

2x 1 +x 2 -2x 3 +x 4 =24

x 1 +2x 2 +4x 3 +x 5 =22

x 1 -x 2 +2x 3 - x 6 +x 7= 10

Расширенная задача имеет опорный план Х=(0; 0; 0; 24; 22; 0; 10), определяемый системой трех единичных векторов: P 4 , P 5 , Р 7 .

Понятие двойственной (соапряженной) задачи линейного программирования.

Правила построения двойственной задачи.

С каждой задачей линейного программирования (ЗЛП), которая называется двойственной задачей (или сопряженной) по отношению к исходной задаче, которая называется прямой.

Двойственная задача строится по отношению к прямой задаче, записанной в стандартной форме:

F=c 1 x 1 +c 2 x 2 +…+c n x n  max (3.6)

a 11 x 1 +a 12 x 2 +…+a 1n x n ≤ b 1 ,

a 21 x 1 +a 22 x 2 +…+a 2n x n ≤ b 2 ,

………………………………

a k1 x 1 +a k2 x 2 +…+a kn x n ≤ =b k , (3.7)

a k+1,1 x 1 +a k+1,2 x 2 +…+a k+1,n x n =b k+1 ,

………………………………

a m1 x 1 +a m2 x 2 +…+a mn x n =b m ,

x j ≥ 0, , l ≤ n (3.8)

Задача, состоящая в нахождении минимального значения функции

L = b 1 y 1 + b 2 y 2 + … + b m y m (3.9)

при условиях

a 11 y 1 + a 12 y 2 +…+ a m1 y m ≥ c 1

a 21 y 1 + a 22 y 2 +…+ a m2 y m ≥ c 2

………………………………

a 1 l y 1 + a 2 l y 2 +…+ a m l y m ≥ c l (3.10)

a l +1,1 y 1 + a l +1,2 y 2 +…+ a l +1,m y m = c l+1

………………………………

a m1 y 1 + a m2 y 2 +…+ a mn y m = c m

y i ≥ 0, , k ≤ m (3.11)

называется двойственной по отношению к задаче (3.6) – (3.8).

Правила построения двойственной задачи приведены в таблице:

Структурные характеристики ЗЛП

Задача линейного программирования

Двойственная

1. Целевая функция

Максимизация (max)

Минимизация (min)

2. Количество переменных

n переменных

Равно количеству ограничений прямой задачи (3.7), y i , т.е. m

3. Количество ограничений

m ограничений

Равно количеству переменных прямой задачи x j , , т.е n

4. Матрица коэффициентов в системе ограничений

5. Коэффициенты при переменных в целевой функции

c 1 ,c 2, …,c n

b 1 ,b 2, …,b m

6. Правая часть системы ограничений

b 1 ,b 2, …,b m

c 1 ,c 2, …,c n

7. Знаки в системе ограничений

а) x j ≥ 0- условие неотрицательности

j-е ограничение имеет знак «≥»

б) на переменную x j не наложено условие неотрицательности

j-е ограничение имеет знак «=»

в) i-е ограничение имеет знак «≤»

переменная y i ≥0

г) i-е ограничение имеет знак «=»

на переменную y i не наложено условие неотрицательности

Примечание

    Прямая задача на максимум и двойственная на минимум являются взаимодвойственными задачами. Поэтому можно считать задачу (3.9) – (3.11) прямой ЗЛП, а задачу (3.6) – (3.8) – двойственной к ней задачей. При этом правила построения двойственной ЗЛП сохраняются, лишь с тем изменением, что исходной считается задача на минимум.

    Если исходная задача решается на max (min), а в системе ограничений) i -е (j -е) ограничение имеет знак «≤» («≥»), то для построения двойственной задачи необходимо:

а) либо домножить обе части i -го (j -го) неравенства на (-1) и поменять знак на «≤» («≥»)

б) либо привести i -е (j -е) ограничение к равенству путем введения дополнительной переменной x n+ i ≥0

x 1

+x 2

+x 3

x 1

+x 2

+x 3

x 1

+x 2

+x 3

≤ = ≥

≤ = ≥

≤ = ≥

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Симплекс метод

Примеры решения ЗЛП симплекс методом

Пример 1. Решить следующую задачу линейного программирования:

Правая часть ограничений системы уравнений имеет вид:

Запишем текущий опорный план:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-3), следовательно в базис входит вектор x при . min (40:6, 28:2)=20/3 соответствует строке 1. Из базиса выходит вектор x 3 . Сделаем исключение Гаусса для столбца x 2 , учитывая, что ведущий элемент соответствует строке 1. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 2, 3, 4 со строкой 1, умноженной на -1/3, 1/6, 1/2, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Данный опорный план не является оптимальным, так как в последней строке есть отрицательный элемент (-3), следовательно в базис входит вектор x 1 . Определяем, какой вектор выходит из базиса. Для этого вычисляем при . min(44/3:11/3, 62/3:5/3)=4 соответствует строке 2. Из базиса выходит вектор x 4 . Сделаем исключение Гаусса для столбца x 1 , учитывая, что ведущий элемент соответствует строке 2. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 1, 3, 4 со строкой 2, умноженной на 1/11, -5/11, 9/11, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Текущий опорный план является оптимальным, так как в строках 4 под переменными нет отрицательных элементов.

Решение можно записать так: .

Значение целевой функции в данной точке: F (X )=.

Пример 2. Найти максимум функции

Р е ш е н и е.

Базисные векторы x 4 , x 3 , следовательно, все элементы в столбцах x 4 , x 3 , ниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца x 4 , кроме ведущего элемента. Для этого сложим строку 3 со строкой 1, умноженной на 4. Обнулим все элементы столбца x 3 , кроме ведущего элемента. Для этого сложим строку 3 со строкой 2, умноженной на 1.

Симплекс таблица примет вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательный элемент (-11), следовательно в базис входит вектор x 2 . Определяем, какой вектор выходит из базиса. Для этого вычисляем при . Все следовательно целевая функция неограничена сверху. Т.е. задача линейного программирования неразрешима.

Примеры решения ЗЛП методом искусственного базиса

Пример 1. Найти максимум функции

Р е ш е н и е. Так как количество базисных векторов должен быть 3, то добавляем искусственное переменное, а в целевую функцию добавляем это переменное, умноженное на −M, где M, очень большое число:


Матрица коэффициентов системы уравнений имеет вид:

Базисные векторы следовательно, все элементы в столбцах ниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца кроме ведущего элемента. Для этого сложим строку 5 со строкой 3, умноженной на -1.

Симплекс таблица примет вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-5), следовательно в базис входит вектор Определяем, какой вектор выходит из базиса. Для этого вычисляем при соответствует строке 3. Из базиса выходит вектор Сделаем исключение Гаусса для столбца учитывая, что ведущий элемент соответствует строке 3. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строку 5 со строкой 3, умноженной на 1. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-3), следовательно в базис входит вектор Определяем, какой вектор выходит из базиса. Для этого вычисляем при соответствует строке 1. Из базиса выходит вектор x 2 . Сделаем исключение Гаусса для столбца x 1 , учитывая, что ведущий элемент соответствует строке 1. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 2, 3, 4 со строкой 1, умноженной на 3/2, -1/10, 3/2, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Данный опорный план не является оптимальным, так как в последней строке есть отрицательные элементы. Самый большой по модулю отрицательный элемент (-13/2), следовательно в базис входит вектор x 3 . Определяем, какой вектор выходит из базиса. Для этого вычисляем при соответствует строке 3. Из базиса выходит вектор x 5 . Сделаем исключение Гаусса для столбца x 3 , учитывая, что ведущий элемент соответствует строке 3. Обнулим все элементы этого столбца, кроме ведущего элемента. Для этого сложим строки строки 1, 2, 4 со строкой 3, умноженной на 5/3, 25/9, 65/9, соответственно. Далее делим строку с ведущим элементом на ведущий элемент.

Симплекс таблица примет следующий вид:

Текущий опорный план является оптимальным, так как в строках 4−5 под переменными нет отрицательных элементов.

Решение исходной задачи можно записать так:

Пример 2. Найти оптимальный план задачи линейного программирования:

Матрица коэффициентов системы уравнений имеет вид:

Базисные векторы x 4 , x 5 , x 6 , следовательно, все элементы в столбцах x 4 , x 5 , x 6 , ниже горизонтальной линии должны быть нулевыми.

Обнулим все элементы столбца x 4 , кроме ведущего элемента. Для этого сложим строку 4 со строкой 1, умноженной на -1. Обнулим все элементы столбца x 5 , кроме ведущего элемента. Для этого сложим строку 5 со строкой 2, умноженной на -1. Обнулим все элементы столбца x 6 , кроме ведущего элемента. Для этого сложим строку 5 со строкой 3, умноженной на -1.

Симплекс таблица примет вид:

В строке 5 элементы, соответствующие переменным x 1 , x 2 , x 3 , x 4 , x 5 , x 6 неотрицательны, а число находящийся в пересечении данной строки и столбца x 0 отрицательнo. Тогда исходная задача не имеет опорного плана. Следовательно она неразрешима.

Когда в условии присутствуют ограничения типа равенств. Рассмотрим задачу:

max{F(x)=∑c i x i |∑a ji x i =b j , j=1,m ; x i ≥0}.

В ограничения и в функцию цели вводят так называемые «искусственные переменные» R j следующим образом:

∑a ji x+R j =b j , j=1,m ;F(x)=∑c i x i -M∑R j

При введении искусственных переменных в методе искусственного базиса в функцию цели им приписывается достаточно большой коэффициент M, который имеет смысл штрафа за введение искусственных переменных. В случае минимизации искусственные переменные прибавляются к функции цели с коэффициентом M. Введение искусственных переменных допустимо в том случае, если в процессе решения задачи они последовательно обращаются в нуль.

Симплекс-таблица, которая составляется в процессе решения, используя метод искусственного базиса, называется расширенной. Она отличается от обычной тем, что содержит две строки для функции цели: одна – для составляющей F = ∑c i x i , а другая – для составляющей M ∑R j Рассмотрим процедуру решения задачи на конкретном примере.

Пример 1. Найти максимум функции F(x) = -x 1 + 2x 2 - x 3 при ограничениях:

2x 1 +3x 2 +x 3 =3,

x 1 ≥0, x 2 ≥0, x 3 ≥0 .

Применим метод искусственного базиса. Введем искусственные переменные в ограничения задачи

2x 1 + 3x 2 + x 3 + R 1 = 3;

x 1 + 3x 3 + R 2 = 2 ;

Функция цели F(x)-M ∑R j = -x 1 + 2x 2 - x 3 - M(R 1 +R 2).

Выразим сумму R 1 + R 2 из системы ограничений: R 1 + R 2 = 5 - 3x 1 - 3x 2 - 4x 3 , тогда F(x) = -x 1 + 2x 2 - x 3 - M(5 - 3x 1 - 3x 2 - 4x 3) .

При составлении первой симплекс-таблицы (табл. 1) будем полагать, что исходные переменные x 1 , x 2 , x 3 являются небазисными, а введенные искусственные переменные – базисными. В задачах максимизации знак коэффициентов при небазисных переменных в F- и M-строках изменяется на противоположный. Знак постоянной величины в M-строке не изменяется. Оптимизация проводится сначала по M-строке. Выбор ведущих столбца и строки, все симплексные преобразования при испльзовании метода искусственного базиса осуществляются как в обычном симплекс-методе.

Максимальный по абсолютному значению отрицательный коэффициент (-4) определяет ведущий столбец и переменную x 3 , которая перейдет в базис. Минимальное симплексное отношение (2/3) соответствует второй строке таблицы, следовательно, переменная R 2 должна быть из базиса исключена. Ведущий элемент обведен контуром.

В методе искусственного базиса искусственные переменные, исключенные из базиса, в него больше не возвращаются, поэтому столбцы элементов таких переменных опускаются. Табл. 2. сократилась на 1 столбец. Осуществляя пересчет этой таблицы, переходим к табл. 3., в которой строка M обнулилась, ее можно убрать. После исключения из базиса всех искусственных переменных получаем допустимое базисное решение исходной задачи, которое в рассматриваемом примере является оптимальным:

x 1 =0; x 2 =7/9; F max =8/9.

Если при устранении M-строки решение не является оптимальным, то процедура оптимизации продолжается и выполняется обычным симплекс-методом. Рассмотрим пример, в котором присутствуют ограничения всех типов:≤,=,≥

Пример 2 . Найти минимальное значение функции F(x) = 2x 1 + 3x 2 - x 3 при следующих ограничениях

2x 1 +x 2 -3x 3 ≥6,

x 1 -x 2 +2x 3 =4,

x 1 +x 2 +x 3 ≤5,

x 1 ≥0, x 2 ≥0, x 3 ≥0 .

Домножим первое из ограничений на (-1) и введем в ограничения дополнительные переменные x 4 , x 5 и искусственную переменную R следующим образом:

2x 1 -x 2 +3x 3 +x 4 =-6,

x 1 -x 2 +2x 3 +R=4,

x 1 +x 2 +x 3 +x 5 =5,

Пусть x 4 , R и x 5 – базисные переменные, а x 1 , x 2 , x 3 – небазисные. Функция цели F(x)=F(x)+M∑R=2x 1 +3x 2 -x 3 +M(4-x 1 +x 2 -2x 3).

В первой (табл. 4.) коэффициенты при небазисных переменных в F-строке и M-строках знака не меняют, так как осуществляется минимизация функции. Свободный член в методе искусственного базиса в M-строке берется с противоположным знаком. Решение, соответствующее табл. 4, не является допустимым, так как есть отрицательный свободный член.

Выберем ведущий столбец и строку в соответствии с шагом 2 алгоритма решения. После пересчета получим табл. 5. Оптимизация решения в методе искусственного базиса (шаг 5 алгоритма) осуществляется вначале по M-строке. В результате x 3 введем в базис, а переменную R исключим из рассмотрения, сократив количество столбцов. После пересчета получим табл. 6, которая соответствует оптимальному решению задачи.

Таблица 4

базисные переменные Свободные члены Небазисные переменные
x 1 x 2 x 3
x 4 -6 -2 -1 3
R 4 1 -1 2
x 5 5 1 1 1
F 0 2 3 -1
M -4 -1 1 -2

Таблица 5

базисные переменные Свободные члены Небазисные переменные
x 4 x 2 x 3
x 1 3 -1/2 1/2 -3/2
R 1 1/2 -3/2 7/2
x 5 2 1/2 1/2 5/2
F -6 1 2 2
M -1 -1/2 3/2 -7/2

Таблица 6

Искомый минимум функции F(x) равен свободному члену F-строки табл. 6, взятому с обратным знаком, так как min F(x) = -max(-F(x)); x 4 = x 2 = 0;

x 1 =24/7; x 3 =2/7; x 5 =9/7; F min =46/7;

Необходимым условием применения симплекс-метода является наличие опорного плана, то есть допустимого базисного решения канонической системы уравнений. Для этого должны выполняться следующие условия:

  • система должна иметь каноническую (ступенчатую) структуру;
  • присутствуют только ограничения-равенства;
  • правые части ограничений положительны;
  • переменные задачи положительны.

Без этих условий нельзя получить опорный план. Однако в реальных задачах далеко не всегда выполняются перечисленные условия.

Существует специальный метод, называемый искусственным базисом, который позволяет в любой задаче линейного программирования получить начальный опорный план.

Пусть задача линейного программирования приведена к стандартному виду:

Пусть все /? > 0, но часть или все базисные переменные отрицательны, X; 0. Следовательно, опорного плана нет.

Дополним уравнения-ограничения искусственными переменными (предполагаем, что все x j j - 1, п ).

Введем т переменных (по количеству уравнений): х лМ т, которые в новой системе будут базисными, а отрицательные х-

В результате получим следующую эквивалентную задачу.


Здесь переменные x n+i не имеют никакого отношения к исходной задаче линейного программирования. Они служат лишь для получения опорного плана и называются искусственными переменными. А новая

целевая функция /(.т) сформирована для полноты задачи.

В оптимальном опорном плане искусственные переменные должны быть равны нулю. В противном случае нарушится условие первоначальной задачи.

В начальном опорном плане искусственные переменные являются базисными, то есть не равны нулю, а в оптимальном плане искусственные переменные должны быть равны нулю. Значит, искусственные переменные должны стать в оптимальном плане свободными. В этом переводе и состоит основная идея метода: перевод искусственных переменных из базисных переменных в свободные. Рассмотрим механизм такого перевода на примере.

Перепишем ЗЛП в стандартной форме. Для этого введем дополнительные переменные х } , х А, х 5 , х 6 и запишем задачу в канонической форме.

Свободные переменные х, х 2 = 0, при этом базисные переменные примут значения х 3 =-5, х 4 = -5, х 5 = 7, х 6 =9. Так как часть базисных переменных отрицательны, следовательно опорного плана нет. Для получения начального опорного плана введем переменные х 7 , х 8 в двух первых уравнениях-ограничениях и сформулируем вспомогательную задачу:

Таким образом, начальным базисом является

Симплекс-таблица с искусственным базисом

Х 4

Запишем последовательности опорных планов.

Для первых трех шагов приращения А к вычисляются только по искусственным переменным, которые входят в искусственную целевую функцию /(х) = х 7 + х 8 с коэффициентом с, = 1.

На третьем шаге искусственные переменные исключены, так как все А к положительны.


Итак, симплекс-метод с введением искусственных переменных включает два этапа.

Формирование и решение вспомогательной задачи ЛП с введением искусственных переменных. Искусственные переменные в начальном опорном плане являются базисными. Искусственная целевая функция включает только искусственные переменные. При получении смежных опорных планов искусственные переменные из базисных переводим в свободные. В результате получен оптимальный опорный план для вспомогательной задачи /(х) = 0.

Оптимальный опорный план вспомогательной задачи ЛП является начальным опорным планом основной задачи ЛП. Задача решается для исходной целевой функции /(х) обычным симплекс-методом.

Замечания

  • 1. Введение искусственных переменных требуется в двух случаях:
    • ряд базисных переменных х, в канонической форме отрицательны;
    • если трудно свести к канонической форме, то просто в любое уравнение-ограничение добавляем искусственную переменную.
  • 2. Встречающиеся в практике автоматического управления задачи линейного программирования содержат от 500 до 1500 ограничений и более 1000 переменных. Ясно, что задачи такой размерности можно решать лишь с помощью ЭВМ и специального программного обеспечения. Сложность алгоритма заключается в том, что:
  • 3. Вычислительную эффективность симплекс-метода можно оценить следующими показателями:
    • число шагов (смежных опорных планов);
    • затраты машинного времени.

Существуют такие теоретические оценки для стандартной задачи линейного программирования с т ограничений и «"переменных:

  • среднее число шагов * 2 т и лежит в диапазоне }