Симплекс метод в виде таблицы. Симплекс-метод, примеры решения задач

Один из методов решения оптимизационных задач (как правило связанных с нахождением минимума или максимума ) линейного программирования называется . Симплекс-метод включает в себя целую группу алгоритмов и способов решения задач линейного программирования. Один из таких способов, предусматривающий запись исходных данных и их пересчет в специальной таблице, носит наименование табличного симплекс-метода .

Рассмотрим алгоритм табличного симплекс-метода на примере решения производственной задачи , которая сводится к нахождению производственного плана обеспечивающего максимальную прибыль.

Исходные данные задачи на симплекс-метод

Предприятие выпускает 4 вида изделий, обрабатывая их на 3-х станках.

Нормы времени (мин./шт.) на обработку изделий на станках, заданы матрицей A:

Фонд времени работы станков (мин.) задан в матрице B:

Прибыль от продажи каждой единицы изделия (руб./шт.) задана матрицей C:

Цель производственной задачи

Составить такой план производства, при котором прибыль предприятия будет максимальной.

Решение задачи табличным симплекс-методом

(1) Обозначим X1, X2, X3, X4 планируемое количество изделий каждого вида. Тогда искомый план: (X1, X2, X3, X4 )

(2) Запишем ограничения плана в виде системы уравнений:

(3) Тогда целевая прибыль:

То есть прибыль от выполнения производственного плана должна быть максимальной.

(4) Для решения получившейся задачи на условный экстремум, заменим систему неравенств системой линейных уравнений путем ввода в нее дополнительных неотрицательных переменных (X5, X6, X7 ).

(5) Примем следующий опорный план :

X1 = 0, X2 = 0, X3 = 0, X4 = 0, X5 = 252, X6 = 144, X7 = 80

(6) Занесем данные в симплекс-таблицу :

В последнюю строку заносим коэффициенты при целевой функции и само ее значение с обратным знаком;

(7) Выбираем в последней строке наибольшее (по модулю ) отрицательное число.

Вычислим b = Н / Элементы_выбранного_столбца

Среди вычисленных значений b выбираем наименьшее .

Пересечение выбранных столбца и строки даст нам разрешающий элемент. Меняем базис на переменную соответствующую разрешающему элементу (X5 на X1 ).

  • Сам разрешающий элемент обращается в 1.
  • Для элементов разрешающей строки – a ij (*) = a ij / РЭ (то есть каждый элемент делим на значение разрешающего элемента и получаем новые данные ).
  • Для элементов разрешающего столбца – они просто обнуляются.
  • Остальные элементы таблицы пересчитываем по правилу прямоугольника.

a ij (*) = a ij – (A * B / РЭ)

Как видите, мы берем текущую пересчитываемую ячейку и ячейку с разрешающим элементом. Они образуют противоположные углы прямоугольника. Далее перемножаем значения из ячеек 2-х других углов этого прямоугольника. Это произведение (A * B ) делим на разрешающий элемент (РЭ ). И вычитаем из текущей пересчитываемой ячейки (a ij ) то, что получилось. Получаем новое значение - a ij (*) .

(9) Вновь проверяем последнюю строку (c ) на наличие отрицательных чисел . Если их нет – оптимальный план найден, переходим к последнему этапу решения задачи. Если есть – план еще не оптимален, и симплекс-таблицу вновь нужно пересчитать.

Так как у нас в последней строке снова имеются отрицательные числа, начинаем новую итерацию вычислений.

(10) Так как в последней строке нет отрицательных элементов, это означает, что нами найден оптимальный план производства! А именно: выпускать мы будем те изделия, которые перешли в колонку «Базис» - X1 и X2. Прибыль от производства каждой единицы продукции нам известна (матрица C ). Осталось перемножить найденные объемы выпуска изделий 1 и 2 с прибылью на 1 шт., получим итоговую (максимальную! ) прибыль при данном плане производства.

ОТВЕТ:

X1 = 32 шт., X2 = 20 шт., X3 = 0 шт., X4 = 0 шт.

P = 48 * 32 + 33 * 20 = 2 196 руб.

Галяутдинов Р.Р.


© Копирование материала допустимо только при указании прямой гиперссылки на

+
- x 1 + x 2 - S 1 = 1
x 1 3 x 2 + S 2 = 15
- 2 x 1 + x 2 + S 3 = 4



Переменная называется базисной для данного уравнения, если она входит в данное уравнение с коэффициентом один и не входит в оставшиеся уравнения (при условии, что в правой части уравнения стоит положительное число).
Если в каждом уравнении присутствует базисная переменная, тогда говорят, что в системе присутствует базис.
Переменные, которые не являются базисными, называются свободными. (см. систему ниже)

Идея симплекс метода заключается в том, чтобы переходить от одного базиса к другому, получая значение функции, как минимум, не меньше имеющегося (каждому базису соответствует единственное значение функции).
Очевидно, количество всевозможных базисов для любой задачи число конечное (и не очень большое).
Следовательно, рано или поздно, ответ будет получен.

Как осуществляется переход от одного базиса к другому?
Запись решения удобнее вести в виде таблиц. Каждая строка эквивалентна уравнению системы. Выделенная строка состоит из коэффициентов функции (сравните сами). Это позволяет не переписывать переменные каждый раз, что существенно экономит время.
B выделенной строке выбираем наибольший положительный коэффициент. Это необходимо для того, чтобы получить значение функции, как минимум, не меньше имеющегося.
Выбран столбец.
Для положительных коэффициентов выбранного столбца считаем отношение Θ и выбираем наименьшее значение. Это необходимо для того, чтобы после преобразования столбец свободных членов остался положительным.
Выбрана строка.
Следовательно, определен элемент, который будет базисным. Далее считаем.


+
- x 1 + x 2 - S 1 + R 1 = 1
x 1 3 x 2 + S 2 = 15
- 2 x 1 + x 2 + S 3 = 4

x 1 = 0 x 2 = 0 S 1 = 0
S 2 = 15 S 3 = 4 R 1 = 1
=> W = 1

Шаг №1
x 1 x 2 S 1 S 2 S 3 R 1 св. член Θ
-1 1 -1 0 0 1 1 1: 1 = 1
1 3 0 1 0 0 15 15: 3 = 5
-2 1 0 0 1 0 4 4: 1 = 4
1 -1 1 0 0 0 W - 1
-1 1 -1 0 0 1 1
4 0 3 1 0 -3 12
-1 0 1 0 1 -1 3
0 0 0 0 0 1 W - 0


+
- x 1 + x 2 - S 1 = 1
4 x 1 3 S 1 + S 2 = 12
- x 1 + S 1 + S 3 = 3



Шаг №1
x 1 x 2 S 1 S 2 S 3 св. член Θ
-1 1 -1 0 0 1
4 0 3 1 0 12 12: 4 = 3
-1 0 1 0 1 3
4 0 1 0 0 F - 1
-1 1 -1 0 0 1
1 0 3/4 1/4 0 3
-1 0 1 0 1 3
4 0 1 0 0 F - 1
0 1 -1/4 1/4 0 4
1 0 3/4 1/4 0 3
0 0 7/4 1/4 1 6
0 0 -2 -1 0 F - 13

S 1 = 0 S 2 = 0
x 1 = 3 x 2 = 4 S 3 = 6
=> F - 13 = 0 => F = 13
Среди коэффициентов выделенной строки нет положительных. Следовательно, найдено наибольшее значение функции F.

Данный метод является методом целенаправленного перебора опорных решений задачи линейного программирования. Он позволяет за конечное число шагов либо найти оптимальное решение, либо установить, что оптимальное решение отсутствует.

Основное содержание симплексного метода заключается в следующем:
  1. Указать способ нахождения оптимального опорного решения
  2. Указать способ перехода от одного опорного решения к другому, на котором значение целевой функции будет ближе к оптимальному, т.е. указать способ улучшения опорного решения
  3. Задать критерии, которые позволяют своевременно прекратить перебор опорных решений на оптимальном решении или следать заключение об отсутствии оптимального решения.

Алгоритм симплексного метода решения задач линейного программирования

Для того, чтобы решить задачу симплексным методом необходимо выполнить следующее:
  1. Привести задачу к каноническому виду
  2. Найти начальное опорное решение с "единичным базисом" (если опорное решение отсутствует, то задача не имеет решение ввиду несовместимости системы ограничений)
  3. Вычислить оценки разложений векторов по базису опорного решения и заполнить таблицу симплексного метода
  4. Если выполняется признак единственности оптимального решения, то решение задачи заканчивается
  5. Если выполняется условие существования множества оптимальных решений, то путем простого перебора находят все оптимальные решения

Пример решения задачи симплексным методом

Пример 26.1

Решить симплексным методом задачу:

Решение:

Приводим задачу к каноническому виду.

Для этого в левую часть первого ограничения-неравенства вводим дополнительную переменную x 6 с коэффициентом +1. В целевую функцию переменная x 6 входит с коэффицентом ноль (т.е. не входит).

Получаем:

Находим начальное опорное решение. Для этого свободные (неразрешенные) переменные приравниваем к нулю х1 = х2 = х3 = 0.

Получаем опорное решение Х1 = (0,0,0,24,30,6) с единичным базисом Б1 = (А4, А5, А6).

Вычисляем оценки разложений векторов условий по базису опорного решения по формуле:

Δ k = C б X k — c k

  • C б = (с 1 , с 2 , ... , с m) — вектор коэффициентов целевой функции при базисных переменных
  • X k = (x 1k , x 2k , ... , x mk) — вектор разложения соответствующего вектора А к по базису опорного решения
  • С к — коэффициент целевой функции при переменной х к.

Оценки векторов входящих в базис всегда равны нулю. Опорное решение, коэффиценты разложений и оценки разложений векторов условий по базису опорного решения записываются в симплексную таблицу :

Сверху над таблицей для удобства вычислений оценок записываются коэффициенты целевой функции. В первом столбце "Б" записываются векторы, входящие в базис опорного решения. Порядок записи этих векторов соответствует номерам разрешенных неизвестных в уравнениях ограничениях. Во втором столбце таблицы "С б " записываются коэффициенты целевой функции при базисных переменных в том же порядке. При правильном расположении коэффициентов целевой функции в столбце "С б " оценки единичных векторов, входящих в базис, всегда равных нулю.

В последней строке таблицы с оценками Δ k в столбце "А 0 " записываются значения целевой функции на опорном решении Z(X 1).

Начальное опорное решение не является оптимальным, так как в задаче на максимум оценки Δ 1 = -2, Δ 3 = -9 для векторов А 1 и А 3 отрицательные.

По теореме об улучшении опорного решения, если в задаче на максимум хотя бы один вектор имеет отрицательную оценку, то можно найти новое опорное решение, на котором значение целевой функции будет больше.

Определим, введение какого из двух векторов приведет к большему приращению целевой функции.

Приращение целевой функции находится по формуле: .

Вычисляем значения параметра θ 01 для первого и третьего столбцов по формуле:

Получаем θ 01 = 6 при l = 1, θ 03 = 3 при l = 1 (таблица 26.1).

Находим приращение целевой функции при введении в базис первого вектора ΔZ 1 = — 6*(- 2) = 12, и третьего вектора ΔZ 3 = — 3*(- 9) = 27.

Следовательно, для более быстрого приближения к оптимальному решению необходимо ввести в базис опорного решения вектор А3 вместо первого вектора базиса А6, так как минимум параметра θ 03 достигается в первой строке (l = 1).

Производим преобразование Жордана с элементом Х13 = 2, получаем второе опорное решение Х2 = (0,0,3,21,42,0) с базисом Б2 = (А3, А4, А5). (таблица 26.2)

Это решение не является оптимальным, так как вектор А2 имеет отрицательную оценку Δ2 = — 6. Для улучшение решения необходимо ввести вектор А2 в базис опорного решения.

Определяем номер вектора, выводимого из базиса. Для этого вычисляем параметр θ 02 для второго столбца, он равен 7 при l = 2. Следовательно, из базиса выводим второй вектор базиса А4. Производим преобразование Жордана с элементом х 22 = 3, получаем третье опорное решение Х3 = (0,7,10,0,63,0) Б2 = (А3, А2, А5) (таблица 26.3).

Это решение является единственным оптимальным, так как для всех векторов, не входящих в базис оценки положительные

Δ 1 = 7/2, Δ 4 = 2, Δ 6 = 7/2.

Ответ: max Z(X) = 201 при Х = (0,7,10,0,63).

Метод линейного программирования в экономическом анализе

Метод линейного программирования дает возможность обосновать наиболее оптимальное экономическое решение в условиях жестких ограничений, относящихся к используемым в производстве ресурсам (основные фонды, материалы, трудовые ресурсы). Применение этого метода в экономическом анализе позволяет решать задачи, связанные главным образом с планированием деятельности организации. Данный метод помогает определить оптимальные величины выпуска продукции, а также направления наиболее эффективного использования имеющихся в распоряжении организации производственных ресурсов.

При помощи этого метода осуществляется решение так называемых экстремальных задач, которое заключается в нахождении крайних значений, то есть максимума и минимума функций переменных величин.

Этот период базируется на решении системы линейных уравнений в тех случаях, когда анализируемые экономические явления связаны линейной, строго функциональной зависимостью. Метод линейного программирования используется для анализа переменных величин при наличии определенных ограничивающих факторов.

Весьма распространено решение так называемой транспортной задачи с помощью метода линейного программирования. Содержание этой задачи заключается в минимизации затрат, осуществляемых в связи с эксплуатацией транспортных средств в условиях имеющихся ограничений в отношении количества транспортных средств, их грузоподъемности, продолжительности времени их работы, при наличии необходимости обслуживания максимального количества заказчиков.

Кроме этого, данный метод находит широкое применение при решении задачи составления расписания. Эта задача состоит в таком распределении времени функционирования персонала данной организации, которое являлось бы наиболее приемлемым как для членов этого персонала, так и для клиентов организации.

Данная задача заключается в максимизации количества обслуживаемых клиентов в условиях ограничений количества имеющихся членов персонала, а также фонда рабочего времени.

Таким образом, метод линейного программирования весьма распространен в анализе размещения и использования различных видов ресурсов, а также в процессе планирования и прогнозирования деятельности организаций.

Все же математическое программирование может применяться и в отношении тех экономических явлений, зависимость между которыми не является линейной. Для этой цели могут быть использованы методы нелинейного, динамического и выпуклого программирования.

Нелинейное программирование опирается на нелинейный характер целевой функции или ограничений, либо и того и другого. Формы целевой функции и неравенств ограничений в этих условиях могут быть различными.

Нелинейное программирование применяется в экономическом анализе в частности, при установлении взаимосвязи между показателями, выражающими эффективность деятельности организации и объемом этой деятельности, структурой затрат на производство, конъюнктурой рынка, и др.

Динамическое программирование базируется на построении дерева решений. Каждый ярус этого дерева служит стадией для определения последствий предыдущего решения и для устранения малоэффективных вариантов этого решения. Таким образом, динамическое программирование имеет многошаговый, многоэтапный характер. Этот вид программирования применяется в экономическом анализе с целью поиска оптимальных вариантов развития организации как в настоящее время, так и в будущем.

Выпуклое программирование представляет собой разновидность нелинейного программирования. Этот вид программирования выражает нелинейный характер зависимости между результатами деятельности организации и осуществляемыми ей затратами. Выпуклое (иначе вогнутое) программирование анализирует выпуклые целевые функции и выпуклые системы ограничений (точки допустимых значений). Выпуклое программирование применяется в анализе хозяйственной деятельности с целью минимизации затрат, а вогнутое — с целью максимизации доходов в условиях имеющихся ограничений действия факторов, влияющих на анализируемые показатели противоположным образом. Следовательно, при рассматриваемых видах программирования выпуклые целевые функции минимизируются, а вогнутые — максимизируются.

Рассмотрим симплекс -метод для решения задач линейного программирования (ЛП). Он основан на переходе от одного опорного плана к другому, при котором значение целевой функции возрастает.

Алгоритм симплекс-метода следующий:

  1. Исходную задачу переводим в канонический вид путем введения дополнительных переменных. Для неравенства вида ≤ дополнительные переменные вводят со знаком (+ ), если же вида ≥ то со знаком (— ). В целевую функцию дополнительные переменные вводят с соответствующими знаками с коэффициентом, равным 0 , т.к. целевая функция не должна при этом менять свой экономический смысл.
  2. Выписываются вектора P i из коэффициентов при переменных и столбца свободных членов. Этим действием определяется количество единичных векторов. Правило – единичных векторов должно быть столько, сколько неравенств в системе ограничений.
  3. После этого исходные данные вводятся в симплекс-таблицу. В базис вносятся единичные вектора, и исключая их из базиса, находят оптимальное решение . Коэффициенты целевой функции записывают с противоположным знаком.
  4. Признак оптимальности для задачи ЛП – решение оптимально, если в f – строке все коэффициенты положительны. Правило нахождения разрешающего столбца – просматривается f – строка и среди ее отрицательных элементов выбирается наименьшее. Вектор P i его содержащий становится разрешающим. Правило выбора разрешающего элемента – составляются отношения положительных элементов разрешающего столбца к элементам вектора Р 0 и то число, которое дает наименьшее отношение становится разрешающим элементом, относительно которого будет произведен пересчет симплекс-таблицы. Строка, содержащая этот элемент называется разрешающей строкой. Если в разрешающем столбце нет положительных элементов, то задача не имеет решения. После определения разрешающего элемента переходят к пересчету новой симплекс – таблицы.
  5. Правила заполнения новой симплекс – таблицы. На месте разрешающего элемента проставляют единицу, а другие элементы полагают равными 0 . Разрешающий вектор вносят в базис, из которого исключают соответствующий нулевой вектор, а остальные базисные вектора записывают без изменений. Элементы разрешающей строки делят на разрешающий элемент, а остальные элементы пересчитывают по правилу прямоугольников.
  6. Так поступают до тех пор, пока в f – строке все элементы не станут положительными.

Рассмотрим решение задачи с использованием рассмотренного выше алгоритма.
Дано:

Приводим задачу к каноническому виду:

Составляем вектора:

Заполняем симплекс – таблицу:

:
Пересчитаем первый элемент вектора Р 0 , для чего составляем прямоугольник из чисел: и получаем: .

Аналогичные расчеты выполним для всех остальных элементов симплекс – таблицы:

В полученном плане f – строка содержит один отрицательный элемент – (-5/3), вектора P 1 . Он содержит в своем столбце единственный положительный элемент, который и будет разрешающим элементом. Сделаем пересчет таблицы относительно этого элемента:

Отсутствие отрицательных элементов в f – строке означает, что найден оптимальный план :
F* = 36/5, Х = (12/5, 14/5, 8, 0, 0).

  • Ашманов С. А. Линейное программирование, М: Наука, 1998г.,
  • Вентцель Е.С. Исследование операций, М: Советское радио, 2001г.,
  • Кузнецов Ю.Н., Кузубов В.И., Волошенко А.Б. Математическое программирование, М: Высшая школа, 1986г.

Решение линейного программирования на заказ

Заказать любые задания по этой дисциплине можно у нас на сайте. Прикрепить файлы и указать сроки можно на

Задач линейного программирования. Он в последовательном построении , характеризующей рассматриваемый процесс. Решение разбивается на три основных этапа: выбор переменных, построение системы ограничений и поиск целевой функции.

Исходя из этого разделения, условие задачи можно перефразировать следующим образом: экстремум целевой функции Z(X) = f(x1, x2, … ,xn) → max (min) и соответствующие переменные, если известно, что они удовлетворяют системе ограничений: Φ_i (x1, x2, … ,xn) = 0 при i = 1, 2, …, k;Φ_i (x1, x2, … ,xn)) 0 при i = k+1, k+2, …, m.

Систему ограничений нужно привести к каноническому виду, т.е. к системе линейных уравнений, где число переменных больше числа уравнений (m > k). В этой системе обязательно найдутся переменные, которые можно выразить через другие переменные, а если это не так, то их можно ввести искусственно. В этом случае первые называются базисом или искусственным базисом, а вторые – свободными.

Удобнее рассмотреть симплекс-метод на конкретном примере. Пусть дана линейная функция f(x) = 6x1 + 5x2 + 9x3 и система ограничений:5x1 + 2x2 + 3x3 ≤ 25;x1 + 6x2 + 2x3 ≤ 20;4x1 + 3x3 ≤ 18.Требуется найти максимальное значение функции f(x).

РешениеНа первом этапе задайте начальное (опорное) решение системы уравнений абсолютно произвольным образом, которое при этом должно удовлетворять данной системе ограничений. В данном случае требуется введение искусственного , т.е. базисных переменных x4, x5 и x6 следующим образом:5x1 + 2x2 + 3x3 + x4 = 25;x1 + 6x2 + 2x3 + x5 = 20;4x1 + 3x3 + x6 = 18.

Как видите, неравенства преобразовались в равенства благодаря добавленным переменные x4, x5, x6, которые являются неотрицательными величинами. Таким образом, вы привели систему к каноническому виду. Переменная x4 входит в первое уравнение с коэффициентом 1, а в два – с коэффициентом 0, то же справедливо для переменных x5, x6 и соответствующих уравнений, что соответствует определению базиса.

Вы подготовили систему и нашли начальное опорное решение – X0 = (0, 0, 0, 25, 20, 18). Теперь представьте коэффициенты переменных и свободные члены уравнений (цифры справа от знака «=») в виде таблицы для оптимизации дальнейших вычислений (см. рис).

Суть симплекс-метода состоит в том, чтобы привести эту таблицу к такому виду, в котором все цифры в строке L будут неотрицательными величинами. Если же выяснится, что это невозможно, то система вообще не имеет оптимального решения. Для начала выберите самый минимальный элемент этой строки, это -9. Цифра стоит в третьем столбце. Преобразуйте соответствующую переменную x3 в базисную. Для этого разделите строку на 3, чтобы в ячейке получилась 1.

Теперь нужно, чтобы ячейки и обратились в 0. Для этого отнимите от соответствующие цифры третьей строки, на 3. От элементов второй строки - элементы третьей, умноженные на 2. И, наконец, от элементов строки L - умноженные на (-9). Вы получили второе опорное решение: f(x) = L = 54 при x1 = (0, 0, 6, 7, 8, 0).