Информационная энтропия шеннона. Энтропия (теория информации)

1) Системный подход в изучении медицины. Понятие системы. Свойства системы. Примеры медицинских систем.

Системный подход, направление методологии специально-научного познания и социальной практики, в основе которого лежит исследование объектов как систем.

Систе́ма -множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство.

свойства общие для всех систем:

    Целостность - система есть абстрактная сущность, обладающая целостностью и определенная в своих границах. Целостность системы подразумевает, что в некотором существенном аспекте «сила» или «ценность» связей элементов внутри системы выше, чем сила или ценность связей элементов системы с элементами внешних систем или среды .

    Синергичность , эмерджентность , холизм , системный эффект - появление у системы свойств, не присущих элементам системы; принципиальная несводимость свойств системы к сумме свойств составляющих её компонентов. Возможности системы превосходят сумму возможностей составляющих её частей; общая производительность или функциональность системы лучше, чем у простой суммы элементов.

    Иерархичность - каждый элемент системы может рассматриваться как система; сама система также может рассматриваться как элемент некоторой надсистемы (суперсистемы).

Экспертные системы - логическое описание структуры и содержания медицинских знаний с помощью системы продукционных правил(логических правил вывода).

Консультации в определенной области на уровне знаний, превышающем уровень пользователя; - применение компьютерных технологий «искусственного интеллекта»; - формирование базы знаний в форме систем эвристических правил; - пояснение рассуждений в процессе получения решения.

Медицинские информационные системы (МИСы). По назначению эти системы делятся на три группы: 1) системы, основной функцией которых является накопление данных и информации

2) диагностические и консультирующие системы

3) системы, обеспечивающие медицинское обслуживание

Медицинская информационная система (МИС) - совокупность информационных, организационных, программных и технических средств, предназначенных для автоматизации медицинских процессов и (или) организаций

Задачи медицинских информационных систем

      Сбор данных

      Регистрация и документирование данных

      Обеспечение обмена информацией

      Контроль течения заболевания (врачебный контроль)

      Контроль выполнения технологии лечебно-диагностического процесса (технологический контроль)

      Хранение и поиск информации (ведение архива)

      Анализ данных

      Поддержка принятия решения

      Обучение персонала

2. Медицинская система как управляющая система. Принцип обратной связи в управляющих системах. Место методов и средств информатики в медицинской управляющей системе.

Тео́рия управле́ния - наука о принципах и методах управления различными системами, процессами и объектами. Основами теории управления являются кибернетика (наука об общих закономерностях процессов управления и передачи информации в различных системах, будь то машины, живые организмы или общество) и теория информации.

Процесс управления можно разделить на несколько этапов:

1. Сбор и обработка информации.

2. Анализ, систематизация, синтез.

3. Постановка на этой основе целей. Выбор метода управления, прогноз.

4. Внедрение выбранного метода управления.

5. Оценка эффективности выбранного метода управления (обратная связь).

Конечной целью теории управления является универсализация, а значит, согласованность, оптимизация и наибольшая эффективность функционирования систем.

Методы управления, рассматриваемые теорией управления техническими системами и другими объектами, базируются на трёх фундаментальных принципах:

1. Принцип разомкнутого (программного) управления,

2. Принцип компенсации (управление по возмущениям)

3. Принцип обратной связи.

Управление можно разделить на два вида:

стихийный : воздействие происходит в результате взаимодействия субъектов (синергетическое управление);

сознательный : планомерное воздействие объекта (иерархическое управление).

При иерархическом управлении цель функционирования системы задается её надсистемой.

Медицинская кибернетика является научным направлением, связанным с использованием идей, методов и технических средств кибернетики в медицине и здравоохранении.

Условно медицинскую кибернетику можно представить следующими группами:

Вычислительная диагностика заболеваний

Эта часть связана с использованием вычислительной техники при обработке информации, поступающей с биологического объекта с целью постановки диагноза. Первым шагом является разработка методик формального описания состояния здоровья пациента, проведение тщательного анализа по уточнению клинических параметров и признаков, используемых в диагностике. Здесь имеют главное значение те признаки, которые несут количественные оценки. Кроме количественного выражения физиологических, биохимических и других характеристик больного для вычислительной диагностики необходимы сведения о частоте клинических синдромов (из априорных данных) и диагностических признаков об их классификации, оценке диагностической эффективности и т. п.

Автоматизированные системы управления и возможности применения их для организации здравоохранен ия.

Здесь преследуется цель создания отраслевых автоматизированных систем (ОСАУ). Такие системы создаются для такой важной отрасли как «здравоохранение». Особенности ОСАУ в здравоохранении является то, что она должна включать в себя как блок управления, так и другие элементы: профилактику, лечение (с диагностикой), медицинскую науку, кадры, материальное обеспечение. В первоочередные задачи ОСАУ «Здравоохранение» входят автоматизация процессов сбора и анализа статистической информации по основным направлениям медицинской деятельности и оптимизация некоторых процессов управления.

3. Понятие информационной энтропии.

Энтропи́я (информационная) - мера хаотичности информации, неопределённость появления какого-либо символа первичного алфавита. При отсутствии информационных потерь численно равна количеству информации на символ передаваемого сообщения.

Так, возьмём, например, последовательность символов, составляющих какое-либо предложение на русском языке. Каждый символ появляется с разной частотой, следовательно, неопределённость появления для некоторых символов больше, чем для других. Если же учесть, что некоторые сочетания символов встречаются очень редко, то неопределённость ещё более уменьшается.

Концепции информации и энтропии имеют глубокие связи друг с другом, но, несмотря на это, разработка теорий в статистической механике и теории информации заняла много лет, чтобы сделать их соответствующими друг другу.

Введение понятия энтропии основывается на использовании вероятностной меры различных опытов. Для получения формулы информационной энтропии можно использовать следующий прием. Пусть имеется последовательность из N событий (например, текст из N букв), каждое из которых принимает одно из M состояний (M ¾ количество букв в алфавите). Тогда . Вероятность проявления данного состояния находим для достаточно длинной цепочки событий как, i=1, ¼ , M. Общее число различных последовательностей из N букв M-буквенного алфавита. Формально появление каждой из R последовательностей равновероятно, поэтому для определения количества информации в такой цепочке событий используем формулу Хартли для равновероятных исходов(1). Для нашего случая все N и все N i достаточно велики, так как только тогда все p i как вероятности имеют смысл. Поэтому применим преобразование Стирлинга аналогично тому, как это делается в статистической физике. Используя все указанные посылки и приведя логарифм (1) к натуральному основанию, получим формулу Шеннона ¾ информационную энтропию в расчете на каждое из M возможных состояний.

В дальнейшем понятие энтропии можно применить для решения задач по вычислению неопределенности (а значит и информационной нагрузки) различных опытов. Если полученная информация полностью снимает неопределенность опыта, то ее количество считается равным энтропии данного опыта. Следовательно, использование понятия энтропии может служить для определения ценности различных прогнозов. И еще более интересно и полезно использование понятия энтропии (с практической точки зрения) для установления критерия оценки эффективности реального кода и в качестве инструмента разработки экономных кодов.

5. Основные понятия базовых информационных процессов: хранения, передачи обработки информации.

Информационный процесс - процесс получения, создания, сбора, обработки , накопления, хранения , поиска, передачи и использования информации.

Какой бы информационной деятельностью люди не занимались, вся она сводится к осуществлению трех процессов: хранению, передаче и обработке информации. Эти процессы называются базовыми.

Хранение

Под хранением информации следует понимать содержание информации во внешней памяти компьютера.

С хранением информации связаны такие понятия, как носитель информации, внутренняя память, внешняя память, хранилище информации. Носитель информации – это физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг человека). Ее можно назвать внутренней памятью. Все прочие виды носителей информации можно назвать внешними (по отношению к человеку).

Хранилище информации – это определенным образом организованная совокупность данных на внешних носителях, предназначенная для длительного хранения и постоянного использования. Примерами хранилищ являются архивы документов, библиотеки, справочники, картотеки. Основной информационной единицей хранилища является определенный физический документ – анкета, книга, дело, досье, отчет и пр. Под организацией хранилища понимается наличие определенной структуры, т.е. упорядоченность, классификация хранимых документов. Такая организация необходима для удобства ведения хранилища: пополнения его новыми документами, удаления ненужных документов, поиска информации и пр.

Основные свойства хранилища информации – объем хранимой информации, надежность хранения, время доступа, наличие защиты информации.

Информацию, хранимую на устройствах компьютерной памяти, принято называть данными . Организованные хранилища данных на устройствах внешней памяти компьютера принято называть базами данных.

В современных компьютерах основными носителями информации для внешней памяти служат магнитные и оптические диски.

Единицы хранения данных. При хранении данных решаются две проблемы: как сохранить данные в наиболее компактном виде и как обеспечить к ним удобный и быстрый доступ. Для обеспечения доступа необходимо, чтобы данные имели упорядоченную структуру, а при этом возникает необходимость дополнительно записывать адресные данные. Без них нельзя получить доступ к нужным элементам данных, входящих в структуру.

Поскольку адресные данные тоже имеют размер и тоже подлежат хранению, хранить данные в виде мелких единиц, таких, как байты, неудобно. Их неудобно хранить и в более крупных единицах (килобайтах, мегабайтах и т.п.), поскольку неполное заполнение одной единицы хранения приводит к неэффективности хранения.

В качестве единицы хранения данных принят объект переменной длины, называемый файлом. Файл – это последовательность произвольного числа байтов, обладающая уникальным собственным именем. Обычно в отдельном файле хранят данные, относящиеся к одному типу. В этом случае тип данных определяет тип файла.

Передача

Процесс транспортирования информации рассматривается в рамках эталонной семиуровневой модели, известной как модель OSI (Open System Intercongtion- связь открытых систем). Большое внимание уделено протоколам различных уровней, обеспечивающих необходимый уровень стандартизации:

1. Нижний уровень (канальный и физический уровни OSI, например NDIS, ODI)

2. Средний уровень (сетевой, транспортный и сеансовый уровни OSI, например сеансовые и дейтаграммные протоколы)

3. Верхний уровень (уровень представления и прикладной уровень OSI)

    Физический уровень реализует физическое управление и относится к физической цепи, например телефонной, по которой передается информация. На этом уровне модель OSI определяет физические, электрические, функциональные и процедурные характеристики цепей связи, а также требования к сетевым адаптерам и модемам.

    Канальный уровень. На этом уровне осуществляется управление звеном сети (каналом) и реализуется пересылка блоков (совокуп­ности битов) информации по физическому звену. Осуществляет та­кие процедуры управления, как определение начала и конца блока, обнаружение ошибок передачи, адресация сообщений и др

    Сетевой уровень относится к виртуальной (воображаемой) цепи, которая не обязана существовать физически. Программные средства данного уровня обеспечивают определение маршрута пе­редачи пакетов в сети. Маршрутизаторы, обеспечивающие поиск оптимального маршрута на основе анализа адресной информации, функционируют на сетевом уровне модели OSI, называемое мостом.

    Транспортный уровень. На транспортном уровне контролируется очередность пакетов со­общений и их принадлежность. Таким образом, в процессе обмена между компьютерами поддерживается виртуальная связь, анало­гичная телефонной коммутации.

    Сеансовый уровень. На данном уровне координируются и стандартизируются процессы установления сеанса, управления передачей и приемом пакетов сообщений, завершения сеанса. Программные средства этого уровня выполняют преобразования данных из внутреннего формата пере­дающего компьютера во внутренний формат компьютера-получате­ля, если эти форматы отличаются друг от друга. Помимо конвертирования форматов на данном уровне осуществляется сжа­тие передаваемых данных и их распаковка.

    Прикладной уровень относится к функциям, которые обеспечи­вают поддержку пользователю на более высоком прикладном и системном уровнях, например: организация доступа к общим сетевым ресурсам: информа­ции, дисковой памяти, программным приложениям, внешним устройствам (принтерам, стримерам и др.); общее управление сетью (управление конфигурацией, разграничение доступа к общим ресурсам сети, восстановление работо­способности после сбоев и отказов, управление производительно­стью); передача электронных сообщений.

Обработка

Под обработкой информации понимают ее преобразование с целью подготовки к практическому использованию. Иногда обработка информации определяется как оперирование данными по определенным правилам.

В процессе обработки информации всегда решается некоторая информационная задача, заключающаяся в получении итоговой информацию на основании исходных данных. Процесс перехода от исходных данных к результату и представляет собой обработку информации. Субъект, осуществляющий обработку, является исполнителем обработки. Исполнитель может быть человеком, а может быть специальным техническим устройством, в том числе компьютером.

Обычно обработка информации – это целенаправленный процесс. Для успешного выполнения обработки информации исполнителю должен быть известен способ обработки, т.е. последовательность действий, которую нужно выполнить, чтобы достичь нужного результата. Описание такой последовательности действий в информатике принято называть алгоритмом обработки.

Обычно различают два типа ситуаций, связанных с обработкой информации.

Первый тип – обработка, связанная с получением нового содержания знаний. К этому типу обработки относится решение математических задач. Способ обработки, т.е. алгоритм решения задачи, определяется математическими формулами, которые известны исполнителю. К этому типу обработки информации относится решение различных задач путем применения логических рассуждений.

Второй тип – обработка, связанная с изменением формы, но не изменяющая содержания. К этому типу обработки информации относится, например, перевод текста с одного языка на другой. Изменяется форма, но должно сохраниться содержание. Важным видом обработки для информатики является кодирование . Кодирование – это преобразование информации в символьную форму, удобную для ее хранения, передачи, обработки. Кодирование активно используется в технических средствах работы с информацией (телеграф, радио, компьютеры).

К обработке информации относится структурирование данных. Структурирование связано с внесением определенного порядка, определенной организации в хранилище информации. Примерами структурирования могут служить расположение данных в алфавитном порядке, группировка по некоторым признакам классификации, использование табличного представления.

Еще один важный вид обработки информации – поиск. Задача поиска состоит в отборе нужной информации, удовлетворяющей определенным условиям поиска, в имеющемся хранилище информации. Алгоритм поиска зависит от способа организации информации. Если информация структурирована, то поиск осуществляется быстрее, можно построить оптимальный алгоритм.

Таким образом, в зависимости от цели при обработке информации может изменяться форма ее представления либо ее содержание. Процессы изменения формы представления информации часто сводятся к процессам ее кодирования и декодирования и проходят одновременно с процессами сбора и передачи информации. Процесс изменения содержания информации включает в себя такие процедуры, как численные расчеты, редактирование, упорядочивание, обобщение, систематизация и т.д. Если правила преобразования информации строго формализованы и имеется алгоритм их реализации, то можно построить устройство для автоматизированной обработки информации.

Следует упомянуть неоднородность информационных ресурсов, характерную для многих предметных областей. Одним из путей решения данной проблемы является объектно-ориентированный подход , наиболее распространенный в настоящее время. Кратко рассмотрим его основные положения. Декомпозиция на основе объектно-ориентированного подхода основана на выделении следующих основных понятий: объект, класс, экземпляр.

Объект - это абстракция множества предметов реального мира, обладающих одинаковыми характеристиками и законами поведения. Объект характеризует собой типичный неопределенный элемент такого множества. Основной характеристикой объекта является состав его атрибутов (свойств).

Атрибуты - это специальные объекты, посредством которых можно задать правила описания свойств других объектов.

Экземпляр объекта - это конкретный элемент множества. Например, объектом может являться государственный номер автомобиля, а экземпляром этого объекта - конкретный номер К 173 ПА.

Класс - это множество предметов реального мира, связанных общностью структуры и поведением. Элемент класса - это конкретный элемент данного множества. Например, класс регистрационных номеров автомобиля.

Информация передается в виде сигналов. Сигнал- физический процесс, несущий в себе информацию. Сигнал может быть звуковым, световым, в виде почтового отправления и др.

По видам (типам) сигналов выделяются следующие:

аналоговый

цифровой

дискретный

Аналоговый сигнал:

Аналоговый сигнал является естественным. Его можно зафиксировать с помощью различных видов датчиков. Например, датчиками среды (давление, влажность) или механическими датчиками (ускорение, скорость)

Цифровой сигнал:

Цифровые сигналы являются искусственными, т.е. их можно получить только путем преобразования аналогового электрического сигнала.

Дискретный сигнал:

Дискретный сигнал – это все тот же преобразованный аналоговый сигнал, только он необязательно квантован по уровню.

Дискретизация - преобразование непрерывной функции в дискретную .

Используется в гибридных вычислительных системах и цифровых устройствах при импульсно-кодовой модуляции сигналов в системах передачи данных . При передаче изображения используют для преобразования непрерывного аналогового сигнала в дискретный или дискретно-непрерывный сигнал.

7.Кодирование информации. Алфавит. Слово. Словарь. Двоичное кодирование.

1. Кодирование информации обычно применяется для преобразования сообщений из формы, удобной для непосредственного использования, в форму, удобную для передачи, хранения или автоматической переработки

Любая информация, с которой работает современная вычислительная техника, преобразуется в числа в двоичной системе счисления.

Дело в том, что физические устройства (регистры, ячейки памяти) могут находиться в двух состояниях, которым соотносят 0 или 1. Используя ряд подобных физических устройств, можно хранить в памяти компьютера почти любое число в двоичной системе счисления. Кодирование в компьютере целых чисел, дробных и отрицательных, а также символов (букв и др.) имеет свои особенности для каждого вида. Однако, всегда следует помнить, что любая информация (числовая, текстовая, графическая, звуковая и др.) в памяти компьютера представляется в виде чисел в двоичной системе счисления (почти всегда). В общем смысле кодирование информации можно определить как перевод информации, представленной сообщением в первичном алфавите, в последовательность кодов.

Обычно сообщения передаются и регистрируются с помощью некоторой последовательности символов - знаков.

Алфавит языка интерпретации сообщений – конечное множество входящих в него знаков, обычно задается их прямым перечислением. Конечная последовательность знаков алфавита называется словом в алфавите. Количество знаков в слове определяет длину слова. Множество различных допустимых слов образует словарный запас (словарь) алфавита. Любой алфавит имеет упорядоченный вид, знаки расположены последовательно в строгом порядке, таким образом, в словаре обеспечивается упорядочивание всех слов по алфавиту.

В качестве длины кода для кодирования символов было выбрано 8 бит или 1 байт. Поэтому одному символу текста соответствует один байт памяти.

Различных комбинаций из 0 и 1 при длине кода 8 бит может быть 28 = 256, поэтому с помощью одной таблицы перекодировки можно закодировать не более 256 символов. При длине кода в 2 байта (16 бит) можно закодировать 65536 символов. Для того чтобы закодировать один символ используют количество информации равное 1 байту, т. е. I = 1 байт = 8 бит. При помощи формулы, которая связывает между собой количество возможных событий К и количество информации I, можно вычислить сколько различных символов можно закодировать К = 2I = 28 = 256, т. е. для представления текстовой информации можно использовать алфавит мощностью 256 символов.

Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255. Одному и тому же двоичному коду ставится в соответствие различные символы.

9. ​Количество информации. Мера количества информации и ее свойства. Формула Хартли.

Количество информации – число, адекватно характеризующее величину разнообразия (набор состояний, альтернатив и т.д.) в оцениваемой системе.

Мера информации – формула, критерий оценки количества информации.

Мера информации обычно задана некоторой неотрицательной функцией, определенной на множестве событий и являющейся аддитивной, то есть мера конечного объединения событий (множеств) равна сумме мер каждого события. Количество информации – число, адекватно характеризующее величину разнообразия (набор состояний, альтернатив и т.д.) в оцениваемой системе.

Энтропия (теория информации)

Энтропи́я (информационная) - мера хаотичности информации , неопределённость появления какого-либо символа первичного алфавита . При отсутствии информационных потерь численно равна количеству информации на символ передаваемого сообщения.

Например, в последовательности букв, составляющих какое-либо предложение на русском языке, разные буквы появляются с разной частотой, поэтому неопределённость появления для некоторых букв меньше, чем для других. Если же учесть, что некоторые сочетания букв (в этом случае говорят об энтропии n -ого порядка, см. ) встречаются очень редко, то неопределённость ещё более уменьшается.

Для иллюстрации понятия информационной энтропии можно также прибегнуть к примеру из области термодинамической энтропии , получившему название демона Максвелла . Концепции информации и энтропии имеют глубокие связи друг с другом, но, несмотря на это, разработка теорий в статистической механике и теории информации заняла много лет, чтобы сделать их соответствующими друг другу.

Формальные определения

Определение с помощью собственной информации

Также можно определить энтропию случайной величины, введя предварительно понятия распределения случайной величины X , имеющей конечное число значений:

I (X ) = − logP X (X ).

Тогда энтропия будет определяться как:

От основания логарифма зависит единица измерения информации и энтропии: бит , нат или хартли .

Информационная энтропия для независимых случайных событий x с n возможными состояниями (от 1 до n ) рассчитывается по формуле:

Эта величина также называется средней энтропией сообщения . Величина называется частной энтропией , характеризующей только i -e состояние.

Таким образом, энтропия события x является суммой с противоположным знаком всех произведений относительных частот появления события i , умноженных на их же двоичные логарифмы (основание 2 выбрано только для удобства работы с информацией, представленной в двоичной форме). Это определение для дискретных случайных событий можно расширить для функции распределения вероятностей .

В общем случае b -арная энтропия (где b равно 2, 3, …) источника с исходным алфавитом и дискретным распределением вероятности где p i является вероятностью a i (p i = p (a i ) ) определяется формулой:

Определение энтропии Шеннона связано с понятием термодинамической энтропии . Больцман и Гиббс проделали большую работу по статистической термодинамике, которая способствовала принятию слова «энтропия» в информационную теорию. Существует связь между термодинамической и информационной энтропией. Например, демон Максвелла также противопоставляет термодинамическую энтропию информации, и получение какого-либо количества информации равно потерянной энтропии.

Альтернативное определение

Другим способом определения функции энтропии H является доказательство, что H однозначно определена (как указано ранее), если и только если H удовлетворяет условиям:

Свойства

Важно помнить, что энтропия является количеством, определённым в контексте вероятностной модели для источника данных. Например, кидание монеты имеет энтропию − 2(0,5log 2 0,5) = 1 бит на одно кидание (при условии его независимости). У источника, который генерирует строку, состоящую только из букв «А», энтропия равна нулю: . Так, например, опытным путём можно установить, что энтропия английского текста равна 1,5 бит на символ, что конечно будет варьироваться для разных текстов. Степень энтропии источника данных означает среднее число битов на элемент данных, требуемых для её зашифровки без потери информации, при оптимальном кодировании.

  1. Некоторые биты данных могут не нести информации. Например, структуры данных часто хранят избыточную информацию, или имеют идентичные секции независимо от информации в структуре данных.
  2. Количество энтропии не всегда выражается целым числом бит.

Математические свойства

Эффективность

Исходный алфавит, встречающийся на практике, имеет вероятностное распределение, которое далеко от оптимального. Если исходный алфавит имел n символов, тогда он может быть сравнён с «оптимизированным алфавитом», вероятностное распределение которого однородно. Соотношение энтропии исходного и оптимизированного алфавита - это эффективность исходного алфавита, которая может быть выражена в процентах.

Из этого следует, что эффективность исходного алфавита с n символами может быть определена просто как равная его n -арной энтропии.

Энтропия ограничивает максимально возможное сжатие без потерь (или почти без потерь), которое может быть реализовано при использовании теоретически - типичного набора или, на практике, - кодирования Хаффмана , кодирования Лемпеля - Зива - Велча или арифметического кодирования .

Вариации и обобщения

Условная энтропия

Если следование символов алфавита не независимо (например, во французском языке после буквы «q» почти всегда следует «u», а после слова «передовик» в советских газетах обычно следовало слово «производства» или «труда»), количество информации, которую несёт последовательность таких символов (а следовательно и энтропия) очевидно меньше. Для учёта таких фактов используется условная энтропия.

Условной энтропией первого порядка (аналогично для Марковской модели первого порядка) называется энтропия для алфавита, где известны вероятности появления одной буквы после другой (то есть вероятности двухбуквенных сочетаний):

где i - это состояние, зависящее от предшествующего символа, и p i (j ) - это вероятность j , при условии, что i был предыдущим символом.

Так, для русского языка без буквы « » .

Через частную и общую условные энтропии полностью описываются информационные потери при передаче данных в канале с помехами. Для этого применяются так называемые канальные матрицы . Так, для описания потерь со стороны источника (то есть известен посланный сигнал), рассматривают условную вероятность получения приёмником символа b j при условии, что был отправлен символ a i . При этом канальная матрица имеет следующий вид:

b 1 b 2 b j b m
a 1
a 2
a i
a m

Очевидно, вероятности, расположенные по диагонали описывают вероятность правильного приёма, а сумма всех элементов столбца даст вероятность появления соответствующего символа на стороне приёмника - p (b j ) . Потери, приходящиеся на передаваемый сигнал a i , описываются через частную условную энтропию:

Для вычисления потерь при передаче всех сигналов используется общая условная энтропия:

Означает энтропию со стороны источника, аналогично рассматривается - энтропия со стороны приёмника: вместо всюду указывается (суммируя элементы строки можно получить p (a i ) , а элементы диагонали означают вероятность того, что был отправлен именно тот символ, который получен, то есть вероятность правильной передачи).

Взаимная энтропия

Взаимная энтропия, или энтропия объединения , предназначена для расчёта энтропии взаимосвязанных систем (энтропии совместного появления статистически зависимых сообщений) и обозначается H (A B ) , где A , как всегда, характеризует передатчик, а B - приёмник.

Взаимосвязь переданных и полученных сигналов описывается вероятностями совместных событий p (a i b j ) , и для полного описания характеристик канала требуется только одна матрица:

p (a 1 b 1) p (a 1 b 2) p (a 1 b j ) p (a 1 b m )
p (a 2 b 1) p (a 2 b 2) p (a 2 b j ) p (a 2 b m )
p (a i b 1) p (a i b 2) p (a i b j ) p (a i b m )
p (a m b 1) p (a m b 2) p (a m b j ) p (a m b m )

Для более общего случая, когда описывается не канал, а просто взаимодействующие системы, матрица необязательно должна быть квадратной. Очевидно, сумма всех элементов столбца с номером j даст p (b j ) , сумма строки с номером i есть p (a i ) , а сумма всех элементов матрицы равна 1. Совместная вероятность p (a i b j ) событий a i и b j вычисляется как произведение исходной и условной вероятности,

Условные вероятности производятся по формуле Байеса . Таким образом имеются все данные для вычисления энтропий источника и приёмника:

Взаимная энтропия вычисляется последовательным суммированием по строкам (или по столбцам) всех вероятностей матрицы, умноженных на их логарифм:

H (A B ) = − p (a i b j )logp (a i b j ).
i j

Единица измерения - бит/два символа, это объясняется тем, что взаимная энтропия описывает неопределённость на пару символов - отправленного и полученного. Путём несложных преобразований также получаем

Взаимная энтропия обладает свойством информационной полноты - из неё можно получить все рассматриваемые величины.

История

Примечания

См. также

Ссылки

  • Claude E. Shannon. A Mathematical Theory of Communication (англ.)
  • С. М. Коротаев.

Понятие Энтропи́и впервые введено в 1865 Р. Клаузиусом в термодинамике для определения меры необратимого рассеяния энергии. Энтропия применяется в разных отраслях науки, в том числе и в теории информации как мера неопределенности какого-либо опыта, испытания, который может иметь разные исходы. Эти определения энтропии имеют глубокую внутреннюю связь. Так на основе представлений об информации можно вывести все важнейшие положения статистической физики. [БЭС. Физика. М: Большая российская энциклопедия, 1998].

Информационная двоичная энтропия для независимых (неравновероятных) случайных событий x с n возможными состояниями (от 1 до n , p - функция вероятности) рассчитывается по формуле Шеннона :

Эта величина также называется средней энтропией сообщения. Энтропия в формуле Шеннона является средней характеристикой – математическим ожиданием распределения случайной величины .
Например, в последовательности букв, составляющих какое-либо предложение на русском языке, разные буквы появляются с разной частотой, поэтому неопределённость появления для некоторых букв меньше, чем для других.
В 1948 году, исследуя проблему рациональной передачи информации через зашумлённый коммуникационный канал, Клод Шеннон предложил революционный вероятностный подход к пониманию коммуникаций и создал первую, истинно математическую, теорию энтропии. Его сенсационные идеи быстро послужили основой разработки теории информации, которая использует понятие вероятности. Понятие энтропии, как меры случайности, введено Шенноном в его статье «A Mathematical Theory of Communication», опубликованной в двух частях в Bell System Technical Journal в 1948 году.

В случае равновероятных событий (частный случай), когда все варианты равновероятны, остается зависимость только от количества рассматриваемых вариантов и формула Шеннона значительно упрощается и совпадает с формулой Хартли, которая впервые была предложена американским инженером Ральфом Хартли в 1928 году, как один из научных подходов к оценке сообщений:

, где I – количество передаваемой информации, p – вероятность события, N – возможное количество различных (равновероятных) сообщений.

Задание 1. На равновероятные события.
В колоде 36 карт. Какое количество информации содержится в сообщении, что из колоды взята карта с портретом “туз”; “туз пик”?

Вероятность p1 = 4/36 = 1/9, а p2 = 1/36. Используя формулу Хартли имеем:

Ответ: 3.17; 5.17 бит
Заметим (из второго результата), что для кодирования всех карт, необходимо 6 бит.
Из результатов также ясно, что чем меньше вероятность события, тем больше информации оно содержит. (Данное свойство называется монотонностью )

Задание 2. На неравновероятные события
В колоде 36 карт. Из них 12 карт с “портретами”. Поочередно из колоды достается и показывается одна из карт для определения изображен ли на ней портрет. Карта возвращается в колоду. Определить количество информации, передаваемой каждый раз, при показе одной карты.

Вопрос о связи между энтропией и информацией обсуждается уже давно, фактически со времен формулировки парадокса с «демоном Максвелла». Некоторое время проблема казалась отвлеченной. Сейчас, однако, она становится актуальной, поскольку оказывается связанной с вполне конкретными вопросами: какова энтропийная (и энергетическая) плата за информацию, каковы минимальные размеры информационной ячейки и т. п.

Эти вопросы приобретают особую остроту в связи с биологической спецификой. Во-первых, информационные системы в живой природе обладают малыми (микроскопическими) размерами. Во-вторых, они функционируют при нормальной температуре, т. е. в условиях, когда тепловые флуктуации не пренебрежимо малы. -третьих, в биологии особую важность приобретает запоминание и хранение информации. Отметим, что в технике более актуальны проблемы передачи информации; на примере оптимизации передачи были разработаны основные положения теории информации. Вопросам же рецепции и хранения информации уделялось меньше внимания. В биологии, напротив, эти вопросы становятся первостепенными.

Не претендуя на строгое определение понятия «информация», подчеркнем два необходимых ее атрибута: 1) информация предполагает выбор одного (или нескольких) вариантов из многих возможных, 2) сделанный выбор должен быть запомнен. Подчеркнем: второе условие - запоминание информации - является очень важным. Впервые на это обратил внимание Кастлер [П26] в 1960. г. В процессах передачи информации «запоминаемость» играет меньшую роль, чем при рецепции, обработке и хранении информации. Действительно, передающая система обязана запомнить информацию лишь на время передачи, которое в принципе может быть коротким. В биологии условие запоминания на длительный срок, напротив, играет важную роль.

Количеством информации называют величину

где полное число возможных вариантов, число выбранных вариантов. Количество информации отлично от нуля, если известно, что по каким-либо причинам из априорных вариантов реализовался один из вариантов (но не известно, какой именно). Это количество максимально, если т. е. известно, что реализовался (выбран) один определенный вариант. Величина если

Ничего не известно. Основание логарифма (т. е. двоичная система) выбрано для удобства; единицей информации в этой системе является один бит; он соответствует выбору одного варианта из двух возможных.

Выражение (12.8) легко обобщается на случай, когда a priori N вариантов могут реализоваться с вероятностями а реализуются a posteriori с вероятностями тогда

Выбор или реализация апостериорных вариантов может осуществляться двумя различными способами; либо в результате действия сторонних сил - в этом случае говорят о рецепции информации от другой (сторонней) системы, либо спонтанно, в результате неустойчивого поведения самой системы - в этом случае имеет место рождение (возникновение) новой информации.

Информационная система должна быть способной: а) рецептировать информацию, б) хранить или, что то же, запоминать информацию, в) выдавать информацию при взаимодействии с другой, акцепторной по отношению к рассматриваемой, системой. Отсюда следует, что информационная система должна быть мультистационарной.

Число устойчивых стационарных состояний определяет информационную емкость, т. е. максимальное количество информации, которое система может рецептировать:

Система должна быть диссипативной. Это значит, что вещественные части всех характеристических чисел стационарных состояний отрицательны; это является необходимым условием запоминания информации. Примером такой системы может служить китайский биллиард. Он представляет собою шарик на доске с бортами, лунками и штырями. Принадлежность шарика к определенной лунке и является информацией о состоянии системы.

На микроскопическом (молекулярном) уровне проблема конструкции информационной системы становится не тривиальной . Во-первых, в мультистационарной системе каждая из фазовых траекторий располагается только в определенной части фазового пространства (в области притяжения данного состояния). Весь фазовый объем недоступен для каждой из траекторий. Это означает, что информационная система не является полностью зргодической и термодинамически равновесной. Должны существовать выделенные степени свободы которые в течение длительного времени сохраняют свои значения, а не перебирают все возможные.

Поясним это на примере китайского биллиарда. Выделенными степенями свободы здесь являются координаты шарика. Изменение х и у ограничено краями лунок; шарик не может переместиться в другую лунку без стороннего вмешательства. При этом

другие степени свободы, связанные с колебаниями атомов как шарика, так и доски, могут (и далее должны) быть эргодическими.

Во-вторых, условие диссипативности, как мы видели, связано с неустойчивостью (и отсюда хаотичностью) микроскопических движений. Это значит, что соответствующие степени свободы обязаны быть эргодическими. Таким образом, фазовое пространство информационной системы должно быть расслоено на эргодическую и динамическую подсистемы. Однако такое расслоение нельзя осуществить абсолютно строго, различные степени свободы всегда связаны друг с другом. Это проявляется в том, что динамические (информационные) степени свободы флуктуируют и существует некоторая вероятность их радикального изменения (например, переброс шарика в другую лунку) под влиянием эргодической подсистемы (т. е. тепловых флуктуаций).

В макроскопических информационных системах эта вероятность пренебрежимо мала, однако в микроскопических системах ее нужно учитывать. Таким образом, условия мультистационарности и диссипативности не могут быть выполнены одновременно абсолютно строго; они являются дополнительными. Это значит, что условие «запоминания» не может быть абсолютным, можно лишь говорить о запоминании с определенной вероятностью на определенное (не бесконечно большое) время. Иными словами, информационная система не может помнить вечно. В реальных информационных системах характерное время запоминания зависит от их конструкции, температуры и свободной энергии.

Вопрос о связи между энтропией и информацией в свете изложенного оказывается не тривиальным. Физическая энтропия представляет собой логарифм фазового объема, доступного для системы (с учетом условности этого понятия - см. выше), измеренного в единицах где число степеней свободы и размер минимальной (квантовой) ячейки фазового пространства. Формально энтропия может быть представлена в виде

Величина является энтропией, измеренной в битах; число ячеек фазового пространства. С другой стороны, информационная емкость может быть записана в форме

где размер фазового пространства одной информационной ячейки. Сопоставление формул (12.11) и (12.12) показывает, что энтропия и информация отличаются как коэффициентом, так и размером ячейки.

Совпадение (12.11) и (12.12) по форме послужило основанием для утверждения о тождественности понятий информации и энтропии. Точнее, утверждается, что энтропия есть недостающая информация о состоянии системы и (или) информация есть недостающая энтропия, т. е. разность между максимальной энтропией, которой

обладала бы система без информации, и реальной энтропией, которую система имеет, обладая полученной информацией. В этой связи используется термин негоэнтропия, который считается тождественным информации.

Многих, однако, эти утверждения не удовлетворяют и вопрос о связи информации и энтропии остается дискуссионным.

Обсудим вопрос более детально.

Прежде всего бросается в глаза большая количественная разница между информацией, заключенной в системе, и ее энтропией.

Блюменфельд (см. [П61) на ряде биологических примеров (клетка, организм и т. д.) показал, что содержащаяся в объекте энтропия во много раз (на несколько порядков) превышает имеющуюся нем информацию. Разница еще больше в современных неживых информационных системах (например, в печатном тексте энтропия превышает информацию примерно в 1010 раз).

Столь большая количественная разница не случайна. Она связана с тем, что объем фазового пространства информационной ячейки велик по сравнению с величиной Последнее обусловлено тем, что информационная ячейка должна содержать эргодическую подсистему и, следовательно, занимать большой (по сравнению с элементарной ячейкой) объем.

Таким образом, разница масштабов энтропии и информации не случайна, а связана с их принципиальным различием. Энтропия - это мера множества тех состояний системы, о пребывании в которых система должна забыть; информация - мера множества тех состояний, о пребывании в которых система должна помнить.

Посмотрим, как связаны изменения энтропии и информации на примере китайского биллиарда. Ограничим рассмотрение временем существования системы. Дело в том, что любая информационная система, будучи неравновесной, по структурным степеням свободы релаксирует и разрушается, т. е. перестает быть информационной.

Время структурной релаксации больше (или равно) времени запоминания. В нашем примере речь идет о спонтанном разрушении барьеров между лунками; характерное время этого процесса достаточно велико. В течение этого времени структурные степени свободы не меняются, следовательно, и не вносят вклада в энтропию. (Часть фазового пространства, связанная с этими степенями свободы, в это время является недоступной.) Энтропия при этом связана только со степенями свободы, которые быстро релаксируют. Их поведение не зависит от того, в какой из лунок находится шарик и положен ли он в какую-либо лунку или лежит около. Физическая энтропия системы во всех случаях одинакова, однако количество информации различно: оно равно нулю, если шарик не положен в лунку, и равно если он лежит в определенной лунке.

Процесс рецепции информации (в нашем случае - помещение шарика в определенную лунку) требует затраты работы которая переходит в тепло (в противном случае рецепция не была бы необратимой). Следовательно, при рецепции физическая энтропия системы увеличивается (на величину и одновременно

увеличивается информация (на величину Обычно но в остальном они никак не связаны. Таким образом, при рецепции информации соотношение не соблюдается.

Несколько сложнее обстоит дело в случае возникновения новой информации. Система, способная рождать информацию, должна обладать всеми свойствами информационной и, кроме того, удовлетворять условию: определенный слой ее фазового пространства должен быть зргодическим, включая выделенные (информационные) степени свободы. Именно в этом случае задаются начальные условия при спонтанном возникновении информации.

Примером может служить тот же китайский биллиард со штырьками. Если вначале кинетическая энергия шарика достаточно велика (больше барьеров между лунками), то шарик движется по всей доске, не застревая в лунках. В силу неустойчивости отражения от шпилек (они играют роль вогнутых поверхностей в биллиарде Синая, рис. 12.2) движение шарика стохастично и начальные условия быстро забываются. При уменьшении кинетической энергии (в силу диссипативности системы, в данном случае из-за трения и соударений) до величины порядка высоты барьера шарик попадает в область притяжения одной из лунок и остается в ней. Таким образом, выбранное состояние «запоминается», что и является рождением информации. Тот же принцип используется в рулетке и других игровых машинах.

Во всех этих случаях критерием отделения эргодического слоя начальных условий от информационного слоя является величина начальной свободной энергии (в биллиарде это кинетическая энергия шарика). Она же определяет и прирост энтропии системы в процессе рождения информации. Оценим величину Если информационная емкость системы мала: то главным ограничением снизу является условие где барьер между лунками. Барьеры определяют время «запоминания» согласно соотношению

При достаточно большой (макроскопической) величине с барьер составляет

Таким образом, в этом случае увеличение энтропии, приходящееся на один бит информации, равно

или в информационных единицах:

В случае, когда информационная емкость велика (т. е. нужно учесть другое условие: до того как «выбрано» определенное состояние, система должна побывать хотя бы раз в области влияния каждого из возможных состояний.

Пусть при прохождении каждого из состояний диссипирует энергия Минимальная величина порядка энергии тепловых флуктуаций: При этом ограничена снизу условием

Прирост энтропии на один бит информации при этом равен

Таким образом, в случае возникновения информации за нее нужно «платить» увеличением энтропии, таким, что Однако соотношения типа «прирост информации равен убыли энтропии» и в данном случае не имеют места.

Обсудим ситуацию, которая возникает, если отказаться от условия запоминания информации. В этом случае можно говорить об информации о мгновенных значениях координат и импульсов всех атомов системы. Чтобы отличить эту «информацию» от настоящей (запоминаемой), Лайзер предложил термин микроинформация запоминаемая информация при этом именуется макроинформацией.

Если известно, что в данный момент система находится в одной (из возможных) определенной ячейке фазового пространства, то количество микроинформации максимально и равно

Энтропия системы при этом равна нулю, поскольку все остальные ячейки в данный момент можно считать «недоступными».

Если известно, что в данный момент система находится в любой из возможных ячеек, но неизвестно, в какой, то микроинформация равна нулю, а энтропия максимальна и равна

Если известно, что в данный момент система находится в одной (любой) из ячеек то

и между микроинформацией и энтропией имеет место простое соотношение:

Микроинформация, в принципе, может быть превращена в макроинформацию путем рецепции ее другой информационной системой. Например, путем фотографирования картины броуновского движения мгновенные координаты частиц могут быть запечатлены (запомнены) на фотопленке. Эта информация затем может использоваться для каких-либо (даже не связанных с движением частиц)

целей. Важно, что при этом в процессе рецепции (превращения микроинформации в макро- должна быть затрачена работа и повышена энтропия всей системы на величину, заведомо превышающую количество запомненной информации.

Именно этот процесс - превращение микроинформации в макро- и использование ее для управления - лежит в основе парадокса с «демоном Максвелла». Разрешение его в том, что процесс рецепции микроинформации и использования ее для управления сопровождается увеличением энтропии всей системы/превосходящем информацию.

В связи со столь существенной разницей между микро- и макроинформацией используется также и два понятия энтропии. Наряду с физической энтропией используется информационная энтропия, которая определяется как

где число стационарных устойчивых макросостояний, о которых известно, что система находится в одном из них (но неизвестно, в каком именно).

Согласно определению, информационная энтропия связана с информацией соотношением

Увеличение информации (при сохранении при этом всегда сопровождается равным уменьшением информационной энтропии. Термин Информационная энтропия удобно использовать, когда речь идет о возникновении информации и упорядочении системы. Именно в этом смысле он употребляется в гл. 2. Подчеркнем, что с физической энтропией эта величина, вообще говоря, не связана.

Итак, основой отличия физической энтропии и информации (как качественно, так и количественно) является условие запоминания и обусловленный этим большой объем фазового пространства информационной ячейки по сравнению с элементарным.

Представляет интерес оценить величину «запаса». Сделать это в общем виде сейчас трудно. Можно думать, однако, что в живой природе реализовался оптимальный размер (т. е. минимальный, но удовлетворяющий требованиям). Его можно оценить, используя фактические данные.

В молекуле ДНК ячейкой, содержащей два бита информации, является пара комплементарных нуклеотидов. Она содержит около атомов. Энтропия, связанная с колебательными степенями свободы, составляет бит, или энтропия, приходящаяся на один бит информации, равна примерно 60 бит. Отсюда объем фазового пространства, приходящийся на один бит, равен

При любом процессе управления и передачи происходит преобразование входной информации в выходную. Обычно под информацией понимают некоторые сведения, символы, знаки. Статистическая теория: понятие информации характеризуется как устранение неопределён.

Информация определяется как сведение является объектом хранения, передачи и приёма. Информация передаётся с помощью сигнала. В основе количественной оценки получение информации лежит представление о передачи сообщения, как о случайном стохастическом процессе во времени.

Устраняют неопределённость с помощью испытаний, чем выше неопределённость, тем выше ценность информации.

Степень неопределённости зависит от числа значений, которые может принимать величина и исхода событий.

За меру количества информации определяется случайная величина H(А):

где-вероятностьiисхода.

Знак минус стоит как компенсация H(А)-это энтропия опыта А (формулу придумал Клод Шинон).

Чем большеH(A), тем больше мера незнания.

Накопление сведений о некоторой системе уменьшает энтропию. Информация это определённый вклад в энтропию.

Пусть дана x-система.

если
, то

где

Получение информации являются объективным отображением состояния системы и может быть использована для передачи, управления, решения и т. д.

Информация не является материальной или энергетической категорией, она не когда не создаётся, а только передаётся и принимается, но может утрачиваться, исчезать.

Согласно второму закону термодинамики энтропия увеличивается параллельно с разрушением организованных структур стремясь к хаотическому вероятностному состоянию.

За единицу измерения принимается количество информации содержащейся в некоторой случайной величине, принимающей с равной вероятностью. За единицу степени неопределённости принимается энтропия элементарного события, которые имеют два исхода с одинаковой вероятностью два различных значения.

-двоичная единица или бит.

x-система связаны

y-система

I(x,y)=H(x)+H(y)-H(x,y), где

H(x,y)-энтропия объединённой системы.

, где,

Для непрерывного сигнала.

где(x)-плотность вероятности величиныx. Шинонский подход не учитывает семантического содержания.

33.Понятие эргодического источника. Избыточность.

На практике встречаются эргодические источники, в которых корреляционные связи распространяется на конечное число предшествующих источников. В эргодическом источнике
корреляционные связи отсутствуют, т.е.

Математическим представлением сообщений создаваемых эргодическими источниками являются цепь Маркова.

Цепью Маркова n-порядка называют последовательность, зависимость испытаний при которой, вероятность некоторого исхода
вiиспытании зависит от исходов имевших место в каких-либоnпредыдущих испытаниях, но не зависит от более ранних исходов.

В эргодическом источнике nпорядка распределения
приk=1,2,…,mне остаётся постоянной, а зависит от того, какие были последниеnбукв сообщений.

вероятность выбораqбуквы из алфавита.

Число возможных состояний определяется:
, гдеmэто алфавита,n-порядок,M-число возможных состояний источника.

Для определения полной энтропии необходимо:

если M=1, то получаем классическую формулу Шинона.

Корреляционная связь в эргодическом источнике обязательно сопровождается изменением распределения вероятности, выбора элемента сообщений от состояния к состоянию, что также приводит к уменьшению энтропии, это значит что часть информации передаваемой источником может быть предсказана, значит её можно не передавать, т.к. она может быть восстановлена на приёмной стороне. Чем меньше энтропия источника, тем больше информации он вырабатывает.

R-избыточность, показывает эффективность работы источника.

Причиной Rявляется однозначность и опеорная вероятность выбора между сообщениями.