Минимизации функций методы. Анализ и синтез логических устройств

Алгебры логики

3.3.1. Минимизация ФАЛ с помощью матрицы Карно

Матрица Карно представляет собой своеобразную таблицу истинности ФАЛ, которая разбита на клетки. Количество клеток матрицы равно 2 n , где n – число аргументов ФАЛ. Столбцы и строки матрицы обозначаются наборами аргументов. Каждая клетка матрицы соответствует конституэнте единицы ФАЛ (двоичному числу). Двоичное число клетки состоит из набора аргументов строки и столбца. Матрица Карно для ФАЛ, зависящей от двух аргументов, представлена в виде таблицы 3.3., от трех аргументов таблицей 3.4. и от четырех аргументов таблицей 3.5.

Таблица 3.3.


Таблица 3.5.

х 3 х 4 х 1 х 2
0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0
0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0
1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0
1 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0

Клетки матриц (таблицы 3.3., 3.4. и 3.5.) пронумерованы десятичными эквивалентами двоичных чисел клеток. Рядом расположенные клетки матриц, как по горизонтали, так и по вертикали, содержат соседние двоичные числа. Кроме этого соседние двоичные числа находятся во всех столбцах верхней и нижней строк, так же как во всех строках крайних столбцов.

Процесс минимизации ФАЛ с помощью матрицы Карно основан на законе склеивания соседних двоичных чисел. Можно склеивать двоичные числа рядом расположенных клеток, но рекомендуется склеивать наборы аргументов, которыми обозначены строки и столбцы матриц. Рассмотрим склеивание двоичных чисел клеток первого столбца матрицы (табл. 3.5.).

Клетки 0 и 4, соответственно двоичные числа 0000 и 0100, результат склеивания 0-00.

Клетки 8 и 12, двоичные числа 1000 и 1100, результат 1-00. Полученные импликанты склеиваются между собой, т.к. тире стоит в одном и том же разряде и двоичные числа импликант являются соседними, окончательный результат - - 00.

Клетки 8 и 12

Таким образом, если склеиваются все двоичные числа одного столбца, то пропадают те разряды, которыми обозначены строки. Аналогично, если будут склеиваться все двоичные числа одной строки, например 4, 5, 7, 6, то пропадают все разряды, которыми обозначены столбцы, т.е. результат будет следующий 01- -.

Если будут склеиваться двоичные числа только двух любых клеток, то прочерк ставиться вместо того разряда двоичных чисел строки или столбца, который изменится при переходе клеток из одной строчки в другую (или из одного столбца в другой). Например, склеиваются числа клеток 5 и 13, получим результат -101, или клеток 7 и 6 результат 011-.

При склеивании двоичных чисел восьми рядом расположенных клеток пропадает три переменные, например для клеток 3, 7, 15, 11, 2, 6, 14, 10 пропадают переменные х 1 , х 2 , х 3 . Переменные х 1 , х 2 пропадают потому, что склеиваются все клетки столбцов, а х 3 потому, что последние два столбца склеиваются между собой.

Прежде, чем рассмотреть примеры минимизации ФАЛ с помощь матрицы Карно, необходимо дать классификацию наборов аргументов, с помощью которых определяются функции алгебры логики.

Известно, что для каждой ФАЛ имеет место количество наборов аргументов 2 n , где n – число аргументов от которых зависит функция или логическое выражение.

Наборы аргументов делятся на три вида

1. Наборы аргументов, на которых функция равна единице, называются рабочими.

2. Наборы аргументов, на которых функция равна нулю, называются запрещенными.

3. Наборы аргументов, на которых функция может быть равна или единице, или нулю, называются безразличными.

Если заданная ФАЛ не имеет безразличных наборов, то она может быть представлена в буквенном выражении в виде СДНФ. При наличии в заданной ФАЛ безразличных наборов, ее представление может иметь следующую форму.

где – десятичные эквиваленты рабочих наборов,

– десятичные эквиваленты запрещенных наборов.

Наборы аргументов, которых нет среди рабочих и запрещенных, будут безразличными.

Пример 3.3. Минимизировать заданную ФАЛ в виде СДНФ с помощью матрицы Карно .

Следовательно, функция задана только рабочими наборами. Остальные будут запрещенными. Функция зависит только от трех аргументов. Строим матрицу Карно и в ее клетках, которые соответствуют рабочим наборам ставим единицы, а в остальных клетках ставим нули.

Таблица 3.5.

х 2 х 3 х 1
0

Для минимизации клетки матрицы, в которых стоят единицы, объединяются в контуры. В контур могут включаться две клетки, четыре или все восемь. В данном примере в контур включены четыре рядом расположенные клетки одной строки. Импликантой заданного контура будет 1 - -. Результат минимизации следующий , т.е. произошло сокращение заданной функции в СДНФ на 11 букв.

Пример 3.4. Минимизировать логическое выражение, заданное рабочими и запрещенными наборами с помощью матрицы Карно.

Строим матрицу Карно на четыре переменных и заполним клетки единицами и нулями соответственно для рабочих и запрещенных наборов.

Таблица 3.6.

х 3 х 4 х 1 х 2 00
(1)
(1) (1)

При объединении клеток с единицами в контуры желательно, чтобы в каждый контур включалось наибольшее число клеток из максимально возможного. Для этого клетки некоторых безразличных наборов используем как клетки рабочих наборов, подставив в них единицы в скобках. В результате получим три контура, содержащие по 4 клетки. В обобщенном коде контура, включающего в себя все клетки одной строки, пропадают переменные х 2 х 3 (10 - -). В обобщенном коде контура, включающего все клетки одного столбца пропадают переменные х 1 х 2 (- - 11) и для контура, содержащего по две клетки двух строк пропадают переменные х 2 (при переходе в контуре из одной строки в другую) и х 3 (при переходе из одного столбца в другой). В результате получим минимальную ДНФ в следующем виде

Возможные варианты объединения клеток матрицы Карно в контуры показаны на рисунке 3.4.


х 3 х 4 х 1 х 2

А = 0 - 0 - З = - 0 - 0
Н Б = 1 - 1 - К = - - - 1
В = - - 0 0 Л = - 1 - -
Г = 1 0 - - М = - - - 0
Д = - 0 0 1 Н = - 0 - -
Е = - 0 1 -
Ж = - 1 - 1

Рис. 3.1. Возможные варианты объединения клеток матрицы Карно в контуры


3.3.2. Минимизация функций алгебры логики с помощью матрицы на пять переменных

Матрица минимизации на пять переменных строится аналогично матрице Карно, т.е. в этой матрице рядом расположенные столбцы и строки должны быть обозначены соседними двоичными числами наборов переменных

В матрице на пять переменных (таблица 3.7.) строкам соответствуют наборы переменных х 1 х 2 х 3 , а столбцам наборы переменных х 4 х 5 . Каждой клетке матрицы соответствует пятиразрядное двоичное число. В клетках матрицы (табл. 3.7.) проставлены десятичные эквиваленты соответствующих двоичных чисел.

Таблица 3.7.

х 4 х 5 х 1 х 2 х 3

Минимизация ФАЛ с помощью матрицы на пять переменных заключается в объединении клеток с рабочими наборами (включая при необходимости и клетки с безразличными наборами) в контуры и получении для этих контуров соответствующих им обобщенных кодов.

Особенность здесь заключается в том, что в столбцах матрицы на пять переменных объединять по четыре клетки в контуры можно только или четыре клетки сверху, или четыре клетки внизу, или четыре клетки посередине. Например, для последнего столбца матрицы контуры могут состоять из клеток 2, 6, 14, 10, или 26, 30, 22, 18 или 14, 10, 26, 30.

Пример 3.6. Минимизировать с помощью матрицы на пять переменных следующее логическое выражение

Строим матрицу на пять переменных и заполняем клетки рабочих наборов единицами, запрещенных – нулями.

Объединяем в контуры клетки с рабочими наборами, включая в них необходимые клетки безразличных наборов. Для каждого контура определяем обобщенных код.

Таблица 3.8.

х 4 х 5
х 1 х 2 х 3
(1) (1) (1)
(1)
(1) (1)
(1) (1)
(1) (1)
(1)
(1) (1)

Получаем минимальную ДНФ

Контрольные вопросы

1. Дать определение сокращенной ДНФ.

2. Что представляет собой тупиковая ДНФ?

3. Как выбирается минимальная ДНФ из тупиковых ДНФ?

4. Для чего используется импликантная таблица и как она строится?

5. Пояснить аналитический способ минимизации ФАЛ Квайна-Мак-Класски.

6. Как строится матрица Карно на три и четыре переменных?

7. Минимизировать аналитическим способом следующие логические выражения, заданные только рабочими наборами

8. Минимизировать с помощью матрицы Карно логические выражения, заданные рабочими и запрещенными наборами


Похожая информация.


Различают комбинационные и последовательностные логические устройства.

Комбинационные логические устройства - это устройства, у которых значения выходных сигналов зависят только от комбинации входных сигналов в данный момент времени.

Последовательностные логические устройства - это устройства, выходные сигналы которых зависят от значений входных сигналов не только в данный момент времени, но и в предыдущие моменты времени. В состав этих устройств обязательно входят элементы памяти - триггеры. Различают несколько видов триггеров в зависимости от того, какую элементарную функцию памяти они реализуют.

При разработке логического устройства сначала формулируют словесное описание его алгоритма действия. Затем составляют удовлетворяющую этому описанию логическую функцию (абстрактный синтез) и далее разрабатывают структурную логическую схему устройства {структурный синтез).

В процессе абстрактного синтеза осуществляется переход от словесного описания ТП (его нормальный ход и аварийные ситуации) к составлению алгоритма функционирования в виде таблицы, циклограммы, графика и т.п. Циклограмма представляет собой ряд горизонтальных строк, равных числу входов и выходов логического устройства. Для составления логического алгоритма управления технологическим оборудованием необходимо иметь полную информацию о ТП каждой технологической операции и применяемом оборудовании. На этой стадии уточняют последовательность операций и необходимые временные задержки для всех режимов работы объекта управления, определяют параметры, подлежащие контролю и учету в ходе процесса; формулируют требования управляемого объекта к логическому устройству. Эти требования представляют в виде значений двоичных сигналов, которые должны быть поданы на исполнительные устройства системы управления в зависимости от состояния управляемого объекта.

В процессе структурного синтеза происходит переход от логической функции, описывающей алгоритм функционирования, к структурной схеме логического устройства.

Однако прежде чем приступить к разработке схемы, необходимо попытаться преобразовать исходную логическую функцию к максимально простому виду. На основе структурной схемы логического устройства разрабатывают его принципиальную схему с использованием конкретной элементной базы, например в базисе ИЛИ-HE или И-НЕ. Завершающий этап создания схемы логического устройства - разработка и согласование узлов связи устройства с оператором и управляемым объектом, защита от помех и т.п.

Исторически первыми устройствами, для описания действий которых использовали логические функции, были устройства, выполненные на релейно-контактных элементах. Для проектирования таких устройств была разработана теория релейно-контактных схем (ТРКС). Затем появились бесконтактные устройства, предназначенные только для логических преобразований сигналов и представляющие собой конструктивно оформленные изделия.

Устройства автоматики, действие которых описывается элементарными логическими функциями, обычно называют в соответствии с реализуемой ими логической операцией элементами НЕ, И, ИЛИ, И-НЕ, ИЛИ-HE (см. табл. 4.1).

Имея необходимые элементы, по логической функции можно синтезировать логическое устройство любой сложности. Однако построенная схема может оказаться неоправданно сложной, требующей использования большого числа логических элементов, что может повлиять на стоимость и надежность устройства. Во многих случаях удается так упростить логическую функцию, что соответствующая ей схема устройства оказывается существенно более простой и выполняющей поставленную задачу.

Методы минимизации логических функций. Методы упрощения комбинационных устройств называют методами минимизации логических функций. Метод минимизации основан на применении законов алгебры логики, или булевой алгебры, которые приведены ниже для минимального числа переменных. Эквивалентность левой и правой части уравнений обозначена знаком равенства. Одновременно изображены релейные эквиваленты рассматриваемых законов алгебры логики.

Переместительный закон . Для логической суммы и произведения порядок расположения переменных безразличен :

Сочетательный закон. Результат последовательного сложения переменных или умножения их не зависит от порядка этих действий:


Закон поглощения. Сложение переменной с этой же переменной , умноженной на другую переменную , или умножение переменной на сумму этой же переменной и другой переменной равно первой переменной:

Распределительный закон. Общий множитель можно выносить за скобки , как в обычной алгебре:

Закон склеивания. Сумма произведений первой и второй переменных и второй переменной и инверсии первой переменной равна второй переменной. Произведение суммы двух переменных и суммы инверсии первой переменной со второй переменной равно второй переменной:


Закон инверсии (закон Моргана - Шеннона). Отрицание логического сложения равносильно произведению отрицаний слагаемых , и , наоборот , отрицание логического умножения равносильно сумме отрицаний сомножителей:


Инверсия произвольной комбинации двоичных переменных, соединенных знаком «плюс» или «умножение», эквивалентна замене в ней значений перемен-

ных их инверсиями при одновременном изменении знака «плюс» на знак «умножение» и наоборот. Например, x t x 2 +x 3 x 4 =(x l x 2)(x 3 x 4) = (x l +х 2)(х 3 +х 4). Закон инверсии встречается только в алгебре логики.

Таким образом, закон инверсии позволяет заменить операцию ИЛИ операцией И, а при необходимости - наоборот. Это особенно важно, поскольку при широком использовании интегральных логических элементов в построении логических устройств наиболее часто используют элементы базисов И-НЕ, ИЛИ-НЕ.

Преобразования логических функций, выполняемые с применением распределительного закона, являются основным методом упрощений, так как вынесение общего множителя за скобки сокращает общее число переменных выражения, следовательно, позволяет сократить число элементов в схемах логических устройств.

Выполняя минимизацию, пользуются также следствиями законов алгебры логики, основные из которых следующие:


Последнее тождество для минимизации получено путем двойной инверсии упрощаемого выражения. Первая инверсия дает

Вторая инверсия дает

Для перехода из базиса И, ИЛИ, НЕ в базис ИЛИ-HE, а также в базис И-НЕ также выполняется преобразование логической формулы с использованием двойного отрицания. Рассмотрим пример перехода для релейной схемы на рис. 4.5, а , реализованной в базисе И, ИЛИ, НЕ (рис. 4.5, б), в базис ИЛИ-HE (рис. 4.5, в):

и в базис И-НЕ (рис. 4.5, г):

Количество черточек сверху формул равно количеству элементов отрицания, т.е. элементов ИЛИ-HE и И-НЕ. В первой формуле шесть отрицаний, и соответственно схема на рис. 4.5, в содержит шесть элементов ИЛИ-HE. Во второй формуле пять отрицаний, и соответственно схема на рис. 4.5, г содержит пять элементов И-НЕ.


Рис . 45.

а - на релейных элементах; б - на элементах ИЛИ, И, НЕ; в - на элементах

ИЛИ-HE; г-на элементах И-НЕ

Пример 4.1

Упростите выражение/ = + у)(х + z) и начертите релейный эквивалент до упрощения и после него. Здесь/ - выходной сигнал (состояние замыкающего контакта) релейного элемента F.

Решение


Упростим заданное выражение в соответствии с законами алгебры логики: Учитывая, что х х = х, запишем

Учитывая, что 1 + у + z = 1, окончательно запишем /= х + у z. После упрощения релейный эквивалент выглядит следующим образом:

Упростите выражение f = х-у + х y-z +y-z и начертите релейный эквивалент до упрощения и после него.

Решение

До упрощения релейный эквивалент в соответствии с заданным выражением выглядит следующим образом:


Упростим заданное выражение в соответствии с законами алгебры логики, вынося общий множитель за скобки:

Релейно-контактная схема этого выражения примет вид


Здесь учтено, что x-z =x + z иа + а = 1, или x+z+x+z = 1, где a = x + z; а = x+z. Поэтому после преобразования упрощенное выражение примет вид

После упрощения выражения релейный эквивалент выглядит так:

Проверим правильность преобразования с помощью таблицы состояния (табл. 4.2), в которой показаны все возможные комбинации двух переменных х и 2, и убедимся, что выражение х + г + х-г всегда равно единице.

Таблица 4.2

Таблица состояния

X + Z + X-Z

Рассмотрим пример применения алгебры логики для создания системы автоматического регулирования уровня воды в резервуаре Р (рис. 4.6). Исполнительный механизм ИМ осуществляет подачу воды в резервуар путем полного открытия или закрытия подающего вентиля А. В резервуаре имеются два датчика уровня воды: датчик верхнего уровня В и датчик нижнего уровня Н. Когда уровень воды достигнет или превысит положение датчика, сигнал его становится равным единице. Если уровень воды опустится ниже уровня датчика, сигнал на его выходе становится равным нулю.


Рис. 4.6.

Проанализируем условия работы автоматической системы. Если уровень воды достигнет нижнего уровня Н, то необходимо включить подачу. Если уровень воды достигнет верхнего уровня В, то подачу необходимо отключить. Если уровень воды занимает промежуточное положение между В и Н, то подача должна остаться включенной, если она была включена от датчика Н. Если же подача была выключена датчиком В, то она должна оставаться выключенной. Временная диаграмма сигналов с выхода датчиков и управляющего сигнала Q приведена на рис. 4.7.


Рис. 4.7.

на рис. 4.6

Условия работы, т.е. все комбинации входных сигналов и сигнала управления, переведены на язык алгебры логики и представлены на рис. 4.7 в верхней таблице в виде единиц и нулей. В таблице указано, при каких соотношениях входных сигналов имеется или отсутствует сигнал Q на выходе релейной САР. Сигнал на выходе является результатом логических операций над входными сигналами.

Если по данным таблицы мы попытаемся записать условия работы в виде логических функций, то обнаружим, что включенному сигналу управления соответствуют два различных соотношения входных сигналов. То же относится и к выключенному сигналу управления. Получается неоднозначность выходного сигнала в зависимости от сочетания входных сигналов. При В = 0 и Н = 1 есть положение, когда Q = 0 и есть положение, когда Q=l. Это значит, что в схеме должен быть элемент памяти, в качестве которого можно использовать уже знакомый нам RS-триггер Т. Для включения триггера используем появление нулевого сигнала на выходе 11 (II = 0). Этот сигнал инвертируется и подается на устанавливающий вход S триггера Т. Поскольку сигнал В не изменяется, то его не будем учитывать и запишем условие для включения S = Н. Условия для сброса триггера и снятия сигнала управления записываем как R = В.

По этому же принципу строятся системы для регулирования температуры при охлаждении электрических машин и трансформаторов, а также силовых установок автомобилей и тракторов с помощью вентиляторов. Схема может использоваться и для автоматического поддержания температуры за счет подогрева в жилых и животноводческих помещениях.

Рассмотрим еще один пример применения алгебры логики для создания логических релейных защит электротехнических объектов на примере релейной защиты силового трансформатора, приведенной на рис. 4.8.

Правила устройства электроустановок предусматривают для ответственных объектов основную и резервную защиту. Основная защита должна отключать объект без выдержки времени, а резервная - с выдержкой времени.


Рис. 4.8.

а - силовая схема; б - схема цепей защиты

Основной защитой трансформатора Т1 при коротком замыкании в трансформаторе (КЗ в точке К1) служит дифференциальная релейная защита (на схеме она не показана). Резервной защитой при коротком замыкании на отходящих шинах подстанции за выключателем Q2 (КЗ в точке К2) служит максимальная токовая защита, действующая при срабатывании токовых реле КЛ1-К АЗ. Короткое замыкание в трансформаторе Т1 должно отключаться выключателем Q1 от действия резервной защиты без выдержки времени, т.е. «мгновенно». Короткое замыкание в точке К2 должно без выдержки времени отключаться выключателем Q2 (защита выключателя Q2 на схеме не показана). Если по каким-либо причинам защита, воздействующая на выключатель Q2 или сам выключатель Q2, не сработает, то от резервной защиты с выдержкой времени должен отключиться выключатель Q1.

Рассмотрим, как можно повысить быстродействие рассматриваемой резервной защиты, если КЗ произошло в трансформаторе и основная защита не сработала. Для этого измерительные органы ставят на входе и выходе трансформатора Т1. Они выполняют функцию определения места КЗ: на защищаемом объекте или на участке внешней сети. При КЗ на защищаемом объекте (КЗ в основной зоне) они разрешают работу резервной защиты без выдержки времени, а при внешнем КЗ они блокируют цепь мгновенного отключения, и защита работает как резервная с выдержкой времени.

Определение места КЗ выполняется следующим образом. При КЗ в Т1 (точка К1) трансформаторы тока ТА 1-ТАЗ обтекаются током КЗ, и срабатывают реле тока КА1-КАЗ. Трансформаторы тока ТА4-ТА5 на выходе трансформатора Т1 не обтекаются током КЗ. Реле тока КА4 и КА5 не срабатывают, их размыкающие контакты замкнуты. В такой ситуации защита должна сработать без выдержки времени. Промежуточное реле KL подает сигнал на отключение выключателя Q1.

Условия работы промежуточного реле KL для отключения без выдержки времени словесно можно сформулировать так: реле KL сработает, если сработает реле КЛ1, ИЛИ сработает реле КА2 ИЛИ, сработает реле КАЗ И НЕ сработают реле КА4 И реле КА5.

В символах математической логики условие срабатывания реле KL записывается так:

При КЗ на участке внешней сети (точка К2) трансформаторы тока ТА4 и ТА5 обтекаются током КЗ, что приводит к срабатыванию реле тока КА4 и КА5 и размыканию их размыкающих контактов в цепи релейной защиты без выдержки времени. Таким образом, работа защиты без выдержки времени блокируется. Резервная защита при КЗ в точке К2 работает с выдержкой времени.

Условие срабатывания реле времени резервной защиты формулируется словесно так: реле времени КТ сработает, если сработает реле КА1, ИЛИ сработает реле КА2, ИЛИ сработает реле КАЗ.

В символах математической логики условие срабатывания реле времени записывается как

Полностью условие срабатывания промежуточного реле KL, отключающего выключатель Q1 без выдержки времени и с выдержкой времени, записывается так:

Схема на рис. 4.8, б построена в соответствии с уравнениями (4.13) и (4.14). Срабатывание защиты без выдержки времени (логической защиты) фиксируется указательным реле КН1. Срабатывание защиты с выдержкой времени фиксируется указательным реле КН2.

Метод применим для функций от любого числа переменных, но мы рассмотрим его для функций от 3-х переменных.

Представим в виде ДНФ с неопределенными коэффициентамиk:

(**)

В этой ДНФ представлены все возможные элементарные коньюнкции, которые могут входить в функцию, а коэффициенты kмогут принимать значения 0 или 1. Значения коэффициентов нужно выбрать так, чтобы данная ДНФ была минимальной.

Будем рассматривать данную нам функцию на всех наборах и приравнивать выражение (**) на каждом из наборов (отбрасывая нулевые конъюнкции) соответствующему значению функции. Получим систему изуравнений вида:

Если в каком-то из этих уравнений правая часть равна 0, то все слагаемые левой части тоже равны 0. Эти коэффициенты можно исключить из всех уравнений, правые части которых равны 1. В этих уравнениях значение 1 следует присвоить тому коэффициенту, который соответствует коньюнкции наименьшего ранга. Эти коэффициенты и определят МДНФ.

Пример

Составляем систему, используя выражение (**).

После исключения нулевых слагаемых получаем

Полагаем остальные коэффициенты считаем нулевыми. Получаем МДНФ:

2.2. Метод Квайна - Мак - Класки

Рассмотренный метод неопределенных коэффициентов эффективен, если число аргументов функции не больше, чем 5 – 6. Это связано с тем, что число уравнений равно 2 n . Более эффективным является выписывание не всех возможных конъюнкций для функции, а только тех, которые могут присутствовать в ДНФ данной функции. На этом основан метод Квайна. При этом предполагается, что функция задана в виде СДНФ. В данном методе элементарные конъюнкции рангаn, входящие в ДНф, называются минитермами рангаn. Метод Квайна состоит из последовательного выполнения следующих этапов.

1. Нахождение первичных импликант

Просматриваем последовательно каждый минитерм функции и производим склеивание его со всеми минитермами, с которыми это возможно. В результате склеивания минитермов n-го ранга, мы получим минитермы (n-1)-га ранга. Минитермыn-го ранга, которые участвовали в операции склеивания, помечаем. Затем рассматриваем минитермы (n-1)-го ранга и операцию склеивания применяем к ним. Помечаем склеивающиеся минитермы (n-1)-го ранга и записываем получившиеся в результате склеивания минитермы (n-2)-го ранга и т. д. Этап заканчивается, если вновь полученные минитермыl -го ранга уже не склеиваются между собой. Все неотмеченные минитермы называются первичными импликантами. Их дизъюнкция представляет собой Сокр. ДНФ функции.

Склеиваем минитермы 4-го ранга и помечаем склеивающиеся минитермы звездочками

Образуем минитермы 2-го ранга:

Первичными (простыми) импликантами являются:

2. Расстановка меток

Для данной функции Сокр. ДНФ имеет вид:

Для построения тупиковых ДНФ и Сокр. ДНФ нужно выбросить лишние интервалы. Строим таблицу, строки которой соответствуют первичным импликантам, а столбцы – минитермам СДНФ. Если в некоторый из минитерм входит какой-то из импликант, то на пересечении соответствующей строки и столбца ставится метка, например, 1.

Продолжение примера

3. Нахождение существенных импликант

Если в каком-либо столбце содержится только одна единица, то первичная импликанта, определяющая эту строку, называется существенной. Например, существенной импликантой является . Существенная импликанта не может быть удалена из Сокр. ДНФ, т. к. только она способна покрыть некоторые минитермы СДНФ. Поэтому из таблицы исключаем строки, соответствующие этим импликантам, и столбцы, имеющие единицы в этих строках.

В рассматриваемом примере исключаем строку и столбцы.

В результате получаем таблицу

4. Вычеркивание лишних столбцов и строк

Если в полученной таблице есть одинаковые столбцы, то вычеркиваем все, кроме одного. Если после этого в таблице появятся пустые строки, то их вычеркиваем.

5. Выбор минимального покрытия максимальными интервалами

В полученной таблице выбираем такую совокупность строк, которая содержит единицы во всех столбцах. При нескольких возможных вариантах такого выбора, предпочтение отдается варианту с минимальным числом букв в строках, образующих покрытие.

Продолжение примера

Минимальное покрытие таблицы образуют строки, соответствующие импликантам . Тогда МДНФ имеет вид:

В методе Квайна есть одно существенное неудобство, связанное с необходимостью полного по парного сравнивания минитермов на этапе построения Сокр. ДНФ. В 1956 г. Мак - Класки предположил модернизацию первого этапа метода Квайна, дающую существенное уменьшение количества сравнений минитермов.

Идея метода Мак - Класки заключается в следующем. Все минитермы записываются в виде двоичных номеров, например, как 1010. Эти номера разбиваются на группы по числу единиц в номере, т. е. вi-ю группу попадают номера, имеющие в своей записиiединиц. По парное сравнение производится только между соседними по номеру группами, т. к. минитермы, пригодные для склеивания, отличаются друг от друга только в одном разряде. При образовании минитермов с ранга выше нулевого, в разряды, соответствующие исключенным переменным, ставится тире.

Пример

Найдем МДНФ для функции:

Минитермы 4-го ранга по группам

Минитермы 3-го ранга

Минитермы 2-го ранга

Непомеченные минитермы или простые импликанты

Строим таблицу меток

Обе первичные импликанты существенны и определяют минимальное покрытие, т. е. МДНФ имеет вид.

Студент должен:

Знать:

· Методы минимизации логических функций.

Уметь:

· Выполнять минимизацию функций методом непосредственных преобразований; Выполнять минимизацию функций методом непосредственных преобразований;

· Выполнять минимизацию функций с помощью карт Карно.

Метод непосредственных преобразований

Логическая функция, задающая принцип построения схемы цифрового устройства, может быть, как было показано выше, представлена в виде таблицы истинности или в виде СДНФ или СКНФ и может быть использована для получения логической схемы устройства. Однако полученная логическая схема, как правило, не будет оптимальна. Поэтому важным этапом синтеза логических схем является минимизация логических функций.

Минимизация (упрощение формы записи) функции является важной операцией при синтезе логической схемы, так как благодаря предварительно проведенной минимизацией схема реализуется с наименьшим числом элементов.

Для минимизации разработан ряд методов. Одним из простых методов минимизации является метод непосредственных преобразований, который осуществляется с использованием основных теорем алгебры логики.

Например, логическую функцию

в виде СДНФ, можно минимизировать следующим образом:

1. Добавим к данной функции слагаемое , которое уже есть в данной функции, используя правило х+х=х

2. Применим метод склеивания одинаково подчеркнутых элементарных конъюнкций

3. Применим метод склеивания для двух последних элементарных конъюнкций

Полученная в результате минимизации логическая функция называется тупиковой. Логическая функция может иметь несколько тупиковых форм.

Выявление и устранить избыточности в записи функции путем её преобразований с использованием аксиом, законов, тождеств и теорем алгебры логики требуют громоздких выкладок и связаны с большой затратой времени.

Карты Карно

Метод непосредственных преобразований наиболее пригоден для простых формул, когда последовательность преобразований очевидна для исполнителя. Наиболее часто этот метод применяется для окончательной минимизации выражений, полученных после минимизации их другими методами.



Стремление к алгоритмизации поиска соседних элементарных произведений привело к разработке табличных методов минимизации логических функций. Одним из них является метод, основанный на использовании карт Карно.

Карты Карно были изобретены в 1952 Эдвардом В. Вейчем и усовершенствованы в 1953 Морисом Карно, физиком из «Bell Labs», и были призваны помочь упростить цифровые электронные схемы.

Карта Карно - это графическое представление таблицы истинности логических функций. Она представляет собой таблицу, содержащую по 2 n прямоугольных ячеек, где n - число логических переменных.

Например, карта Карно для функции четырех переменных имеет 2 4 = 16 ячеек.


Структура карты Карно для функций двух переменных показана на рисунке 2.2. 2

Рисунок 2.2


На рисунке 2.3 представлена структура карты Карно для функции трёх переменных.

а) таблица истинности; б) структура карты Карно

Рисунок 2.3

Карта размечается системой координат, соответствующих значениям входных переменных. Например, верхняя строка карты для функции трех переменных (рисунок 2.3) соответствует нулевому значению переменной x1, а нижняя - ее единичному значению.

Каждый столбец этой карты характеризуется значениями двух переменных: х2 и х3. Комбинация цифр, которыми отмечается каждый столбец, показывает, для каких значений переменных х2 и х3 вычисляется функция, размещаемая в клетках этого столбца.

Если на указанном наборе переменных функция равна единице, то ее СДНФ обязательно содержит элементарное произведение, принимающее на этом наборе единичное значение. Таким образом, ячейки карты Карно, представляющие функцию, содержат столько единиц, сколько элементарных произведений содержится в ее СДНФ, причем каждой единице соответствует одно из элементарных произведений.

Обратим внимание на то, что координаты строк и столбцов в карте Карно следуют не в естественном порядке возрастания двоичных кодов, а в порядке 00, 01, 11, 10. Изменение порядка следования наборов сделано для того, чтобы соседние наборы были соседними, т.е. отличались значением только одной переменной.

Ячейки, в которых функция принимает значения, равные единице, заполняются единицами. В остальные ячейки записываются нули.

Процесс минимизации рассмотрим на примере, представленном на рисунке 2.4.

а) таблица истинности; б) карта Карно

Рисунок 2.4

Сначала формируем прямоугольники, содержащие по 2k ячеек, где k - целое число.

В прямоугольники объединяются соседние ячейки, которые соответствуют соседним элементарным произведениям.

Например, на рисунке 2.4,б объединены ячейки с координатами 001 и 101. При объединении этих ячеек образовался прямоугольник, в котором переменная x1 изменяет свое значение. Следовательно, она исчезнет при склеивании соответствующих элементарных произведений и останутся только х2 и х3, причем переменную х2 берем в инверсном виде, т.к. она равна 0.

Ячейки, расположенные в первой строке (рисунок 2.4 б), содержат единицы и являются соседними. Поэтому все они объединяются в прямоугольник, содержащий 2 2 = 4 ячейки.

Переменные х2 и х3 в пределах прямоугольника меняют свое значение; следовательно, они исчезнут из результирующего элементарного произведения. Переменная х1 остается неизменной и равной нулю. Таким образом, элементарное произведение, полученное в результате объединения ячеек первой строки рисунка 2.4 б, содержит лишь один х1, который берем в инверсном виде, т.к. он равен 0.

Это, в частности, следует из того, что четырем ячейкам первой строки соответствует сумма четырех элементарных произведений:

Двум ячейкам сторого столбца соответствует сумма двух произведений

Функция, соответствующая рисунку 2.4 имеет вид:

Совокупность прямоугольников, покрывающих все единицы, называют покрытием. Заметим, что одна и та же ячейка (например, ячейка с координатами 001) может покрываться два или несколько раз.

Итак, можно сделать следующие выводы:

1. Формула, получающаяся в результате минимизации логической функции с помощью карт Карно, содержит сумму стольких элементарных произведений, сколько прямоугольников имеется в покрытии.

2. Чем больше ячеек в прямоугольнике, тем меньше переменных содержится в соответствующем ему элементарном произведении.

Например, для карты Карно, изображенной на рисунке 2.5 а, прямоугольнику, содержащему четыре ячейки, соответствует элементарное произведение двух переменных, а квадрату, состоящему всего лишь из одной ячейки,- элементарное произведение включающее все четыре переменные.


а) б) в)

Рисунок 2.5

Функция, соответствующая покрытию, показанному на рисунке 2.5 а, имеет вид:

Несмотря на то, что карты Карно изображаются на плоскости, соседство квадратов устанавливается на поверхности тора. Верхняя и нижняя границы карты Карно как бы «склеиваются», образуя поверхность цилиндра. При склеивании боковых границ получается тороидальная поверхность. Следуя изложенным рассуждениям, устанавливаем, что ячейки с координатами 1011 и 0011, изображенные на рисунке 2.5 б, являются соседними и объединяются в прямоугольник. Действительно, указанным ячейкам соответствует сумма элементарных произведений

Аналогично объединяются и остальные четыре единичные ячейки. В результате их объединения получаем элементарное произведение .

Окончательно функция, соответствующая покрытию, изображенному на рисунке 2.5 б, имеет вид

Карта Карно, показанная на рисунке 2.5 в, содержит единичные ячейки, расположенные по углам. Все четыре ячейки являются соседними, и после объединения дадут элементарное произведение

Рассмотренные выше примеры позволяют сформулировать последовательность проведения минимизации логических функций с помощью карт Карно:

1. Изображается таблица для n переменных и производится разметка ее сторон.

2. Ячейки таблицы, соответствующие наборам переменных, обращающих функцию в единицу, заполняются единицами, остальные ячейки - нулями.

3. Выбирается наилучшее покрытие таблицы правильными прямоугольниками, которые обводим контурами. В каждом прямоугольнике должно быть 2 n ячеек.

4. Одни и те же ячейки с единицами могут входить в разные контуры.

5. Количество прямоугольников должно быть минимальным, а площадь прямоугольников максимальная.

6. Для каждого прямоугольника записываем произведение только тех переменных, которые не изменяют своего значения. Если эта переменная равна нулю, то ее записывают в инверсном виде.

7. Полученные произведения соединяем знаком логического сложения.

Контрольные вопросы:

1. Что называют минтермами и минтермами?

2.Записать функции, заданные таблицами 2.9 и 2.10 в СДНФ и СКНФ.

Таблица 2.9

3. Упростите логические функции, используя аксиомы тождества и законы алгебры логики:

a)

c)

Логические элементы

Студент должен

Знать:

· Таблицы логических состояний для основных функциональных логических схем;

· Основные базисы построения логических схем.

Уметь:

· Определять логические состояния на выходах цифровых схем по известным состояниям на входах;

· Выполнять логическое проектирование в базисах микросхем;

· Выбирать микросхему по справочнику, исходя из заданных параметров и условий использования.

Принцип логического устройства базируется в ИМС на работе биполярных транзисторов в режиме ключа (либо замкнут, либо разомкнут).


Логическое действие осуществляется как с одной (одновходовый логический элемент) так и с множеством (многовходовый логический элемент) входных переменных.

При работе логических устройств используются три основных действия согласно алгебры Буля – «И», «ИЛИ», «НЕ».

Логическая функция может быть выражена словесно, в алгебраической форме, таблицей истинности, называемой переключательной таблицей, с помощью временных диаграмм. Рассмотрим все варианты представления логических функций.

При проектировании цифровых автоматов широко используются методы минимизации булевых функций, позволяющие получать экономичные схемы. Общая задача минимизации булевых функций может быть сформулирована следующим образом: найти аналитическое выражение заданной булевой функции в форме, содержащей минимально возможное число букв.

В основе методов минимизации лежит операция склеивания (алгоритм объединения соседний двоичных чисел):

где А - элементарная конъюнкция.

В выражении слагаемые являются соседними двоичными числами, которые отличаются друг от друга только одним разрядом. При выполнении операции склеивания над двумя соседними числами из набора исключается одна переменная, которая отличает одно число от другого, над четырьмя попарно соседними числами - две переменные, над восемью - три переменные и т.д.

Минимальной дизъюнктивной нормальной формой (МДНФ) булевой функции называется ДНФ, содержащая наименьшее число букв (по отношению ко всем другим ДНФ, представляющим заданную булеву функцию).

Минимизировать функции, то есть находить наиболее простое выражение для исходной функции можно различными методами. Все они практически различаются лишь на первом этапе - этапе получения сокращенной ДНФ. Следует отметить, что, к сожалению, поиск МДНФ всегда связан с некоторым перебором решений. Рассмотрим некоторые из них.

Минимизация сложных логических выражений с помощью матрицы Карно

Дли реализации алгоритма объединения необходимо из всей совокупности обязательных конституентов в совершенной дизъюнктивной нормальной форме функции алгебры логики отыскать соседние. Для отыскания соседних конституентов используются матрицы Карно, решетка соседних чисел, таблицы соседних конституентов.

Матрицы Карно целесообразно использовать для минимизации ФАЛ на наборах из 2,3,4,5 и 6 переменных. Номера столбцов в матрицах Карно образуют младшие разряды, а номера строк - старшие разряды наборов. Номера клеток составляются из номеров строк и столбцов и соответствуют наборам переменных.

Рассмотрим матрицу Карно для функции алгебры логики на наборах из 4-х переменных (табл. 1).

Таблица 1. Матрица Карно

Столбцы и строки в этой матрице обозначены двоичными соседними числами: 00-0I-II-I0. Поэтому номера смежных по горизонтали и вертикали клеток, а также крайних в строках и столбцах клеток являются соседними числами, например:

клетки с номерами и;

клетки с номерами;

клетки с номерами;

клетки с номерами.

Для минимизации функции алгебры логики, заданной в совершенной дизъюнктивной нормальной форме, с помощью матрицы Карно необходимо: подготовить матрицу Карно, вписав в клетки, соответствующие обязательным конституентам, единицы, объединить клетки с единицами в «подкубы», записать минимизированную функции алгебры логики в дизъюнктивной нормальной форме.

В «подкубы» объединяются:

  • - две клетки с номерами, являющимися соседними числами, при этом исключается одна переменная;
  • - четыре клетки (строка, столбец, квадрат, угловые клетки), при этом исключается две переменные;
  • - восемь клеток (две соседних или крайних строки (столбца)), при этом исключается три переменные.

Для обеспечения исключения возможно большего количества переменных размеры «подкубов» должны быть как можно больше, а число их как можно меньше. С этой целью можно одну и ту же клетку с единицей использовать несколько раз, включая в различные «подкубы». Число слагаемых в минимизированной функции алгебры логики равно числу подкубов и клеток с единицами, не объединенных в подкубы.

Пусть необходимо минимизировать следующую функцию алгебры логики:

Матрица Карно, заполненная в соответствии с этой формулой, может быть представлена в виде таблицы 2:

Таблица 2. Матрица Карно

В этой матрице можно выделить два двухклеточных подкуба. В результате минимизации будет получена следующая функция алгебры логики:

Метод Квайна

Для получения минимальной формы логической функции необходимо в совершенной дизъюнктивной нормальной форме функции (СДНФ) произвести все возможные склеивания и поглощения так, что в результате будет получена сокращенная дизъюнктивная нормальная форма функции. (ДНФ).Сокращенная ДНФ в общем случае может содержать лишние простые импликанты, которые необходимо выявить на втором этапе минимизации.

На первом этапе выполняется переход от функции, заданной в форме ДНФ, к сокращенной ДНФ. Суть метода заключается в последовательном выполнении всех возможных склеиваний и затем всех поглощений, что приводит к сокращенной ДНФ. Метод применим к совершенной ДНФ. Из соотношения поглощения следует, что произвольное элементарное произведение поглощается любой его частью. Для доказательства достаточно показать, что произвольная простая импликанта р = xi1 xi2 ... xin может быть получена. В самом деле, применяя к р операцию развертывания (обратную операции склеивания):

по всем недостающим переменным x ik , ..., xim исходной функции f, получаем совокупность S конституент единицы. При склеивании всех конституент из S получим импликанту р. Последнее очевидно, поскольку операция склеивания обратна операции развертывания. Множество S конституент обязательно присутствует в совершенной ДНФ функции f поскольку р - ее импликанта.

В результате выполнения склеивания получается конъюнкция n-1 ранга, а конъюнкции остаются в исходном выражении и участвуют в сравнении с другими членами СДНФ. Таким образом, удается снизить ранг термов.

Склеивание и поглощение выполняются до тех пор, пока имеются члены, не участвовавшие в попарном сравнении. Термы, подвергшиеся операции склеивания, отмечаются. Неотмеченные термы представляют собой простые импликанты и включаются в сокращенную ДНФ. Все отмеченные конъюнкции ранга n-1 подвергаются вновь операции склеивания до получения термов n-2 ранга и так далее до тех пор, пока количество неотмеченных конъюнкций больше 2. В результате выполнения первого этапа получена сокращенная ДНФ.

Полученное логическое выражение не всегда оказывается минимальным. На втором этапе переходят от сокращенной ДНФ к тупиковым ДНФ и среди них выбирают МДНФ.

Для формирования тупиковых ДНФ строится импликантная таблица (матрица), строки которой отмечаются простыми импликантами сокращенной ДНФ, а столбцы конститутиентами единицы исходной СДНФ. В строке напротив каждой простой импликанты ставится метка под теми наборами (конститутиентами единицы), на которых она принимает значение 1. Соответствующие конститутиенты поглощаются (покрываются) данной простой импликантой.

Из общего числа простых импликант необходимо отобрать их минимальное число, исключив лишние. Формирование тупиковых форм и выбор минимального покрытия начинается с выявления обязательных простых импликант, то есть таких, которые (и только они) покрывают некоторый исходный набор. Рассмотрим на примере минимизации логической функции:

f СДНФ = V (1,2,5,6,7)=x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3

1 2 3 4 5

Выполним операцию склеивания:

  • 1 - 3 (x1 ) x2 x3 1
  • 2 - 4 (x1 ) x2 x3 2
  • 3 - 5 (x2 ) x1 x3 3
  • 4 - 5 (x3 ) x1 x2 4

В результате выполнения первого шага склеивания получаем четыре новые конъюнкции, простых импликант не выявлено. Полученные конъюнкции более не склеиваются и образуют сокращенную ДНФ.

f сокр СДНФ =x2 x3 + x2 x3 + x1 x3 + x1 x2

Для выявления обязательных простых импликант и фрормирования на их основе минимального покрытия строится импликантная таблица (таблица 3). В строках импликантгой таблицы записываются простые импликанты, а в столбцах конституэнты единицы. Звездочка ставится если простая импликанта покрывает контитуэнту.

Таблица 3. Импликантная таблица

x 1 x2 x3

X 1 x2 x3

x 1 x2 x3

x 1 x2 x3

x 1 x2 x3

Простые импликанты являются обязательными так как только они покрывают конституэнтыи включаются в минимальное покрытие. Остается одна непокрытая конституэнта x1 x2 x3 которая может быть покрыта одной из двух оставшихся простых импликант. Это приводит к получению двух тупиковых форм.

Метод Блейка - Порецкого

Метод позволяет получать сокращенную ДНФ булевой функции f из ее произвольной ДНФ. Базируется на применении формулы обобщенного склеивания:

справедливость которой легко доказать. Действительно,

Следовательно,

В основу метода положено следующее утверждение: если в произвольной ДНФ булевой функции f произвести все возможные oбобщенные склеивания, а затем выполнить все поглощения, то в результате получится сокращенная ДНФ функции f.

Рассмотрим пример. Пусть булева функция f задана произвольной ДНФ.

Необходимо используя метод Блейка - Порецкого получить сокращенную ДНФ функции f. Проводим обобщенные склеивания. Легко видеть, что первый и второй элемент исходной ДНФ допускают обобщенное склеивание по переменной х 1 . В результате склеивания получим:

Первый и третий элемент исходной ДНФ допускают обобщенное склеивание как по переменной х 1 , так и по х2 . После склеивания по x1 имеем:

После склеивания по x 2 имеем:

Второй и третий элемент ДНФ допускают обобщенное склеивание по переменной х 2 . После склеивания получаем:

Выполнив последнее обобщенное склеивание, приходим к ДНФ:

После выполнения поглощений получаем:

Попытки дальнейшего применения операции обобщенного склеивания и поглощения не дают результата. Следовательно, получена сокращенная ДНФ функции f. Далее задача поиска минимальной ДНФ решается с помощью импликантной матрицы точно так же, как в методе Квайна.

Минимизация не полностью определенных ФАЛ

Если при синтезе логической схемы, реализующей некоторую ФАЛ n переменных, окажется, что некоторые наборы из общего числа 2n никогда не смогут появиться на входах схемы, то данная логическая функция не определена на этих наборах. Тогда 2n наборов переменных можно подразделить на три группы: наборы, на которых функция принимает единичное значение L, нулевое значение D и группа наборов, на которых функция не определена N (неопределенные наборы). ФАЛ, содержащая неопределенные наборы, называется неполностью или частично определенной. Неопределенные наборы могут быть использованы для улучшения качества минимизации. При этом неопределенные наборы (при минимизации, например, картами Вейча, Карно) могут участвовать в образовании контуров как с единичными, так и с нулевыми наборами. Это приводит к формированию более простой минимизированной логической функции.

Универсальным методом минимизации является использование законов и соотношений алгебры логики, которые позволяют проводить минимизацию ФАЛ при любом числе переменных.