Классификация нейронных сетей. Нейронные сети: их применение, работа

    Шаг 4. Применяем правило 2. условием которого является данное утверждение. Получаем вывод исходного утверждения.

    Заметим, что для упрощения ситуации мы предположили, что в обоих случаях факты "Небо покрыто тучами" и "Барометр падает" уже известны системе. На самом деле система выясняет истинность или ложность факта, входящего в условие некоторого правила, спрашивая об этом пользователя в тот момент, когда она пытается применить правило. Приведенный пример сознательно выбран очень простым и не отражающим многих проблем, связанных с организацией вывода в экспертной системе. В частности, из примера может создаться впечатление, что прямая цепочка рассуждений эффективнее, чем обратная, что на самом деле, вообще говоря, не так. Эффективность той или иной стратегии вывода зависит от характера задачи и содержимого базы знаний. В системах диагностики чаще применяется прямой вывод, в то время как в планирующих системах более эффективным оказывается обратный вывод. В некоторых системах вывод основывается на сочетании обратного и ограниченно- прямого. Такой комбинированный метод получил название циклического.

  • 2.7 Объяснение решений

Объяснительный компонент ЭС объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование и повышает доверие пользователя к полученному результату. Поскольку системы, основанные на знаниях, реализуются на компьютерах, то и входная информация воспринимается или в виде, понятном компьютеру, т.е. в битах и байтах. Однако для того чтобы мог взаимодействовать неподготовленный пользователь, в нее требуется включить средства общения на естественном языке. Подавляющее большинство систем, основанных на знаниях, обладают достаточно примитивным интерфейсом на естественном языке - допустимые входные сообщения пользователя ограничены набором понятий, содержащихся в базе знаний. Итак, на примере простой ЭС и базы знаний диалог пользователя с системой можно представить себе следующим образом:

Система: Вы хотите узнать, нужно ли взять с собой зонтик?

Пользователь: Да.

Система: Верно ли, что небо покрыто тучами?

Пользователь: Да.

Система: Верно ли, что барометр падает?

Пользователь: Да.

Система: (после некоторого "размышления") Нужно взять с собой зонтик.

Как видно из этого примера, в ходе консультации инициатива диалога принадлежит системе, а сама консультация у ЭС выглядит так же, как и консультация у эксперта- человека: задается ряд вопросов и на основании их анализа выдается экспертное заключение.

Одной из наиболее важных проблем, характерных для систем, основанных на знаниях, является проблема представления знаний. Это объясняется тем, что форма представления знаний оказывает существенное влияние на характеристики и свойства системы. Для того чтобы манипулировать всевозможными знаниями из реального мира с помощью компьютера, необходимо осуществлять их моделирование. В таких случаях необходимо отличать знания, предназначенные для обработки компьютером, от знаний, используемых человеком.

При проектировании модели представления знаний следует учитывать однородность представления и простота понимания. Однородное представление приводит к упрощению механизма управления логическим выводом и упрощению управления знаниями. Представление знаний должно быть понятным экспертам и пользователям системы. В противном случае затрудняются приобретение знаний и их оценка. Однако выполнить это требование в равной степени, как для простых, так и для сложных задач довольно трудно. Обычно для несложных задач останавливаются на некотором среднем (компромиссном) представлении, но для решения сложных и больших задач необходимы структурирование и модульное представление.

Типичными моделями представления знаний являются: модели: продукционная, основанная на использовании фреймов, семантической сети, логическая модель.

23. Нейронные сети. Виды нейронных сетей. Алгоритмы обучения нейронных сетей. Применение нейронных сетей для задач распознавания образов.

Искусственная нейронная сеть (ИНС) - математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей - сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге при мышлении, и при попытке смоделировать эти процессы. Первой такой моделью мозга был перцептрон. Впоследствии эти модели стали использовать в практических целях, как правило в задачах прогнозирования.

ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты, особенно в сравнении с процессорами, используемыми в персональных компьютерах. Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи.

С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавания образов, дискриминантного анализа, методов кластеризации и т. п. С математической точки зрения обучение нейронных сетей, это многопараметрическая задача нелинейной оптимизации. С точки зрения кибернетики, нейронная сеть используется в задачах адаптивного управления и как алгоритмы для робототехники. С точки зрения развития вычислительной техники и программирования, нейронная сеть - способ решения проблемы эффективного параллелизма. А с точки зрения искусственного интеллекта, ИНС является основой философского течения коннективизма и основным направлением в структурном подходе по изучению возможности построения (моделирования) естественного интеллекта с помощью компьютерных алгоритмов.

Нейронные сети не программируются в привычном смысле этого слова, они обучаются . Возможность обучения - одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что, в случае успешного обучения, сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке.

Известные применения

Распознавание образов и классификация. В качестве образов могут выступать различные по своей природе объекты: символы текста, изображения, образцы звуков и т. д. При обучении сети предлагаются различные образцы образов с указанием того, к какому классу они относятся. Образец, как правило, представляется как вектор значений признаков. При этом совокупность всех признаков должна однозначно определять класс , к которому относится образец. В случае, если признаков недостаточно, сеть может соотнести один и тот же образец с несколькими классами, что неверно . По окончании обучения сети ей можно предъявлять неизвестные ранее образы и получать ответ о принадлежности к определённому классу.

Топология такой сети характеризуется тем, что количество нейронов в выходном слое, как правило, равно количеству определяемых классов. При этом устанавливается соответствие между выходом нейронной сети и классом, который он представляет. Когда сети предъявляется некий образ, на одном из её выходов должен появиться признак того, что образ принадлежит этому классу. В то же время на других выходах должен быть признак того, что образ данному классу не принадлежит . Если на двух или более выходах есть признак принадлежности к классу, считается что сеть «не уверена» в своём ответе.

Принятие решений и управление. Классификации подлежат ситуации, характеристики которых поступают на вход нейронной сети. На выходе сети должен появится признак решения. При этом в качестве входных сигналов используются различные критерии описания состояния управляемой системы.

Кластеризация. Под кластеризацией понимается разбиение множества входных сигналов на классы, при том, что ни количество, ни признаки классов заранее неизвестны. После обучения такая сеть способна определять, к какому классу относится входной сигнал. Сеть также может сигнализировать о том, что входной сигнал не относится ни к одному из выделенных классов - это является признаком новых, отсутствующих в обучающей выборке, данных. Таким образом, подобная сеть может выявлять новые, неизвестные ранее классы сигналов . Соответствие между классами, выделенными сетью, и классами, существующими в предметной области, устанавливается человеком. Кластеризацию осуществляют, например, нейронные сети Кохонена.

Прогнозирование и аппроксимация . Способности нейронной сети к прогнозированию напрямую следуют из ее способности к обобщению и выделению скрытых зависимостей между входными и выходными данными. После обучения сеть способна предсказать будущее значение некой последовательности на основе нескольких предыдущих значений и/или каких-то существующих в настоящий момент факторов. Следует отметить, что прогнозирование возможно только тогда, когда предыдущие изменения действительно в какой-то степени предопределяют будущие . Например, прогнозирование котировок акций на основе котировок за прошлую неделю может оказаться успешным (а может и не оказаться), тогда как прогнозирование результатов завтрашней лотереи на основе данных за последние 50 лет почти наверняка не даст никаких результатов.

Сжатие данных и Ассоциативная память . Способность нейросетей к выявлению взаимосвязей между различными параметрами дает возможность выразить данные большой размерности более компактно, если данные тесно взаимосвязаны друг с другом. Обратный процесс - восстановление исходного набора данных из части информации - называется (авто)ассоциативной памятью. Ассоциативная память позволяет также восстанавливать исходный сигнал/образ из зашумленных/поврежденных входных данных. Решение задачи гетероассоциативной памяти позволяет реализовать память, адресуемую по содержимому .

Этапы решения задач

Сбор данных для обучения;

    Подготовка и нормализация данных;

    Выбор топологии сети;

    Экспериментальный подбор характеристик сети;

    Экспериментальный подбор параметров обучения;

    Собственно обучение;

    Проверка адекватности обучения;

    Корректировка параметров, окончательное обучение;

    Вербализация сети с целью дальнейшего использования.

    Следует рассмотреть подробнее некоторые из этих этапов.

Сбор данных для обучения

Выбор данных для обучения сети и их обработка является самым сложным этапом решения задачи. Набор данных для обучения должен удовлетворять нескольким критериям:

Репрезентативность - данные должны иллюстрировать истинное положение вещей в предметной области;

Непротиворечивость - противоречивые данные в обучающей выборке приведут к плохому качеству обучения сети;

Исходные данные преобразуются к виду, в котором их можно подать на входы сети. Каждая запись в файле данных называется обучающей парой или обучающим вектором . Обучающий вектор содержит по одному значению на каждый вход сети и, в зависимости от типа обучения (с учителем или без), по одному значению для каждого выхода сети. Обучение сети на «сыром» наборе, как правило, не даёт качественных результатов. Существует ряд способов улучшить «восприятие» сети.

Нормировка выполняется, когда на различные входы подаются данные разной размерности. Например, на первый вход сети подается величины со значениями от нуля до единицы, а на второй - от ста до тысячи. При отсутствии нормировки значения на втором входе будут всегда оказывать существенно большее влияние на выход сети, чем значения на первом входе. При нормировке размерности всех входных и выходных данных сводятся воедино;

Квантование выполняется над непрерывными величинами, для которых выделяется конечный набор дискретных значений. Например, квантование используют для задания частот звуковых сигналов при распознавании речи;

Фильтрация выполняется для «зашумленных» данных.

Кроме того, большую роль играет само представление как входных, так и выходных данных. Предположим, сеть обучается распознаванию букв на изображениях и имеет один числовой выход - номер буквы в алфавите. В этом случае сеть получит ложное представление о том, что буквы с номерами 1 и 2 более похожи, чем буквы с номерами 1 и 3, что, в общем, неверно. Для того, чтобы избежать такой ситуации, используют топологию сети с большим числом выходов, когда каждый выход имеет свой смысл. Чем больше выходов в сети, тем большее расстояние между классами и тем сложнее их спутать.

Выбор топологии сети. Выбирать тип сети следует исходя из постановки задачи и имеющихся данных для обучения. Для обучения с учителем требуется наличие для каждого элемента выборки «экспертной» оценки. Иногда получение такой оценки для большого массива данных просто невозможно. В этих случаях естественным выбором является сеть, обучающаяся без учителя, например, самоорганизующаяся карта Кохонена или нейронная сеть Хопфилда. При решении других задач, таких как прогнозирование временных рядов, экспертная оценка уже содержится в исходных данных и может быть выделена при их обработке. В этом случае можно использовать многослойный перцептрон или сеть Ворда.

Экспериментальный подбор характеристик сети. После выбора общей структуры нужно экспериментально подобрать параметры сети. Для сетей, подобных перцептрону, это будет число слоев, число блоков в скрытых слоях (для сетей Ворда), наличие или отсутствие обходных соединений, передаточные функции нейронов. При выборе количества слоев и нейронов в них следует исходить из того, что способности сети к обобщению тем выше, чем больше суммарное число связей между нейронами . С другой стороны, число связей ограничено сверху количеством записей в обучающих данных.

Экспериментальный подбор параметров обучения. После выбора конкретной топологии, необходимо выбрать параметры обучения нейронной сети. Этот этап особенно важен для сетей, обучающихся с учителем. От правильного выбора параметров зависит не только то, насколько быстро ответы сети будут сходиться к правильным ответам. Например, выбор низкой скорости обучения увеличит время схождения, однако иногда позволяет избежать паралича сети. Увеличение момента обучения может привести как к увеличению, так и к уменьшению времени сходимости, в зависимости от формы поверхности ошибки. Исходя из такого противоречивого влияния параметров, можно сделать вывод, что их значения нужно выбирать экспериментально, руководствуясь при этом критерием завершения обучения (например, минимизация ошибки или ограничение по времени обучения).

Собственно обучение сети. В процессе обучения сеть в определенном порядке просматривает обучающую выборку. Порядок просмотра может быть последовательным, случайным и т. д. Некоторые сети, обучающиеся без учителя, например, сети Хопфилда просматривают выборку только один раз. Другие, например, сети Кохонена, а также сети, обучающиеся с учителем, просматривают выборку множество раз, при этом один полный проход по выборке называется эпохой обучения . При обучении с учителем набор исходных данных делят на две части - собственно обучающую выборку и тестовые данные; принцип разделения может быть произвольным. Обучающие данные подаются сети для обучения, а проверочные используются для расчета ошибки сети (проверочные данные никогда для обучения сети не применяются). Таким образом, если на проверочных данных ошибка уменьшается, то сеть действительно выполняет обобщение. Если ошибка на обучающих данных продолжает уменьшаться, а ошибка на тестовых данных увеличивается, значит, сеть перестала выполнять обобщение и просто «запоминает» обучающие данные. Это явление называется переобучением сети или оверфиттингом. В таких случаях обучение обычно прекращают. В процессе обучения могут проявиться другие проблемы, такие как паралич или попадание сети в локальный минимум поверхности ошибок. Невозможно заранее предсказать проявление той или иной проблемы, равно как и дать однозначные рекомендации к их разрешению.

Проверка адекватности обучения. Даже в случае успешного, на первый взгляд, обучения сеть не всегда обучается именно тому, чего от неё хотел создатель. Известен случай, когда сеть обучалась распознаванию изображений танков по фотографиям, однако позднее выяснилось, что все танки были сфотографированы на

одном и том же фоне. В результате сеть «научилась» распознавать этот тип ландшафта, вместо того, чтобы «научиться» распознавать танки . Таким образом, сеть «понимает» не то, что от неё требовалось, а то, что проще всего обобщить.

Классификация по типу входной информации

Аналоговые нейронные сети (используют информацию в форме действительных чисел);

Двоичные нейронные сети (оперируют с информацией, представленной в двоичном виде).

Классификация по характеру обучения

Обучение с учителем - выходное пространство решений нейронной сети известно;

Обучение без учителя - нейронная сеть формирует выходное пространство решений только на основе входных воздействий. Такие сети называют самоорганизующимися;

Обучение с подкреплением - система назначения штрафов и поощрений от среды.

Классификация по характеру настройки синапсов

Сети с фиксированными связями (весовые коэффициенты нейронной сети выбираются сразу, исходя из условий задачи, при этом: , где W - весовые коэффициенты сети);

сети с динамическими связями (для них в процессе обучения происходит настройка синаптических связей, то есть , где W - весовые коэффициенты сети).

Классификация по времени передачи сигнала

В ряде нейронных сетей активирующая функция может зависеть не только от весовых коэффициентов связей w ij , но и от времени передачи импульса (сигнала) по каналам связи τ ij . По этому в общем виде активирующая (передающая) функция связи c ij от элемента u i к элементу u j имеет вид: . Тогдасинхронной сетью называют такую сеть у которой время передачи τ ij каждой связи равна либо нулю, либо фиксированной постоянной τ. Асинхронной называют такую сеть у которой время передачи τ ij для каждой связи между элементами u i и u j свое, но тоже постоянное.

Классификация по характеру связей

Сети прямого распространения (Feedforward)

Все связи направлены строго от входных нейронов к выходным. Примерами таких сетей являются перцептрон Розенблатта, многослойный перцептрон, сети Ворда.

Рекуррентные нейронные сети

Сигнал с выходных нейронов или нейронов скрытого слоя частично передается обратно на входы нейронов входного слоя (обратная связь). Рекуррентная сеть сеть Хопфилда «фильтрует» входные данные, возвращаясь к устойчивому состоянию и, таким образом, позволяет решать задачи компрессии данных и построения ассоциативной памяти . Частным случаем рекуррентных сетей является двунаправленные сети. В таких сетях между слоями существуют связи как в направлении от входного слоя к выходному, так и в обратном. Классическим примером является Нейронная сеть Коско.

Радиально-базисные функции

Искусственные нейронные сети, использующие в качестве активационных функций радиально-базисные (такие сети сокращённо называются RBF-сетями). Общий вид радиально-базисной функции:

, например,

где x - вектор входных сигналов нейрона, σ - ширина окна функции, φ(y ) - убывающая функция (чаще всего, равная нулю вне некоторого отрезка).

Радиально-базисная сеть характеризуется тремя особенностями:

Единственный скрытый слой

Только нейроны скрытого слоя имеют нелинейную активационную функцию

Синаптические веса связей входного и скрытого слоев равны единице

Про процедуру обучения - см. литературу

Самоорганизующиеся карты. Такие сети представляют собой соревновательную нейронную сеть с обучением

без учителя, выполняющую задачу визуализации и

кластеризации. Является методом проецирования многомерного пространства в пространство с более низкой размерностью (чаще всего, двумерное), применяется также для решения задач моделирования, прогнозирования и др. Является одной из версий нейронных сетей Кохонена. Самоорганизующиеся карты Кохонена служат, в первую очередь, для визуализации и первоначального («разведывательного») анализа данных.

Сигнал в сеть Кохонена поступает сразу на все нейроны, веса соответствующих синапсов интерпретируются как координаты положения узла, и выходной сигнал формируется по принципу «победитель забирает всё» - то есть ненулевой выходной сигнал имеет нейрон, ближайший (в смысле весов синапсов) к подаваемому на вход объекту. В процессе обучения веса синапсов настраиваются таким образом, чтобы узлы решетки «располагались» в местах локальных сгущений данных, то есть описывали кластерную структуру облака данных, с другой стороны, связи между нейронами соответствуют отношениям соседства между соответствующими кластерами в пространстве признаков.

Удобно рассматривать такие карты как двумерные сетки узлов, размещенных в многомерном пространстве. Изначально самоорганизующаяся карта представляет из себя сетку из узлов, соединенный между собой связями. Кохонен рассматривал два варианта соединения узлов - в прямоугольную и гексагональную сетку - отличие состоит в том, что в прямоугольной сетке каждый узел соединен с 4-мя соседними, а в гексагональной - с 6-ю ближайщими узлами. Для двух таких сеток процесс построения сети Кохонена отличается лишь в том месте, где перебираются ближайшие к данному узлу соседи.

Начальное вложение сетки в пространство данных выбирается произвольным образом. В авторском пакете SOM_PAK предлагаются варианты случайного начального расположения узлов в пространстве и вариант расположения узлов в плоскости. После этого узлы начинают перемещаться в пространстве согласно следующему алгоритму:

Случайным образом выбирается точка данных x .

Определяется ближайший к x узел карты (BMU - Best Matching Unit).

Этот узел перемещается на заданный шаг по направлению к x. Однако, он перемещается не один, а увлекает за собой определенное количество ближайших узлов из некоторой окрестности на карте. Из всех двигающихся узлов наиболее сильно смещается центральный - ближайший к точке данных - узел, а остальные испытывают тем меньшие смещения, чем дальше они от BMU. В настройке карты различают два этапа - этап грубой (ordering) и этап тонкой (fine-tuning) настройки. На первом этапе выбираются большие значения окрестностей и движение узлов носит коллективный характер - в результате карта «расправляется» и грубым образом отражает структуру данных; на этапе тонкой настройки радиус окрестности равен 1-2 и настраиваются уже индивидуальные положения узлов. Кроме этого, величина смещения равномерно затухает со временем, то есть она велика в начале каждого из этапов обучения и близка к нулю в конце.

Алгоритм повторяется определенное число эпох (понятно, что число шагов может сильно изменяться в зависимости от задачи).

Известные типы сетей: Персептрон Розенблатта;Многослойный перцептрон;Сеть Джордана;Сеть Элмана;Сеть Хэмминга;Сеть Ворда;Сеть Хопфилда;Сеть Кохонена;Когнитрон;Неокогнитрон;Хаотическая нейронная сеть;Осцилляторная нейронная сеть;Сеть встречного распространения;Сеть радиальных базисных функций (RBF-сеть);Сеть обобщенной регрессии;Вероятностная сеть;Сиамская нейронная сеть;Сети адаптивного резонанса.

Алгоритмы обучения нейронных сетей.

Обратное распространение

Быстрое распространение

Метод сопряженных градиентов

Алгоритм Левенберга-Маркара

Квази-ньютоновский алгоритм

Дельта-дельта с чертой

Алгоритм Кохонена

ОВК (обучающийся векторный квантователь)

Псевдообратных метод (сингулярное разложение)

Метод К-средних

Алгоритмы задания отклонений

Обучить нейронную сеть - значит, сообщить ей, чего мы

от нее добиваемся. Этот процесс очень похож на обучение ребенка алфавиту. Показав ребенку изображение буквы "А", мы спрашиваем его: "Какая это буква?" Если ответ неверен, мы сообщаем ребенку тот ответ, который мы хотели бы от него получить: "Это буква А". Ребенок запоминает этот пример вместе с верным ответом, то есть в его памяти происходят некоторые изменения в нужном направлении. Мы будем повторять процесс предъявления букв снова и снова до тех пор, когда все 33 буквы будут твердо запомнены. Такой процесс называют "обучение с учителем".

При обучении нейронной сети мы действуем совершенно аналогично. У нас имеется некоторая база данных, содержащая примеры (набор рукописных изображений букв). Предъявляя изображение буквы "А" на вход нейронной сети, мы получаем от нее некоторый ответ, не обязательно верный. Нам известен и верный (желаемый) ответ - в данном случае нам хотелось бы, чтобы на выходе нейронной сети с меткой "А" уровень сигнала был максимален. Обычно в качестве желаемого выхода в задаче классификации берут набор (1, 0, 0, ...), где 1 стоит на выходе с меткой "А", а 0 - на всех остальных выходах. Вычисляя разность между желаемым ответом и реальным ответом сети, мы получаем 33 числа - вектор ошибки . Алгоритм обратного распространения ошибки - это набор формул, который позволяет по вектору ошибки вычислить требуемые поправки для весов нейронной сети. Одну и ту же букву (а также различные изображения одной и той же буквы) мы можем предъявлять нейронной сети много раз. В этом смысле обучение скорее напоминает повторение упражнений в спорте - тренировку.

Оказывается, что после многократного предъявления примеров веса нейронной сети стабилизируются, причем нейронная сеть дает правильные ответы на все (или почти все) примеры из базы данных. В таком случае говорят, что "нейронная сеть выучила все примеры", "нейронная сеть обучена", или "нейронная сеть натренирована". В программных реализациях можно видеть, что в процессе обучения величина ошибки (сумма квадратов ошибок по всем выходам) постепенно уменьшается. Когда величина ошибки достигает нуля или приемлемого малого уровня, тренировку останавливают, а полученную нейронную сеть считают натренированной и готовой к применению на новых данных.

Важно отметить, что вся информация, которую нейронная сеть имеет о задаче, содержится в наборе примеров. Поэтому качество обучения нейронной сети напрямую зависит от количества примеров в обучающей выборке, а также от того, насколько полно эти примеры описывают данную задачу. Так, например, бессмысленно использовать нейронную сеть для предсказания финансового кризиса, если в обучающей выборке кризисов не представлено. Считается, что для полноценной тренировки нейронной сети требуется хотя бы несколько десятков (а лучше сотен) примеров.

Повторим еще раз, что обучение нейронных сетей - сложный и наукоемкий процесс. Алгоритмы обучения нейронных сетей имеют различные параметры и настройки, для управления которыми требуется понимание их влияния.

Применение нейронной сети

После того, как нейронная сеть обучена, мы можем применять ее для решения полезных задач. Важнейшая особенность человеческого мозга состоит в том, что, однажды обучившись определенному процессу, он может верно действовать и в тех ситуациях, в которых он не бывал в процессе обучения. Например, мы можем читать почти любой почерк, даже если видим его первый раз в жизни. Так же и нейронная сеть, грамотным образом обученная, может с большой вероятностью правильно реагировать на новые, не предъявленные ей ранее данные. Например, мы можем нарисовать букву "А" другим почерком, а затем предложить нашей нейронной сети классифицировать новое изображение. Веса обученной нейронной сети хранят достаточно много информации о сходстве и различиях букв, поэтому можно рассчитывать на правильный ответ и для нового варианта изображения.

Применение нейронных сетей для задач распознавания образов.

Задача распознавания рукописных букв

Дано: растровое черно-белое изображение буквы размером 30x30 пикселов

Надо: определить, какая это буква (в алфавите 33 буквы)

Формулировка для нейронной сети:

Дано: входной вектор из 900 двоичных символов (900=30x30)

Надо: построить нейронную сеть с 900 входами и 33

выходами, которые помечены буквами. Если на входе нейронной сети изображение буквы "А", то максимальное значение выходного сигнала достигается на выходе "А". Аналогично нейронная сеть работает для всех 33 букв.

Поясним, зачем требуется выбирать выход нейронной сети с максимальным уровнем сигнала. Дело в том, что уровень выходного сигнала, как правило, может принимать любые значения из какого-то отрезка. Однако, в данной задаче нас интересует не аналоговый ответ, а всего лишь номер категории (номер буквы в алфавите). Поэтому используется следующий подход - каждой категории сопоставляется свой выход, а ответом нейронной сети считается та категория, на чьем выходе уровень сигнала максимален. В определенном смысле уровень сигнала на выходе "А" - это достоверность того, что на вход нейронной сети была подана рукописная буква "A". Задачи, в которых нужно отнести входные данные к одной из известных категорий, называются задачами классификации . Изложенный подход - стандартный способ классификации с помощью нейронных сетей.

Как построить нейронную сеть. Теперь, когда стало ясно, что именно мы хотим построить, мы можем переходить к вопросу "как строить такую нейронную сеть". Этот вопрос решается в два этапа:

Выбор типа (архитектуры) нейронной сети.

Подбор весов (обучение) нейронной сети.

На первом этапе следует выбрать следующее:

какие нейроны мы хотим использовать (число входов, передаточные функции);

каким образом следует соединить их между собой;

что взять в качестве входов и выходов нейронной сети.

Эта задача на первый взгляд кажется необозримой, но, к счастью, нам необязательно придумывать нейронную сеть "с нуля" - существует несколько десятков различных нейросетевых архитектур, причем эффективность многих из них доказана математически. Наиболее популярные и изученные архитектуры - это многослойный перцептрон, нейронная сеть с общей регрессией, нейронные сети Кохонена и другие.

На втором этапе нам следует "обучить" выбранную нейронную сеть, то есть подобрать такие значения ее весов, чтобы она работала нужным образом. Необученная нейронная сеть подобна ребенку - ее можно научить чему угодно. В используемых на практике нейронных сетях количество весов может составлять несколько десятков тысяч, поэтому обучение - действительно сложный процесс. Для многих архитектур разработаны специальные алгоритмы обучения, которые позволяют настроить веса нейронной сети определенным образом. Наиболее популярный из этих алгоритмов - метод обратного распространения ошибки (Error Back Propagation), используемый, например, для обучения перцептрона.

К задачам, успешно решаемым НС на данном этапе их развития относятся:

распознавание зрительных, слуховых образов; огромная область применения: от распознавания текста и целей на экране радара до систем голосового управления;

ассоциативный поиск информации и создание ассоциативных моделей; синтез речи; формирование естественного языка;

формирование моделей и различных нелинейных и трудно описываемых математически систем, прогнозирование развития этих систем во времени:

применение на производстве; прогнозирование развития циклонов и других природных процессов, прогнозирование изменений курсов валют и других финансовых процессов;

системы управления и регулирования с предсказанием; управление роботами, другими сложными устройствами

разнообразные конечные автоматы: системы массового обслуживания и коммутации, телекоммуникационные системы;

принятие решений и диагностика, исключающие логический вывод; особенно в областях, где

отсутствуют четкие математические модели: в медицине, криминалистике, финансовой сфере;

Хотя почти для всех перечисленных задач существуют эффективные математические методы решения и несмотря на то, что НС проигрывают специализированным методам для конкретных задач, благодаря универсальности и перспективности для решения глобальных задач, например, построения ИИ и моделирования процесса мышления, они являются важным направлением исследования, требующим тщательного изучения.

Из точек на плоскости и соединений между ними можно построить множество графических фигур, называемых графами. Если каждую точку представить себе как один нейрон, а соединения между точками – как дендриты и синапсы, то мы получим нейронную сеть.

Но не всякое соединение нейронов будет работоспособно или вообще целесообразно. Поэтому на сегодняшний день существует только несколько работающих и реализованных программно архитектур нейросетей. Я только вкратце опишу их устройство и классы решаемых ими задач.

По архитектуре связей нейросети могут быть сгруппированы в два класса: сети прямого распространения , в которых связи не имеют петель Рисунок 1, и сети рекуррентного типа , в которых возможны обратные связи Рисунок 3

Рисунок 2 Нейросети прямого распространения

Рисунок 3 Нейросети рекурентного типа

Сети прямого распространения подразделяются на однослойные перцепротроны (сети) и многослойные перцептроны (сети). Название перцептрона для нейросетей придумал американский нейрофизиолог Ф. Розенблатт, придумавший в 1957 году первый нейропроцессорный элемент (НПЭ) , то есть нейросеть . Он же доказал сходимость области решений для перцептрона при его обучении. Сразу после этого началось бурное исследование в этой области и был создан самый первый нейрокомпьютер Mark I.

Многослойные сети отличаются тем, что между входными и выходными данными располагаются несколько так называемых скрытых слоев нейронов, добавляющих больше нелинейных связей в модель.

Рассмотрим устройство простейшей многослойной нейросети. Любая нейронная сеть состоит из входного слоя и выходного слоя . Соответственно подаются независимые и зависимые переменные. Входные данные преобразуются нейронами сети и сравниваются с выходом. Если отклонение больше заданного, то специальным образом изменяются веса связей нейронов между собой и пороговые значения нейронов. Снова происходит процесс вычислений выходного значения и его сравнение с эталоном. Если отклонения меньше заданной погрешности, то процесс обучения прекращается.

Помимо входного и выходного слоев в многослойной сети существуют так называемые скрытые слои . Они представляют собой нейроны, которые не имеют непосредственных входов исходных данных, а связаны только с выходами входного слоя и с входом выходного слоя. Таким образом, скрытые слои дополнительно преобразуют информацию и добавляют нелинейности в модели. Чтобы лучше понять устройство многослойного перцептрона смотрите Рисунок 4

Рисунок 4 Многослойный перцептрон

Если однослойная нейросеть очень хорошо справляется с задачами классификации, так как выходной слой нейронов сравнивает полученные от предыдущего слоя значения с порогом и выдает значение либо ноль, то есть меньше порогового значения, либо единицу - больше порогового (для случая пороговой внутренней функции нейрона), и не способен решать большинство практических задач(что было доказано Минским и Пейпертом), то многослойный перцептрон с сигмоидными решающими функциями способен аппроксимировать любую функциональную зависимость (это было доказано в виде теоремы). Но при этом не известно ни нужное число слоев, ни нужное количество скрытых нейронов, ни необходимое для обучения сети время. Эти проблемы до сих пор стоят перед исследователями и разработчиками нейросетей. Лично мне кажется, что весь энтузиазм в применении нейросетей строится именно на доказательстве этой теоремы. Впоследствии я сам покажу, как нейроны могут моделировать различные классы функций, но я не претендую на полноту доказательства.



Класс рекуррентных нейросетей гораздо обширнее, да и сами сети сложнее по своему устройству.

Поведение рекуррентных сетей описывается дифференциальными или разностными уравнениями, как правило, первого порядка. Это гораздо расширяет области применения нейросетей и способы их обучения. Сеть организована так, что каждый нейрон получает входную информацию от других нейронов, возможно, и от самого себя, и от окружающей среды. Этот тип сетей имеет важное значение, так как с их помощью можно моделировать нелинейные динамические системы.

Среди рекуррентных сетей можно выделить сети Хопфилда и сети Кохонена .

С помощью сетей Хопфилда можно обрабатывать неупорядоченные (рукописные буквы), упорядоченные во времени (временные ряды) или пространстве (графики) образцы. Рекуррентная нейросеть простейшего вида была введена Хопфилдом и построена она из N нейронов, связанных каждый с каждым кроме самого себя, причем все нейроны являются выходными. Нейросеть Хопфилда можно использовать в качестве ассоциативной памяти. Архитектура сети Хопфилда изображена на Рисунок 5

Рисунок 5 Архитектура сети Хопфилда

Сеть Кохонена еще называют "самоорганизующейся картой признаков". Сеть такого типа рассчитана на самостоятельное обучение во время обучения сообщать ей правильные ответы необязательно. В процессе обучения на вход сети подаются различные образцы. Сеть улавливает особенности их структуры и разделяет образцы на кластеры, а уже обученная сеть относит каждый вновь поступающий пример к одному из кластеров, руководствуясь некоторым критерием "близости". Сеть состоит из одного входного и одного выходного слоя. Количество элементов в выходном слое непосредственно определяет, сколько различных кластеров сеть сможет распознать. Каждый из выходных элементов получает на вход весь входной вектор. Как и во всякой нейронной сети, каждой связи приписан некоторый синаптический вес. В большинстве случаев каждый выходной элемент соединен также со своими соседями. Эти внутрислойные связи играют важную роль в процессе обучения, так как корректировка весов происходит только в окрестности того элемента, который наилучшим образом откликается на очередной вход. Выходные элементы соревнуются между собой за право вступить в действи и "получить урок". Выигрывает тот из них, чей вектор весов окажется ближе всех к входному вектору.

rgen3 21 декабря 2011 в 02:07

Что такое искусственные нейронные сети?

  • Алгоритмы

Искусственные нейронные сети применяются в различных областях науки: начиная от систем распознавания речи до распознавания вторичной структуры белка, классификации различных видов рака и генной инженерии. Однако, как они работают и чем они хороши?

Когда речь идет о задачах, отличных от обработки больших массивов информации, человеческий мозг обладает большим преимуществом по сравнению с компьютером. Человек может распознавать лица, даже если в помещении будет много посторонних объектов и плохое освещение. Мы легко понимаем незнакомцев даже когда находимся в шумном помещении. Но, несмотря на годы исследований, компьютеры все еще далеки от выполнения подобных задач на высоком уровне.

Человеческий мозг удивительно надежный: по сравнению с компьютером он не перестанет работать только потому, что несколько клеток погибнет, в то время как компьютер обычно не выдерживает каких-либо поломок в CPU. Но самой удивительной особенностью человеческого мозга является то, что он может учиться. Не нужно никакого программного обеспечения и никаких обновлений, если мы хотим научиться ездить на велосипеде.

Расчеты головного мозга производятся посредством тесно взаимосвязанных нейронных сетей, которые передают информацию, отсылая электрические импульсы через нейронные проводки, состоящие из аксонов, синапсов и дендритов. В 1943 году, компания McCulloch and Pitts смоделировала искусственный нейрон, как переключатель, который получает информацию от других нейронов и в зависимости от общего взвешенного входа, либо приводится в действие, либо остается неактивным. В узле ИНС пришедшие сигналы умножаются на соответствующие веса синапсов и суммируются. Эти коэффициенты могут быть как положительными (возбуждающими), так и отрицательными (тормозящими). В 1960 годах было доказано, что такие нейронные модели обладают свойствами, сходными с мозгом: они могут выполнять сложные операции распознавания образов, и они могут функционировать, даже если некоторые связи между нейронами разрушены. Демонстрация персептона Розенблатта показала, что простые сети из таких нейронов могут обучаться на примерах, известных в определенных областях. Позже, Минский и Паперт доказали, что простые пресептоны могут решать только очень узкий класс линейно сепарабельных задач (см. ниже), после чего активность изучения ИНС уменьшилась. Тем не менее, метод обратного распространения ошибки обучения, который может облегчить задачу обучения сложных нейронных сетей на примерах, показал, что эти проблемы могут быть и не сепарабельными.

Программа NETtalk применяла искусственные нейронные сети для машинного чтения текста и была первым широкоизвестным приложением. В биологии, точно такой же тип сети был применен для прогнозирования вторичной структуры белка; в самом деле, некоторые из лучших исследователей до сих пор пользуются тем же методом. С этого началась другая волна, вызвавшая интерес к исследованиям ИНС и поднявшая шумиху вокруг магического обучения мыслящих машин. Некоторые из наиболее важных ранних открытий приведены в 5 источнике.

ИНС могут быть созданы путем имитации модели сетей нейронов на компьютере. Используя алгоритмы, которые имитируют процессы реальных нейронов, мы можем заставить сеть «учиться», что помогает решить множество различных проблем. Модель нейрона представляется как пороговая величина (она проиллюстрирована на рисунке 1а). Модель получает данные от ряда других внешних источников, определяет значение каждого входа и добавляет эти значения. Если общий вход выше пороговой величины, то выход блока равен единице, в противном случае – нулю. Таким образом, выход изменяется от 0 до 1, когда общая «взвешенная» сумма входов равна пороговой величине. Точки в исходном пространстве, удовлетворяющие этому условию, определяют, так называемые, гиперплоскости. В двух измерениях, гиперплоскость – линия, в то время как в трех измерениях, гиперплоскость является нормальной (перпендикулярной) плоскостью. Точки с одной стороны от гиперплоскости классифицируются как 0, а точки с другой стороны – 1. Это означает, что задача классификации может быть решена с использованием пороговой величины, если два класса будут разделены гиперплоскостью. Эти проблемы называются линейно сепарабельными и изображены на рисунке 1b.

Рисунок 1

Искусственные нейронные сети. (а) Графическое представление модели нейронной сети и порогового элемента McCulloch and Pitts. Пороговый блок получает входной сигнал от N других блоков или внешних источников, пронумерованных от 1 до N. Входной i называется xi и связывается с весом wi. Общий вход в устройство измерения суммы весов по всем входам, wixi=w1x1+w2x2+.. .+wNxΣi=1 N N.Если значение ниже порога t, то выход блока будет равен 1, в противном случае – 0. Таким образом, вывод может быть выражен как wixi Σi=1 – t g(N), где g – ступенчатая функция, которая равна 0, если аргумент отрицателен, и 1, если аргумент положительный (фактическое значение в неле не имеет значения, здесь, мы выбрали 1). Так называемая, передаточная функция, g, также может быть неприрывной и «сигмоидальной», как показано красной линией. (b) Линейная сепарабельность (отделимость). В трех измерениях пороговое значение может классифицировать моменты, которые могут разделяться плоскостью. Каждая точка представляет входное значение х1, х2, х3 на пороге блока. Зеленые точки соответствуют точкамданных класса 0, и красные точки – 1. Зеленые и красные кресты иллюстрируют логическую функцию исключающего или. Найти плоскости, которые отделяют зеленые и красные точки, (или линии в х1, х2, плоскости) невозможно.(с) Однонаправленная ИНС. Показанная сеть занимает семь входов, имеет пять единиц в скрытом слое и один выход. Это двухслойная сеть, т.к. входной слой не выполняет никаких изменений и не учитывается. (d) переобучение. Восемь точек показаны плюсами на параболе (за исключением «экспериментального» шума). Они использованы для обучения трех различных ИНС. Сети воспринимают значения х в качестве входных данных (один вход) и обучаются с у значением, как желаемым результатом. Как и ожидалось, сеть с одним скрытым блоком (зеленая) не справляется с работой на высоком уровне. Сети с 10 скрытыми элементами (синяя) приближает основные функции на удивление хорошо. Последняя сеть с 20 скрытыми элементами (фиолетовая) перерабатывает информацию хорошо, сеть прекрасно обучилась, но для некоторых промежуточных областей она чрезмерно креативна.

Обучение

Если проблема классификации сепарабельна, то нам все еще нужно найти способ установления веса и пороговой величины таким образом, чтобы пороговое устройство решало задачу классификации правильно. Этого можно добиться путем постоянного добавления примеров из ранее известной классификации. Такой процесс называется обучением или тренировкой, так как он напоминает процесс изучения чего-либо человеком. Моделирование обучения с помощью компьютера предполагает постоянное изменение весов и порогов таким образом, что классификация приобретает более высокий уровень после каждого шага. Обучение может быть реализовано различными алгоритмами, об одном из таких алгоритмов мы поговорим позже.

Во время тренировки гиперплоскость движется то в одну сторону, то в другую, пока не найдет правильное положение в пространстве, после чего она уже не будет значительно изменяться. Такой процесс хорошо продемонстрирован программой Neural Java (http://lcn.epfl.ch/tutorial/english/index.html); следуйте по ссылке «Adline, Percepton and Backpropagation» (красные и синие точки представляют два класса) и нажмите «play».

Рассмотрим пример задачи, для которой легко применить искусственную нейронную сеть. Из двух видов рака, только один отвечает на определенные способы лечения. Так как не существует простых биомаркеров, позволяющих отличить эти два вида рака друг от друга, вы решаете измерить генную экспрессию образцов опухоли, что бы определить тип каждой опухоли. Предположим, вы измерили значения 20 различных генов в 50 опухолях класса 0 (нереагирующих) и 50 класса 1 (реагирующих). На основе этих данных, вы обучаете пороговое устройство, который принимает 20 значений генов в качестве входных данных и выдает 0 или 1 в качестве результата для определения одного из двух классов, соответственно. Если данные линейно сепарабельны, то пороговый блок будет классифицировать обучающие данные правильно.

Тем не менее, многие проблемы классификации не являются линейно сепарабельными. Мы можем разделить классы в таких нелинейных задачах путем введения большего количества гиперплоскостей, а именно за счет введения более чем одного порогового блока. Обычно это осуществляется добавлением дополнительного (скрытого) уровня порогового элемента, каждая из которых производит частичную классификацию входных данных и посылает выводные данные на последний уровень. На заключительном уровне собираются все частичные классификации для составления окончательной (рис. 1b). Такие сети называют многоуровневыми перцептонами или однонаправленной сетью. Однонаправленные нейронные сети также могут быть использованы для задач регрессии, которые требуют постоянного выхода, в отличие от бинарных выходов (0 и 1). Заменяя ступенчатую функцию непрерывной, мы получаем вещественное число в качестве выхода. Зачастую, когда используется «сигмоидальная» функция активации, она является временной пороговой функцией (рис. 1а). «Сигмоидальная» функция активации также может быть использована для задач классификации, интерпретируя выход ниже 0.5, как класс 0, и выход выше 0.5, как класс 1. Также имеет смысл интерпретировать результат как вероятность класса 1.

В вышеприведенном примере, также возможны следующие варианты: класс 1 характеризуется как ярко выраженный ген 1 и бессимптомный класс - 0, или наоборот. Если оба из генов ярко выражены или бессимптомны, то присваивается класс 0 (опухоль). Это соответствует исключающему логическому «или» и является каноническим примером нелинейно сепарабельной функции (рис. 1b). В данном случае, для классификации опухолей было необходимо использовать многоуровневую сеть.

Обратная передача ошибки обучения

Вышеуказанный алгоритм обратной передачи ошибки обучения работает на однонаправленных нейронных сетях с аналоговым выходом. Обучение начинается с установки всех весов в сеть малых случайных чисел. Теперь, для каждого входного примера сеть дает выход, который начинается случайно. Мы измеряем квадрат разности между этими двумя выходами и желаемыми результатами для соответствующего класса или значения. Сумма всех этих чисел за все учебные примеры называется общей ошибкой сети. Если число равно нулю, то сеть является идеальной, следовательно, чем меньше погрешность, тем лучше сеть.

При выборе весов, которые сведут суммарную погрешность к минимуму, мы получим нейронную сеть, решающую проблему лучшим способом. Это то же самое, что и линейная регрессия, где два параметра характеризуют выбранные линии так, чтобы сумма квадратов разностей между линией и информационными точками была минимальной. Такую задачу можно решить аналитически в линейной регрессии, но нет никакого решения в однонаправленных нейронных сетях со скрытыми элементами. В алгоритме обратной передачи ошибки, веса и пороги меняются каждый раз, когда предоставляется новый пример, таким образом, возможность ошибки постепенно становится меньше. Процесс повторяется сотни раз, пока ошибка не остается неизменной. Наглядное представление этого процесса можно найти на сайте Neural Java, который указан выше, перейдя по ссылке «Multi-layer Perceptron» (с выходом нейрона {0, 1}).

В алгоритме обратной передачи ошибки, численный метод оптимизации называется алгоритмом градиентного спуска, который особенно упрощает математические вычисления. Название этот алгоритм получил из-за формы уравнений, которые он помогает решить. Есть несколько параметров обучения (так называемый коэффициент обучения и импульса), которые нуждаются в настройке при использовании обратной передачи ошибки. Также существуют и другие проблемы, которые стоит рассмотреть. Например, алгоритм градиентного спуска не гарантирует нахождение глобального минимума ошибки, поэтому результат обучения зависит от начальных значений весов. Тем не менее, одна проблема затмевает все остальные: проблема переобучения.

Переобучение происходит, когда нейронная сеть имеет слишком много параметров, которые можно извлечь из числа имеющихся параметров, то есть, когда несколько пунктов соответствуют функции со слишком большим количеством свободных параметров (рис. 1d). Несмотря на то, что все эти методы подходят и для классификации, и для регрессии, нейронные сети обычно склонны к перепараметризации. Например, сеть с 10 скрытыми элементами для решения нашей проблемы будет иметь 221 параметр: 20 скрытых весов и пороговых величин, а также 10 весов и пороговых величин на выходе. Это слишком большое количество параметров, которые можно извлечь из 100 примеров. Сеть, которая слишком подходит для обучающих данных, вряд ли обобщит выходные данные, не являющиеся обучающими. Существует множество способов для ограничения переобучения сети (исключая создание маленькой сети), но наиболее распространенные включают усреднение по нескольким сетям, регуляризацию и использование метода Байесовской статистики.

Для оценки производительности нейронных сетей, необходимо тестировать их на независимых данных, которые не использовались во время обучения сети. Обычно производится перекрестная проверка, где набор данных делится, например, на несколько комплектов одинакового размера. Тогда, сеть обучается по 9 комплектам и тестируется на десятом, и эта операция повторяется десять раз, так что все наборы используются для тестирования. Это дает оценку способности сети к обобщению, то есть, ее способности классифицировать входные данные, которым сеть не была обучена. Чтобы получить объективную оценку, что является очень важным, отдельные наборы не должны содержать похожие примеры.

Расширения и приложения

И простой персептрон с одним блоком, и многослойные сети с несколькими устройствами могут быть легко обобщены для прогнозирования более чем двух параметров, простым добавлением большего количества выходных значений. Любая проблема классификации может быть закодирована набором бинарных выходов. В вышеприведенном примере, мы могли бы, например, представить, что существуют три различных метода лечения, и для данной опухоли мы хотим знать, какой из методов лечения будет эффективным. Проблема может быть решена использованием трех выходных элементов, по одному для каждого вида лечения, которые подключены к тем же скрытым единицам.

Нейронные сети применяются для многих интересных проблем в различных областях науки, медицины и техники, а в некоторых случаях они обеспечивают высокотехнологичные решения. Нейронные сети иногда случайно использовались для задач, где более простые методы давали лучшие результаты, тем самым давая плохую репутацию ИНС среди некоторых ученых.

Существуют и другие типы нейронных сетей, которые не описывались здесь. Например, машина Больцмана, неконтролируемые сети и сети Кохонена. Поддержка векторных машин тесно связанных с ИНС. Для более детального ознакомления, я советую книгу Криса Бишопа, старые книги с моим соавторством, книгу Дуда и др. Существует множество программ, которые можно использовать для создания ИНС, обученных по собственным данным. К ним относятся расширения и плагины для Microsoft Excell, Matlab, и R (http://www.r-project.org/), а также библиотеки кода и большие коммерческие пакеты. FANN библиотеки (http://leenissen.dk/fann/), которые используются для серьезных приложений. Она наполнена открытым программным кодом на С, но может быть вызвана из, например, Perl и Python программ.

Дополнительная литература

1. Minsky, M.L. & Papert, S.A. Perceptrons (MIT Press,Cambridge, 1969).
2. Rumelhart, D.E., Hinton, G.E. & Williams, R.J. Nature 323, 533–536 (1986).
3. Sejnowski, T.J. & Rosenberg, C.R. Complex Systems 1, 145–168 (1987).
4. Qian, N. & Sejnowski, T.J. J. Mol. Biol. 202, 865–884 (1988).
5. Anderson, J.A. & Rosenfeld, E. (eds). Neurocomputing: Foundations of Research (MIT Press, Cambridge, 1988).
6. Bishop, C.M. Neural Networks for Pattern Recognition (Oxford University Press, Oxford, 1995).
7. Noble, W.S. Nat. Biotechnol. 24, 1565–1567 (2006).
8. Bishop, C.M. Pattern Recognition and Machine Learning (Springer, New York, 2006).
9. Hertz, J.A., Krogh, A. & Palmer, R. Introduction to the Theory of Neural Computation (Addison-Wesley, Redwood City, 1991).
10. Duda, R.O., Hart, P.E. & Stork, D.G. Pattern Classification (Wiley Interscience, New York, 2000).

Теги:

  • Алгоритмы
  • искусственные нейронные сети
Добавить метки

В главе мы ознакомились с такими понятиями, как искусственный интеллект, машинное обучение и искусственные нейронные сети.

В этой главе я детально опишу модель искусственного нейрона, расскажу о подходах к обучению сети, а также опишу некоторые известные виды искусственных нейронных сетей, которые мы будем изучать в следующих главах.

Упрощение

В прошлой главе я постоянно говорил о каких-то серьезных упрощениях. Причина упрощений заключается в том, что никакие современные компьютеры не могут быстро моделировать такие сложные системы, как наш мозг. К тому же, как я уже говорил, наш мозг переполнен различными биологическими механизмами, не относящиеся к обработке информации.

Нам нужна модель преобразования входного сигнала в нужный нам выходной. Все остальное нас не волнует. Начинаем упрощать.

Биологическая структура → схема

В предыдущей главе вы поняли, насколько сложно устроены биологические нейронные сети и биологические нейроны. Вместо изображения нейронов в виде чудовищ с щупальцами давайте просто будем рисовать схемы.

Вообще говоря, есть несколько способов графического изображения нейронных сетей и нейронов. Здесь мы будем изображать искусственные нейроны в виде кружков.

Вместо сложного переплетения входов и выходов будем использовать стрелки, обозначающие направление движения сигнала.

Таким образом искусственная нейронная сеть может быть представлена в виде совокупности кружков (искусственных нейронов), связанных стрелками.

Электрические сигналы → числа

В реальной биологической нейронной сети от входов сети к выходам передается электрический сигнал. В процессе прохода по нейронной сети он может изменяться.

Электрический сигнал всегда будет электрическим сигналом. Концептуально ничего не изменяется. Но что же тогда меняется? Меняется величина этого электрического сигнала (сильнее/слабее). А любую величину всегда можно выразить числом (больше/меньше).

В нашей модели искусственной нейронной сети нам совершенно не нужно реализовывать поведение электрического сигнала, так как от его реализации все равно ничего зависеть не будет.

На входы сети мы будем подавать какие-то числа, символизирующие величины электрического сигнала, если бы он был. Эти числа будут продвигаться по сети и каким-то образом меняться. На выходе сети мы получим какое-то результирующее число, являющееся откликом сети.

Для удобства все равно будем называть наши числа, циркулирующие в сети, сигналами.

Синапсы → веса связей

Вспомним картинку из первой главы, на которой цветом были изображены связи между нейронами – синапсы. Синапсы могут усиливать или ослаблять проходящий по ним электрический сигнал.

Давайте характеризовать каждую такую связь определенным числом, называемым весом данной связи. Сигнал, прошедший через данную связь, умножается на вес соответствующей связи.

Это ключевой момент в концепции искусственных нейронных сетей, я объясню его подробнее. Посмотрите на картинку ниже. Теперь каждой черной стрелке (связи) на этой картинке соответствует некоторое число ​\(w_i \) ​ (вес связи). И когда сигнал проходит по этой связи, его величина умножается на вес этой связи.

На приведенном выше рисунке вес стоит не у каждой связи лишь потому, что там нет места для обозначений. В реальности у каждой ​\(i \) ​-ой связи свой собственный ​\(w_i \) ​-ый вес.

Искусственный нейрон

Теперь мы переходим к рассмотрению внутренней структуры искусственного нейрона и того, как он преобразует поступающий на его входы сигнал.

На рисунке ниже представлена полная модель искусственного нейрона.

Не пугайтесь, ничего сложного здесь нет. Давайте рассмотрим все подробно слева направо.

Входы, веса и сумматор

У каждого нейрона, в том числе и у искусственного, должны быть какие-то входы, через которые он принимает сигнал. Мы уже вводили понятие весов, на которые умножаются сигналы, проходящие по связи. На картинке выше веса изображены кружками.

Поступившие на входы сигналы умножаются на свои веса. Сигнал первого входа ​\(x_1 \) ​ умножается на соответствующий этому входу вес ​\(w_1 \) ​. В итоге получаем ​\(x_1w_1 \) ​. И так до ​\(n \) ​-ого входа. В итоге на последнем входе получаем ​\(x_nw_n \) ​.

Теперь все произведения передаются в сумматор. Уже исходя из его названия можно понять, что он делает. Он просто суммирует все входные сигналы, умноженные на соответствующие веса:

\[ x_1w_1+x_2w_2+\cdots+x_nw_n = \sum\limits^n_{i=1}x_iw_i \]

Математическая справка

Сигма – Википедия

Когда необходимо коротко записать большое выражение, состоящее из суммы повторяющихся/однотипных членов, то используют знак сигмы.

Рассмотрим простейший вариант записи:

\[ \sum\limits^5_{i=1}i=1+2+3+4+5 \]

Таким образом снизу сигмы мы присваиваем переменной-счетчику ​\(i \) ​ стартовое значение, которое будет увеличиваться, пока не дойдет до верхней границы (в примере выше это 5).

Верхняя граница может быть и переменной. Приведу пример такого случая.

Пусть у нас есть ​\(n \) магазинов. У каждого магазина есть свой номер: от 1 до ​\(n \) ​. Каждый магазин приносит прибыль. Возьмем какой-то (неважно, какой) ​\(i \) ​-ый магазин. Прибыль от него равна ​\(p_i \) ​.

\[ P = p_1+p_2+\cdots+p_i+\cdots+p_n \]

Как видно, все члены этой суммы однотипны. Тогда их можно коротко записать следующим образом:

\[ P=\sum\limits^n_{i=1}p_i \]

Словами: «Просуммируй прибыли всех магазинов, начиная с первого и заканчивая ​\(n \) ​-ым». В виде формулы это гораздо проще, удобнее и красивее.

Результатом работы сумматора является число, называемое взвешенной суммой.

Взвешенная сумма (Weighted sum ) (​\(net \) ​) - сумма входных сигналов, умноженных на соответствующие им веса.

\[ net=\sum\limits^n_{i=1}x_iw_i \]

Роль сумматора очевидна – он агрегирует все входные сигналы (которых может быть много) в какое-то одно число – взвешенную сумму, которая характеризует поступивший на нейрон сигнал в целом. Еще взвешенную сумму можно представить как степень общего возбуждения нейрона.

Пример

Для понимания роли последнего компонента искусственного нейрона – функции активации – я приведу аналогию.

Давайте рассмотрим один искусственный нейрон. Его задача – решить, ехать ли отдыхать на море. Для этого на его входы мы подаем различные данные. Пусть у нашего нейрона будет 4 входа:

  1. Стоимость поездки
  2. Какая на море погода
  3. Текущая обстановка с работой
  4. Будет ли на пляже закусочная

Все эти параметры будем характеризовать 0 или 1. Соответственно, если погода на море хорошая, то на этот вход подаем 1. И так со всеми остальными параметрами.

Если у нейрона есть четыре входа, то должно быть и четыре весовых коэффициента. В нашем примере весовые коэффициенты можно представить как показатели важности каждого входа, влияющие на общее решение нейрона. Веса входов распределим следующим образом:

Нетрудно заметить, что очень большую роль играют факторы стоимости и погоды на море (первые два входа). Они же и будут играть решающую роль при принятии нейроном решения.

Пусть на входы нашего нейрона мы подаем следующие сигналы:

Умножаем веса входов на сигналы соответствующих входов:

Взвешенная сумма для такого набора входных сигналов равна 6:

\[ net=\sum\limits^4_{i=1}x_iw_i = 5 + 0 + 0 + 1 =6 \]

Вот на сцену выходит функция активации.

Функция активации

Просто так подавать взвешенную сумму на выход достаточно бессмысленно. Нейрон должен как-то обработать ее и сформировать адекватный выходной сигнал. Именно для этих целей и используют функцию активации.

Она преобразует взвешенную сумму в какое-то число, которое и является выходом нейрона (выход нейрона обозначим переменной ​\(out \) ​).

Для разных типов искусственных нейронов используют самые разные функции активации. В общем случае их обозначают символом ​\(\phi(net) \) ​. Указание взвешенного сигнала в скобках означает, что функция активации принимает взвешенную сумму как параметр.

Функция активации (Activation function )(​\(\phi(net) \) ​) - функция, принимающая взвешенную сумму как аргумент. Значение этой функции и является выходом нейрона (​\(out \) ​).

Функция единичного скачка

Самый простой вид функции активации. Выход нейрона может быть равен только 0 или 1. Если взвешенная сумма больше определенного порога ​\(b \) ​, то выход нейрона равен 1. Если ниже, то 0.

Как ее можно использовать? Предположим, что мы поедем на море только тогда, когда взвешенная сумма больше или равна 5. Значит наш порог равен 5:

В нашем примере взвешенная сумма равнялась 6, а значит выходной сигнал нашего нейрона равен 1. Итак, мы едем на море.

Однако если бы погода на море была бы плохой, а также поездка была бы очень дорогой, но имелась бы закусочная и обстановка с работой нормальная (входы: 0011), то взвешенная сумма равнялась бы 2, а значит выход нейрона равнялся бы 0. Итак, мы никуда не едем.

В общем, нейрон смотрит на взвешенную сумму и если она получается больше его порога, то нейрон выдает выходной сигнал, равный 1.

Графически эту функцию активации можно изобразить следующим образом.

На горизонтальной оси расположены величины взвешенной суммы. На вертикальной оси - значения выходного сигнала. Как легко видеть, возможны только два значения выходного сигнала: 0 или 1. Причем 0 будет выдаваться всегда от минус бесконечности и вплоть до некоторого значения взвешенной суммы, называемого порогом. Если взвешенная сумма равна порогу или больше него, то функция выдает 1. Все предельно просто.

Теперь запишем эту функцию активации математически. Почти наверняка вы сталкивались с таким понятием, как составная функция. Это когда мы под одной функцией объединяем несколько правил, по которым рассчитывается ее значение. В виде составной функции функция единичного скачка будет выглядеть следующим образом:

\[ out(net) = \begin{cases} 0, net < b \\ 1, net \geq b \end{cases} \]

В этой записи нет ничего сложного. Выход нейрона (​\(out \) ​) зависит от взвешенной суммы (​\(net \) ​) следующим образом: если ​\(net \) ​ (взвешенная сумма) меньше какого-то порога (​\(b \) ​), то ​\(out \) ​ (выход нейрона) равен 0. А если ​\(net \) ​ больше или равен порогу ​\(b \) ​, то ​\(out \) ​ равен 1.

Сигмоидальная функция

На самом деле существует целое семейство сигмоидальных функций, некоторые из которых применяют в качестве функции активации в искусственных нейронах.

Все эти функции обладают некоторыми очень полезными свойствами, ради которых их и применяют в нейронных сетях. Эти свойства станут очевидными после того, как вы увидите графики этих функций.

Итак… самая часто используемая в нейронных сетях сигмоида - логистическая функция .

График этой функции выглядит достаточно просто. Если присмотреться, то можно увидеть некоторое подобие английской буквы ​\(S \) ​, откуда и пошло название семейства этих функций.

А вот так она записывается аналитически:

\[ out(net)=\frac{1}{1+\exp(-a \cdot net)} \]

Что за параметр ​\(a \) ​? Это какое-то число, которое характеризует степень крутизны функции. Ниже представлены логистические функции с разным параметром ​\(a \) ​.

Вспомним наш искусственный нейрон, определяющий, надо ли ехать на море. В случае с функцией единичного скачка все было очевидно. Мы либо едем на море (1), либо нет (0).

Здесь же случай более приближенный к реальности. Мы до конца полностью не уверены (в особенности, если вы параноик) – стоит ли ехать? Тогда использование логистической функции в качестве функции активации приведет к тому, что вы будете получать цифру между 0 и 1. Причем чем больше взвешенная сумма, тем ближе выход будет к 1 (но никогда не будет точно ей равен). И наоборот, чем меньше взвешенная сумма, тем ближе выход нейрона будет к 0.

Например, выход нашего нейрона равен 0.8. Это значит, что он считает, что поехать на море все-таки стоит. Если бы его выход был бы равен 0.2, то это означает, что он почти наверняка против поездки на море.

Какие же замечательные свойства имеет логистическая функция?

  • она является «сжимающей» функцией, то есть вне зависимости от аргумента (взвешенной суммы), выходной сигнал всегда будет в пределах от 0 до 1
  • она более гибкая, чем функция единичного скачка – ее результатом может быть не только 0 и 1, но и любое число между ними
  • во всех точках она имеет производную, и эта производная может быть выражена через эту же функцию

Именно из-за этих свойств логистическая функция чаще всего используются в качестве функции активации в искусственных нейронах.

Гиперболический тангенс

Однако есть и еще одна сигмоида – гиперболический тангенс. Он применяется в качестве функции активации биологами для более реалистичной модели нервной клетки.

Такая функция позволяет получить на выходе значения разных знаков (например, от -1 до 1), что может быть полезным для ряда сетей.

Функция записывается следующим образом:

\[ out(net) = \tanh\left(\frac{net}{a}\right) \]

В данной выше формуле параметр ​\(a \) ​ также определяет степень крутизны графика этой функции.

А вот так выглядит график этой функции.

Как видите, он похож на график логистической функции. Гиперболический тангенс обладает всеми полезными свойствами, которые имеет и логистическая функция.

Что мы узнали?

Теперь вы получили полное представление о внутренней структуре искусственного нейрона. Я еще раз приведу краткое описание его работы.

У нейрона есть входы. На них подаются сигналы в виде чисел. Каждый вход имеет свой вес (тоже число). Сигналы на входе умножаются на соответствующие веса. Получаем набор «взвешенных» входных сигналов.

Затем взвешенная сумма преобразуется функцией активации и мы получаем выход нейрона .

Сформулируем теперь самое короткое описание работы нейрона – его математическую модель:

Математическая модель искусственного нейрона с ​\(n \) ​ входами:

где
​\(\phi \) ​ – функция активации
\(\sum\limits^n_{i=1}x_iw_i \) ​ – взвешенная сумма, как сумма ​\(n \) ​ произведений входных сигналов на соответствующие веса.

Виды ИНС

Мы разобрались со структурой искусственного нейрона. Искусственные нейронные сети состоят из совокупности искусственных нейронов. Возникает логичный вопрос – а как располагать/соединять друг с другом эти самые искусственные нейроны?

Как правило, в большинстве нейронных сетей есть так называемый входной слой , который выполняет только одну задачу – распределение входных сигналов остальным нейронам. Нейроны этого слоя не производят никаких вычислений.

Однослойные нейронные сети

В однослойных нейронных сетях сигналы с входного слоя сразу подаются на выходной слой. Он производит необходимые вычисления, результаты которых сразу подаются на выходы.

Выглядит однослойная нейронная сеть следующим образом:

На этой картинке входной слой обозначен кружками (он не считается за слой нейронной сети), а справа расположен слой обычных нейронов.

Нейроны соединены друг с другом стрелками. Над стрелками расположены веса соответствующих связей (весовые коэффициенты).

Однослойная нейронная сеть (Single-layer neural network ) - сеть, в которой сигналы от входного слоя сразу подаются на выходной слой, который и преобразует сигнал и сразу же выдает ответ.

Многослойные нейронные сети

Такие сети, помимо входного и выходного слоев нейронов, характеризуются еще и скрытым слоем (слоями). Понять их расположение просто – эти слои находятся между входным и выходным слоями.

Такая структура нейронных сетей копирует многослойную структуру определенных отделов мозга.

Название скрытый слой получил неслучайно. Дело в том, что только относительно недавно были разработаны методы обучения нейронов скрытого слоя. До этого обходились только однослойными нейросетями.

Многослойные нейронные сети обладают гораздо большими возможностями, чем однослойные.

Работу скрытых слоев нейронов можно сравнить с работой большого завода. Продукт (выходной сигнал) на заводе собирается по стадиям. После каждого станка получается какой-то промежуточный результат. Скрытые слои тоже преобразуют входные сигналы в некоторые промежуточные результаты.

Многослойная нейронная сеть (Multilayer neural network ) - нейронная сеть, состоящая из входного, выходного и расположенного(ых) между ними одного (нескольких) скрытых слоев нейронов.

Сети прямого распространения

Можно заметить одну очень интересную деталь на картинках нейросетей в примерах выше.

Во всех примерах стрелки строго идут слева направо, то есть сигнал в таких сетях идет строго от входного слоя к выходному.

Сети прямого распространения (Feedforward neural network ) (feedforward сети) - искусственные нейронные сети, в которых сигнал распространяется строго от входного слоя к выходному. В обратном направлении сигнал не распространяется.

Такие сети широко используются и вполне успешно решают определенный класс задач: прогнозирование, кластеризация и распознавание.

Однако никто не запрещает сигналу идти и в обратную сторону.

Сети с обратными связями

В сетях такого типа сигнал может идти и в обратную сторону. В чем преимущество?

Дело в том, что в сетях прямого распространения выход сети определяется входным сигналом и весовыми коэффициентами при искусственных нейронах.

А в сетях с обратными связями выходы нейронов могут возвращаться на входы. Это означает, что выход какого-нибудь нейрона определяется не только его весами и входным сигналом, но еще и предыдущими выходами (так как они снова вернулись на входы).

Возможность сигналов циркулировать в сети открывает новые, удивительные возможности нейронных сетей. С помощью таких сетей можно создавать нейросети, восстанавливающие или дополняющие сигналы. Другими словами такие нейросети имеют свойства кратковременной памяти (как у человека).

Сети с обратными связями (Recurrent neural network ) - искусственные нейронные сети, в которых выход нейрона может вновь подаваться на его вход. В более общем случае это означает возможность распространения сигнала от выходов к входам.

Обучение нейронной сети

Теперь давайте чуть более подробно рассмотрим вопрос обучения нейронной сети. Что это такое? И каким образом это происходит?

Что такое обучение сети?

Искусственная нейронная сеть – это совокупность искусственных нейронов. Теперь давайте возьмем, например, 100 нейронов и соединим их друг с другом. Ясно, что при подаче сигнала на вход, мы получим что-то бессмысленное на выходе.

Значит нам надо менять какие-то параметры сети до тех пор, пока входной сигнал не преобразуется в нужный нам выходной.

Что мы можем менять в нейронной сети?

Изменять общее количество искусственных нейронов бессмысленно по двум причинам. Во-первых, увеличение количества вычислительных элементов в целом лишь делает систему тяжеловеснее и избыточнее. Во-вторых, если вы соберете 1000 дураков вместо 100, то они все-равно не смогут правильно ответить на вопрос.

Сумматор изменить не получится, так как он выполняет одну жестко заданную функцию – складывать. Если мы его заменим на что-то или вообще уберем, то это вообще уже не будет искусственным нейроном.

Если менять у каждого нейрона функцию активации, то мы получим слишком разношерстную и неконтролируемую нейронную сеть. К тому же, в большинстве случаев нейроны в нейронных сетях одного типа. То есть они все имеют одну и ту же функцию активации.

Остается только один вариант – менять веса связей .

Обучение нейронной сети (Training) - поиск такого набора весовых коэффициентов, при котором входной сигнал после прохода по сети преобразуется в нужный нам выходной.

Такой подход к термину «обучение нейронной сети» соответствует и биологическим нейросетям. Наш мозг состоит из огромного количества связанных друг с другом нейросетей. Каждая из них в отдельности состоит из нейронов одного типа (функция активации одинаковая). Мы обучаемся благодаря изменению синапсов – элементов, которые усиливают/ослабляют входной сигнал.

Однако есть еще один важный момент. Если обучать сеть, используя только один входной сигнал, то сеть просто «запомнит правильный ответ». Со стороны будет казаться, что она очень быстро «обучилась». И как только вы подадите немного измененный сигнал, ожидая увидеть правильный ответ, то сеть выдаст бессмыслицу.

В самом деле, зачем нам сеть, определяющая лицо только на одном фото. Мы ждем от сети способности обобщать какие-то признаки и узнавать лица и на других фотографиях тоже.

Именно с этой целью и создаются обучающие выборки .

Обучающая выборка (Training set ) - конечный набор входных сигналов (иногда вместе с правильными выходными сигналами), по которым происходит обучение сети.

После обучения сети, то есть когда сеть выдает корректные результаты для всех входных сигналов из обучающей выборки, ее можно использовать на практике.

Однако прежде чем пускать свежеиспеченную нейросеть в бой, часто производят оценку качества ее работы на так называемой тестовой выборке .

Тестовая выборка (Testing set ) - конечный набор входных сигналов (иногда вместе с правильными выходными сигналами), по которым происходит оценка качества работы сети.

Мы поняли, что такое «обучение сети» – подбор правильного набора весов. Теперь возникает вопрос – а как можно обучать сеть? В самом общем случае есть два подхода, приводящие к разным результатам: обучение с учителем и обучение без учителя.

Обучение с учителем

Суть данного подхода заключается в том, что вы даете на вход сигнал, смотрите на ответ сети, а затем сравниваете его с уже готовым, правильным ответом.

Важный момент. Не путайте правильные ответы и известный алгоритм решения! Вы можете обвести пальцем лицо на фото (правильный ответ), но не сможете сказать, как это сделали (известный алгоритм). Тут такая же ситуация.

Затем, с помощью специальных алгоритмов, вы меняете веса связей нейронной сети и снова даете ей входной сигнал. Сравниваете ее ответ с правильным и повторяете этот процесс до тех пор, пока сеть не начнет отвечать с приемлемой точностью (как я говорил в 1 главе, однозначно точных ответов сеть давать не может).

Обучение с учителем (Supervised learning ) - вид обучения сети, при котором ее веса меняются так, чтобы ответы сети минимально отличались от уже готовых правильных ответов.

Где взять правильные ответы?

Если мы хотим, чтобы сеть узнавала лица, мы можем создать обучающую выборку на 1000 фотографий (входные сигналы) и самостоятельно выделить на ней лица (правильные ответы).

Если мы хотим, чтобы сеть прогнозировала рост/падение цен, то обучающую выборку надо делать, основываясь на прошлых данных. В качестве входных сигналов можно брать определенные дни, общее состояние рынка и другие параметры. А в качестве правильных ответов – рост и падение цены в те дни.

Стоит отметить, что учитель, конечно же, не обязательно человек. Дело в том, что порой сеть приходится тренировать часами и днями, совершая тысячи и десятки тысяч попыток. В 99% случаев эту роль выполняет компьютер, а точнее, специальная компьютерная программа.

Обучение без учителя

Обучение без учителя применяют тогда, когда у нас нет правильных ответов на входные сигналы. В этом случае вся обучающая выборка состоит из набора входных сигналов.

Что же происходит при таком обучении сети? Оказывается, что при таком «обучении» сеть начинает выделять классы подаваемых на вход сигналов. Короче говоря – сеть начинает кластеризацию.

Например, вы демонстрируете сети конфеты, пирожные и торты. Вы никак не регулируете работу сети. Вы просто подаете на ее входы данные о данном объекте. Со временем сеть начнет выдавать сигналы трех разных типов, которые и отвечают за объекты на входе.

Обучение без учителя (Unsupervised learning ) - вид обучения сети, при котором сеть самостоятельно классифицирует входные сигналы. Правильные (эталонные) выходные сигналы не демонстрируются.

Выводы

В этой главе вы узнали все о структуре искусственного нейрона, а также получили полное представление о том, как он работает (и о его математической модели).

Более того, вы теперь знаете о различных видах искусственных нейронных сетей: однослойные, многослойные, а также feedforward сети и сети с обратными связями.

Вы также ознакомились с тем, что представляет собой обучение сети с учителем и без учителя.

Вы уже знаете необходимую теорию. Последующие главы – рассмотрение конкретных видов нейронных сетей, конкретные алгоритмы их обучения и практика программирования.

Вопросы и задачи

Материал этой главы надо знать очень хорошо, так как в ней содержатся основные теоретические сведения по искусственным нейронным сетям. Обязательно добейтесь уверенных и правильных ответов на все нижеприведенные вопросы и задачи.

Опишите упрощения ИНС по сравнению с биологическими нейросетями.

1. Сложную и запутанную структуру биологических нейронных сетей упрощают и представляют в виде схем. Оставляют только модель обработки сигнала.

2. Природа электрических сигналов в нейронных сетях одна и та же. Разница только в их величине. Убираем электрические сигналы, а вместо них используем числа, обозначающие величину проходящего сигнала.

Функцию активации часто обозначают за ​\(\phi(net) \) ​.

Запишите математическую модель искусственного нейрона.

Искусственный нейрон c ​\(n \) ​ входами преобразовывает входной сигнал (число) в выходной сигнал (число) следующим образом:

\[ out=\phi\left(\sum\limits^n_{i=1}x_iw_i\right) \]

Чем отличаются однослойные и многослойные нейронные сети?

Однослойные нейронные сети состоят из одного вычислительного слоя нейронов. Входной слой подает сигналы сразу на выходной слой, который и преобразует сигнал, и сразу выдает результат.

Многослойные нейронные сети, помимо входного и выходного слоев, имеют еще и скрытые слои. Эти скрытые слои проводят какие-то внутренние промежуточные преобразования, наподобие этапов производства продуктов на заводе.

В чем отличие feedforward сетей от сетей с обратными связями?

Сети прямого распространения (feedforward сети) допускают прохождение сигнала только в одном направлении – от входов к выходам. Сети с обратными связями данных ограничений не имеют, и выходы нейронов могут вновь подаваться на входы.

Что такое обучающая выборка? В чем ее смысл?

Перед тем, как использовать сеть на практике (например, для решения текущих задач, ответов на которые у вас нет), необходимо собрать коллекцию задач с готовыми ответами, на которой и тренировать сеть. Это коллекция и называется обучающей выборкой.

Если собрать слишком маленький набор входных и выходных сигналов, то сеть просто запомнит ответы и цель обучения не будет достигнута.

Что понимают под обучением сети?

Под обучением сети понимают процесс изменения весовых коэффициентов искусственных нейронов сети с целью подобрать такую их комбинацию, которая преобразует входной сигнал в корректный выходной.

Что такое обучение с учителем и без него?

При обучении сети с учителем ей на входы подают сигналы, а затем сравнивают ее выход с заранее известным правильным выходом. Этот процесс повторяют до тех пор, пока не будет достигнута необходимая точность ответов.

Если сети только подают входные сигналы, без сравнения их с готовыми выходами, то сеть начинает самостоятельную классификацию этих входных сигналов. Другими словами она выполняет кластеризацию входных сигналов. Такое обучение называют обучением без учителя.

Новые виды архитектуры нейронных сетей появляются постоянно, и в них можно запутаться. Мы собрали для вас своеобразную шпаргалку, содержащую большую часть существующих видов ИНС. Хотя все они представлены как уникальные, картинки свидетельствуют о том, что многие из них очень похожи.

Проблема нарисованных выше графов заключается в том, что они не показывают, как соответствующие сети используются на практике. Например, вариационные автокодировщики (VAE) выглядят совсем как простые автокодировщики (AE), но их процессы обучения существенно различаются. Случаи использования отличаются ещё больше, поскольку VAE - это генератор, которому для получения нового образца подаётся новый шум. AE же просто сравнивает полученные данные с наиболее похожим образцом, полученным во время обучения.

Стоит заметить, что хотя большинство этих аббревиатур общеприняты, есть и исключения. Под RNN иногда подразумевают рекурсивную нейронную сеть, но обычно имеют в виду рекуррентную. Также можно часто встретить использование аббревиатуры RNN, когда речь идёт про любую рекуррентную НС. Автокодировщики также сталкиваются с этой проблемой, когда вариационные и шумоподавляющие автокодировщики (VAE, DAE) называют просто автокодировщиками (AE). Кроме того, во многих аббревиатурах различается количество букв «N» в конце, поскольку в каких-то случаях используется «neural network», а в каких-то - просто «network».

Для каждой архитектуры будет дано очень краткое описание и ссылка на статью, ей посвящённую. Если вы хотите быстро познакомиться с нейронными сетями с нуля, следуйте переведенному нами , состоящему всего из четырех шагов.


Нейронные сети прямого распространения
(feed forward neural networks, FF или FFNN) и перцептроны (perceptrons, P) очень прямолинейны, они передают информацию от входа к выходу. Нейронные сети часто описываются в виде слоёного торта, где каждый слой состоит из входных, скрытых или выходных клеток. Клетки одного слоя не связаны между собой, а соседние слои обычно полностью связаны. Самая простая нейронная сеть имеет две входных клетки и одну выходную, и может использоваться в качестве модели логических вентилей. FFNN обычно обучается по методу обратного распространения ошибки, в котором сеть получает множества входных и выходных данных. Этот процесс называется обучением с учителем, и он отличается от обучения без учителя тем, что во втором случае множество выходных данных сеть составляет самостоятельно. Вышеупомянутая ошибка является разницей между вводом и выводом. Если у сети есть достаточное количество скрытых нейронов, она теоретически способна смоделировать взаимодействие между входным и выходными данными. Практически такие сети используются редко, но их часто комбинируют с другими типами для получения новых.

Сети радиально-базисных функций (radial basis function, RBF) - это FFNN, которая использует радиальные базисные функции как функции активации. Больше она ничем не выделяется 🙂

Нейронная сеть Хопфилда (Hopfield network, HN) - это полносвязная нейронная сеть с симметричной матрицей связей. Во время получения входных данных каждый узел является входом, в процессе обучения он становится скрытым, а затем становится выходом. Сеть обучается так: значения нейронов устанавливаются в соответствии с желаемым шаблоном, после чего вычисляются веса, которые в дальнейшем не меняются. После того, как сеть обучилась на одном или нескольких шаблонах, она всегда будет сводиться к одному из них (но не всегда - к желаемому). Она стабилизируется в зависимости от общей «энергии» и «температуры» сети. У каждого нейрона есть свой порог активации, зависящий от температуры, при прохождении которого нейрон принимает одно из двух значений (обычно -1 или 1, иногда 0 или 1). Такая сеть часто называется сетью с ассоциативной памятью; как человек, видя половину таблицы, может представить вторую половину таблицы, так и эта сеть, получая таблицу, наполовину зашумленную, восстанавливает её до полной.

Цепи Маркова (Markov chains, MC или discrete time Markov Chains, DTMC) - это предшественники машин Больцмана (BM) и сетей Хопфилда (HN). Их смысл можно объяснить так: каковы мои шансы попасть в один из следующих узлов, если я нахожусь в данном? Каждое следующее состояние зависит только от предыдущего. Хотя на самом деле цепи Маркова не являются НС, они весьма похожи. Также цепи Маркова не обязательно полносвязны.

Машина Больцмана (Boltzmann machine, BM) очень похожа на сеть Хопфилда, но в ней некоторые нейроны помечены как входные, а некоторые - как скрытые. Входные нейроны в дальнейшем становятся выходными. Машина Больцмана - это стохастическая сеть. Обучение проходит по методу обратного распространения ошибки или по алгоритму сравнительной расходимости. В целом процесс обучения очень похож на таковой у сети Хопфилда.

Ограниченная машина Больцмана (restricted Boltzmann machine, RBM) удивительно похожа на машину Больцмана и, следовательно, на сеть Хопфилда. Единственной разницей является её ограниченность. В ней нейроны одного типа не связаны между собой. Ограниченную машину Больцмана можно обучать как FFNN, но с одним нюансом: вместо прямой передачи данных и обратного распространения ошибки нужно передавать данные сперва в прямом направлении, затем в обратном. После этого проходит обучение по методу прямого и обратного распространения ошибки.

Автокодировщик (autoencoder, AE) чем-то похож на FFNN, так как это скорее другой способ использования FFNN, нежели фундаментально другая архитектура. Основной идеей является автоматическое кодирование (в смысле сжатия, не шифрования) информации. Сама сеть по форме напоминает песочные часы, в ней скрытые слои меньше входного и выходного, причём она симметрична. Сеть можно обучить методом обратного распространения ошибки, подавая входные данные и задавая ошибку равной разнице между входом и выходом.

Разреженный автокодировщик (sparse autoencoder, SAE) - в каком-то смысле противоположность обычного. Вместо того, чтобы обучать сеть отображать информацию в меньшем «объёме» узлов, мы увеличиваем их количество. Вместо того, чтобы сужаться к центру, сеть там раздувается. Сети такого типа полезны для работы с большим количеством мелких свойств набора данных. Если обучать сеть как обычный автокодировщик, ничего полезного не выйдет. Поэтому кроме входных данных подаётся ещё и специальный фильтр разреженности, который пропускает только определённые ошибки.

Вариационные автокодировщики (variational autoencoder, VAE) обладают схожей с AE архитектурой, но обучают их иному: приближению вероятностного распределения входных образцов. В этом они берут начало от машин Больцмана. Тем не менее, они опираются на байесовскую математику, когда речь идёт о вероятностных выводах и независимости, которые интуитивно понятны, но сложны в реализации. Если обобщить, то можно сказать что эта сеть принимает в расчёт влияния нейронов. Если что-то одно происходит в одном месте, а что-то другое — в другом, то эти события не обязательно связаны, и это должно учитываться.

Шумоподавляющие автокодировщики (denoising autoencoder, DAE) - это AE, в которые входные данные подаются в зашумленном состоянии. Ошибку мы вычисляем так же, и выходные данные сравниваются с зашумленными. Благодаря этому сеть учится обращать внимание на более широкие свойства, поскольку маленькие могут изменяться вместе с шумом.


Сеть типа «deep belief»
(deep belief networks, DBN) - это название, которое получил тип архитектуры, в которой сеть состоит из нескольких соединённых RBM или VAE. Такие сети обучаются поблочно, причём каждому блоку требуется лишь уметь закодировать предыдущий. Такая техника называется «жадным обучением», которая заключается в выборе локальных оптимальных решений, не гарантирующих оптимальный конечный результат. Также сеть можно обучить (методом обратного распространения ошибки) отображать данные в виде вероятностной модели. Если использовать обучение без учителя, стабилизированную модель можно использовать для генерации новых данных.


Свёрточные нейронные сети
(convolutional neural networks, CNN) и глубинные свёрточные нейронные сети (deep convolutional neural networks, DCNN) сильно отличаются от других видов сетей. Обычно они используются для обработки изображений, реже для аудио. Типичным способом применения CNN является классификация изображений: если на изображении есть кошка, сеть выдаст «кошка», если есть собака - «собака». Такие сети обычно используют «сканер», не парсящий все данные за один раз. Например, если у вас есть изображение 200×200, вы не будете сразу обрабатывать все 40 тысяч пикселей. Вместо это сеть считает квадрат размера 20 x 20 (обычно из левого верхнего угла), затем сдвинется на 1 пиксель и считает новый квадрат, и т.д. Эти входные данные затем передаются через свёрточные слои, в которых не все узлы соединены между собой. Эти слои имеют свойство сжиматься с глубиной, причём часто используются степени двойки: 32, 16, 8, 4, 2, 1. На практике к концу CNN прикрепляют FFNN для дальнейшей обработки данных. Такие сети называются глубинными (DCNN).

Развёртывающие нейронные сети (deconvolutional networks, DN) , также называемые обратными графическими сетями, являются обратным к свёрточным нейронным сетям. Представьте, что вы передаёте сети слово «кошка», а она генерирует картинки с кошками, похожие на реальные изображения котов. DNN тоже можно объединять с FFNN. Стоит заметить, что в большинстве случаев сети передаётся не строка, а какой бинарный вектор: например, <0, 1> - это кошка, <1, 0> - собака, а <1, 1> - и кошка, и собака.