Семантические модели данных. Понятие системы как семантической модели

§ 1. Понятие и основные модели перевода

Модель перевода – это теоретический конструкт, алгоритм, описывающий деятельность переводчика в процессе перевода.

Основные модели:

трансформационно-семантическая

денотативно-ситуативная

коммуникативная

Трансформационносемантическая:

два это преобразованиеварианта объектовмодели и структур одного языка в

объекты и структуры другого по определенным правилам, т.е. с использованием разных видов

соответствий и трансформаций, без обращения к внеязыковой действительности (Л.С. Бархударов).

преобразование по правилам внутриязыковых трансформаций 1)структур ИЯ для обеспечения прямого перевода на ПЯ; или 2)пословного перевода на ПЯ с

целью получения идиоматичного грамотного перевода на ПЯ (О.И. Бродович, А.Д. Швейцер)

Переведите:

Before the invention of fashion in 1350 A.D., tailors were unnecessary: Clothing didn"tacknowledge the body"s shape.

Mosquitoes are attracted to the color blue twice as much as to any other color.

Разновидности модели, построенные на различных

теориях 1) Порождающая грамматика:языка теория

постулирует наличие у человека некоей языковой способности, состоящей из знания базовых структур языка и правил их преобразования в поверхностные.

Для английского языка характерны 6 ядерных/базовых структур: NV

There (be) N (D) N be N

при построении речевых высказываний т.н. ядерные предложения преобразуются (трансформируются) в поверхностные путем

преобразования синтаксической структуры одного предложения:

John sent Bill a letter. ↔ The letter was sent to bill by John.

или соединения нескольких ядерных с возможным опущением элементов или с использованием слов-заменителей

Having sent a letter to Bill, John went home.

Схема модели перевода, построенной на основе порождающей грамматики

Преимущества и

недостатки требует минимального привлечениямодели внелингвистических знаний для интерпретации языковых структур

позволяет сократить все многообразие языка до нескольких базовых структур.

позволяет привести два языка к семантическому “общему знаменателю”

на стадии анализа ИТ они помогают снять неоднозначность, поскольку ядерные структуры однозначны, т.к. эксплицируют смысловую структуру

poor worker (х-ка лица или процесса?)

television channel award (субъект или объект действия?)the foundation of the school (процесс или предмет?)

на стадии синтеза позволяют преодолеть такие проблемы как:

1) отсутствие соответствующей морфологической формы в ПЯ (герундий – His handling the millitary operation appears to be lax ← It apperaed that he handled … Создается впечатление, что военной операцией он руководил нечетко.

2) невозможность передать словообразовательное значение слова морфологическим способом (the rent raiser, disturber )

3) различия в лексической сочетаемости (She spoke about the waste of human resources ).

4) для сохранения тема-рематического членения или когда русское предложение начинается с косвенного дополнения (Американцам внушают, что… - Americans have been led to believe that…) и др.

2) Компонентный

анализ: значения всех словтеория во всех языках могут быть описаны с помощью одного и того же ограниченного набора из нескольких десятков элементов –семантических примитивов , соответствующих значениям слов,

предположительно встречающихся в любом языке и составляющих его понятийную основу (напр., "я", "ты", "кто-то", "что-то", "люди", "думать", "говорить", "знать", "чувствовать", "хотеть‘)

Семы делятся на три вида: общие, дифференциальные и дополнительные . Общие семы – те компоненты, которые объединяют все лексико-семантические варианты одного слова или синонимы одного синонимического ряда (напр.,give во всех значениях - это let+have ); дифференциальные – те компоненты, кот. обеспечивают включение рассматриваемых ЛСВ в разные синонимические ряды (дарить – «безвозмездность», покупать «брать за деньги»); дополнительные – те несущественные для логикопредметного значения элементы значения, которые часто служат базой для метафорического/метонимического переноса.

Схема модели, основанной на теории компонентного

Преимущества и недостатки модели

позволяет учитывать расхождения в компонентной структуре слов и конфигурациях семантических полей в двух языках при выборе соответствующей единицы ПЯ

В sibling по сравнению сбрат, сестра отсутствует сема «пол»

В рисунок (неспец.) по сравнению сdrawing отсутствует сема «карандашом»

Свояченица, золовка (сестра мужа/жены) – sister-in-law

объясняет случаи конкретизации значения исходной единицы ввиду разницы в конфигурации семантических полей

purple – any colour between red and blue: в переводе фиолетовый, лиловый, сиреневый.

BUT! не раскрывает механизма синтаксических и лексикосинтаксических преобразований

3) Семантическая модель «смысл↔текст»

стремится отразить закономерности преобразования смысла в текст и обратно.

Глубинная структура языка представляет собой не только глубинный синтаксис (как у Хомского), но и глубинную лексику.

Глубинная лексика включает лишь самостоятельные (первичные слова), а

остальное интерпретируется в терминах лексических функций, которые делятся на две категории: эквивалентные замены (синонимы, конверсивы типа «дать-получить», синтаксические дериваты) исемантические параметры ,выражающие некоторые элементарные смыслы при ключевом слове :

Oper1 (типовая ситуация, присоединитель субъекта в роли подлежащего) – задать при вопрос, сделать при шаг;

Oper2 (присоединитель объекта в роли подлежащего) – подвергнуться нападению, понести наказание.

Inctp – начинаться (вспыхнуть, подниматься), Fin – заканчиваться (улеглась, отошла),

Magn - высокая степень – (грубая ошибка, жгучий брюнет).

Модель семантических сетей

Семантические сети представляют собой ориентированные графы с помеченными дугами. Аппарат семантических сетей является естественной формализацией ассоциативных связей, которыми пользуется человек при извлечении каких-то новых фактов из имеющихся. Построение сети способствует осмыслению информации и знаний, поскольку позволяет установить противоречивые ситуации, недостаточность имеющейся информации и т. п.

Обычно в семантической сети предусматриваются четыре категории вершин:

Понятия (объекты),

События,

Свойства,

Значения.

Понятия представляют собой константы или параметры, которые определяют физические или абстрактные объекты.

События представляют действия, происходящие в реальном мире, и определяются указанием типа действия и ролей, которые играют объекты в этом действии.

Свойства используются для представления состояния или для модификации понятий и событий.

Сведения семантической сети образуют сценарий, который является набором понятий, событий и причинно-следственных связей.

Необходимо различать вершины, обозначающие экземпляры объектов, и вершины, представляющие классы объектов. Например, Новиков - экземпляр типа Студент. В семантической сети экземпляр может принадлежать более чем одному классу (Новиков – и Студент, и Спортсмен).

В других моделях в отличие от семантической сети типы объектов указаны в схеме, а экземпляры объектов представлены значениями в базе данных. В семантической сети один и тотже экземпляр объекта может быть соотнесен с несколькими типами.

В синтаксических моделях (реляционной, сетевой или иерархической) для обеспечения такой связи потребуется дублирование информации об объекте.

Все семантические отношения предметной области можно разделить на следующие:

Лингвистические,

Логические,

Теоретико-множественные,

Квантификационные.

Лингвистические отношения бывают глагольные (время, вид, род, число, залог, наклонение) и атрибутивные (модификация, размер, форма).

Логические отношения подразделяются на конъюнкцию (и), дизъюнкцию (или), отрицание (не) и импликацию (если – то).

Теоретико-множественные отношения - это отношение подмножества, отношение части и целого, отношение множества и элемента.

Квантификационные отношения делятся на логические кванторы общности и существования («каждый», «все»), нелогические кванторы («много», «несколько») и числовые характеристики.

При установлении структуры понятий существуют две обязательные связи

1- связь "есть-нек" (от слов "есть некоторый"). Направлена от частного понятия к более общему и показывает принадлежность элемента к классу;

2- связь "есть-часть". Показывает, что объект содержит в своем составе разнородные компоненты (объекты), не подобные данному объекту.

Пример семантической сети для описания структуры понятия "юридическое лицо" приведен на следующем рисунке.

Рисунок 4.2 Элементы семантической сети

Связь "есть-нек" обозначается одной линией, связь "есть-часть" – двумя.

Рассмотрим представление событий и действий с помощью семантической сети. Выделяются простые отношения, которые характеризуют основные компоненты события. В первую очередь из события выделяется действие, которое обычно описывается глаголом. Далее необходимо определить объекты, которые действуют, объекты, над которыми эти действия производятся, и т. д. Все эти связи предметов, событий и качеств с глаголом называются падежами. Обычно рассматривают следующие падежи:

1. агент - предмет, являющийся инициатором действия;

2. объект - предмет, подвергающийся действию;

3. источник - размещение предмета перед действием;

4. приемник - размещение предмета после действия;

5. время - указание на то, когда происходит событие;

6. место - указание на то, где происходит событие;

7. цель - указание на цель действия.

Рассмотрим пример: Директор завода "САЛЮТ" остановил 25.03.90 цех № 4, чтобы заменить оборудование

Рисунок 4.3 Пример семантической сети

Преимущества семантических сетей:

1) описание объектов и событий на уровне, очень близком к естественному языку;

2) обеспечивается возможность сцепления различных фрагментов сети;

3) возможные отношения между понятиями и событиями образуют достаточно небольшое и хорошо формализованное множество;

4) можно выделить из полной сети, представляющей все знания, некоторый участок семантической сети, который необходим в конкретном запросе.

4.4 Базы знаний

В современных системах управления вопрос о принятии решений информационной системой требует фиксации знаний об управляемом объекте и реализации моделей принятия ре­шений, характерных для человека-специалиста (инженера, тех­нолога, экономиста, бухгалтера). Способность человека накапливать и использовать знания, принимать решения можно назвать естественным интеллектом, соответствующие возмож­ности информационной системы получили название искусст­венный интеллект.

Система понятий для представления знаний существенно отличается от понятий для представления данных, поэтому отображение знаний производится в базу знаний. Вместе с тем база знаний способна хранить данные как простую разновид­ность знаний.

Запросы, которые формулируются пользователями инфор­мационной системы, реализуются одним из двух возможных способов:

Сообщения, являющиеся ответом на запрос, хранятся в явном виде в БД, и процесс получения ответа представ­ляет собой выделение подмножества значений из файлов БД, удовлетворяющих запросу;

Ответ не существует в явном виде в БД и формируется в про­цессе логического вывода на основании имеющихся дан­ных.

Последний случай принципиально отличается от рассмот­ренной ранее технологии использования баз данных и рассмат­ривается в рамках представления знаний, т. е. информации, необходимой в процессе вывода новых фактов. База знаний содержит:

Сведения, которые отражают существующие в предметной области закономерности и позволяют выводить новые фак­ты, справедливые в данном состоянии предметной облас­ти, но отсутствующие в БД, а также прогнозировать потен­циально возможные состояния предметной области;

Сведения о структуре ЭИС и БД (метаинформация);

Сведения, обеспечивающие понимание входного языка, т. е. перевод входных запросов во внутренний язык.

Принято говорить не о "знаниях вообще", а о знаниях, за­фиксированных с помощью той или иной модели знаний.



Принципиальными различиями обладают три модели пред­ставления знаний - продукционная модель, модель фреймов и модель семантических сетей.

4.5 Продукционная модель знаний

Продукционная модель состоит из трех основных компо­нентов:

Набора правил, представляющего собой в продукцион­ной системе базу знаний;

Рабочей памяти, в которой хранятся исходные факты и результаты выводов, полученных из этих фактов;

Механизма логического вывода, использующего прави­ла ц соответствии с содержимым рабочей памяти и формиру­ющего новые факты.

Каждое правило содержит условную и заключительную части. В условной части правила находится одиночный факт либо несколько фактов (условий), соединенных логической операцией "И".

В заключительной части правила находятся факты, кото­рые необходимо дополнительно сформировать в рабочей па­мяти, если условная часть правила является истинной.

Пример

Предположим, что в рабочей памяти хранятся следующие факты:

Доля выборки записей равна 0,09;

ЭВМ - PC XT.

Правила логического вывода имеют вид:

1) Если метод доступа индексный, то СУБД - dBASE 3.

2) Если метод доступа последовательный, то СУБД - dBASE 3.

3) Если доля выборки записей <0,1, то метод доступа - индекс­ный.

4) Если СУБД - dBASE 3 и ЭВМ - PC XT, то программист -Иванов.

Механизм вывода сопоставляет факты из условной части каждо­го правила с фактами, хранящимися в рабочей памяти. В данном при­мере сопоставление условия правила 3 с фактами из рабочей памяти приводит к добавлению нового факта "Метод доступа - индексный" и исключению правила 3 из списка применяемых правил.

С учетом нового факта становится справедливой условная часть правила 1, и в рабочей памяти появляется факт "СУБД -dBASE З". Далее становится применимым правило 4, что приводит к фиксации в рабочей памяти факта "Программист - Иванов". В этот момент дальнейшее применение правил невозможно, и про­цесс вывода останавливается. Наш пример показывает, что при­менимость каждого правила из базы знаний в процессе вывода вовсе не обязательна.

Новые факты, полученные механизмом вывода:

Метод доступа - индексный,

СУБД-dBASE 3,

Программист - Иванов.

В приведенном примере для получения вывода правила при­менялись к фактам, записанным в рабочей памяти, и в резуль­тате применения правил добавлялись новые факты. Такой спо­соб действий называется прямым выводом. Возможен также обратный вывод целей. В качестве цели выступает подтвержде­ние истинности факта, отсутствующего в рабочей памяти. При обратном выводе исследуется возможность применения правил, подтверждающих цель, необходимые для этого дополнитель­ные факты становятся новыми целями и процесс повторяется.

Предположим, что в нашем примере запрос цели имеет вид:

? "программист - Иванов".

Эта цель подтверждается правилом 4. Необходимые для пра­вила 4 факты - "ЭВМ - PC XT" и "СУБД - dBASE 3". Первыйизних присутствует в рабочей памяти, а второй становится новой целью. Для этой цели требуется подтверждение правила 1 или пра­вила 2. Факт-условие правила 2 не содержится в рабочей памяти и не является заключением существующих правил. Поэтому данная ветвь обратного вывода обрывается. Для применения правила 1 необходим факт "Метод доступа - индексный", он является зак­лючением правила 3, а условие правила 3 соблюдается (в рабочей памяти хранится факт "Доля выборки записей равна 0.09").

В итоге первоначальная цель "программист-Иванов" призна­ется истинной.

В случае обратного вывода условием останова системы является окончание списка правил, которые относятся к дока­зываемым целям. При прямом выводе останов происходит по окончании списка применимых правил. Следует отметить, что на каждом шаге вывода количество одновременно применимых правил может быть любым (в отличие от примеров, приве­денных выше). Последовательность выбора подходящих пра­вил не влияет на однозначность получаемого ответа; однако может существенно увеличить требуемое число шагов вывода. В реальных базах знаний с большим числом правил это может существенно снизить быстродействие системы. В системах с обратным выводом есть возможность исключить из рассмот­рения правила, не имеющие отношения к выводу требуемых целей, и тем самым несколько ослабить указанный отрицатель­ный эффект. По этой причине системы с обратным выводом целей получили большее распространение.

Представление знаний в виде набора правил имеет следу­ющие преимущества:

Простота создания и понимания отдельных правил;

Простота механизма логического вывода.

К недостаткам этого способа организации базы знаний относятся:

Неясность взаимных отношений правил;

Отличие от человеческой структуры знаний.

4.6 Фреймы

В основе теории фреймов лежит фиксация знаний путем сопоставления новых фактов с рамками, определенными для каждого объекта в сознании человека. Структура в памяти ЭВМ, представляющая эти рамки, называется фреймом. С по­мощью фреймовмы пытаемся представить процесс система­тизации знаний в форме, максимально близкой к принципам систематизации знаний человеком.

Фрейм представляет собой таблицу, структура и принци­пы организации которой являются развитием понятия отно­шения в реляционной модели данных. Новизна фреймов оп­ределяется двумя условиями:

1) имя атрибута может в ряде случаев занимать в фрейме позицию значения,

2) значением атрибута может служить имя другого фрейма или имя программно реализованной процедуры. Структура фрейма показана ниже.

Слотом фрейма назы­вается элемент данных, предназначенный для фиксации зна­ний об объекте, которому отведен данный фрейм. Перечислим параметры слотов.

Имя слота. Каждый слот должен иметь уникальное имя во фрейме, к которому он принадлежит. Имя слота в некоторых случаях может быть служебным. Среди служебных имен отме­тим имя пользователя, определяющего фрейм; дату определе­ния или модификации фрейма; комментарий.

Указатель наследования. Он показывает, какую информа­цию об атрибутах слотов во фрейме верхнего уровня наследу­ют слоты с теми же именами во фрейме нижнего уровня. При­ведем типичные указатели наследования:

S (тот же). Слот наследуется с теми же значениями данных;

U (уникальный). Слот наследуется, но данные могут принимать любые значения;

I (независимый). Слот не наследуется.

Указатель типа данных. К типам данных относятся:

FRAME (указатель) - указывает имя фрейма верхнего уровня;

ATOM (переменная),

TEXT (текстовая информация),

LIST (список),

LISP (присоединенная процедура).

С помощью механизма управления наследованием по от­ношениям "есть-нек" осуществляются автоматический поиск и определение значений слотов фрейма верхнего уровня и при­соединенных процедур.

Рассмотримпример использования системы фреймов. Иерар­хия фреймов, показанная на рис. 4.4.а, отображает организацион­ную структуру и работы, выполняемые в некотором отделе конст­рукторского бюро. Она предназначена для фиксации факта окончания отдельных работ исполнителями, группами и отделом в це­лом. Фрейм ROOT является стандартным фреймом, все другие фреймы должны быть подчинены ему. Слот АКО используется для установления иерархии фреймов.

Работа начинается посредством передачи сообщения в слот фрейма верхнего уровня DEP. При этом запускается присоединенная про­цедура, которая передает в фреймы нижнего уровня зна­чение текущей даты. Когда происходит заполнение какого-то слота в фрейме, делается попытка дать значения всем слотам этого фрейма, в том числе попытка выполнения присоединенной про­цедуры.

Фреймовые системы обеспечивают ряд преимуществ по сравнению с продукционной моделью представления знаний:

1)знания организованы на основе концептуальных объек­тов;

2)допускается комбинация представления декларативных (как устроен объект) и процедурных (как взаимодейству­ет объект) знаний;

3)иерархия фреймов вполне соответствует классификации понятий, привычной для восприятия человеком;

4)система фреймов легко расширяется и модифицируется.

Трудности применения фреймовой модели знаний в ос­новном связаны с программированием присоединенных про­цедур.

Имя слота Указатель наследования Указатель Типа Значение слота
FRAME-NAME: DEP
АКО (U) ROOT FRAME ROOT
DESINF (U) ROOT TEXT (ОТДЕЛ 23)
DATE (U) ROOT LIST
ТЕМА (I) .TOP. LIST (TEMA1 ТЕМА2)
ТЕМА1 (I) «TOP» LIST NIL
ТЕМА2 (I) .TOP. LIST NIL
FLAG1 (I) «TOP. ATOM
FLAG2 (I) TOP. ATOM
LOGIC (U) «TOP. LISP MAIN
FRAME-NAME: TEMA1
АКО (U) ROOT FRAME DEP
DESINF (U) ROOT TEXT (КОНСТРУИРОВАНИЕ ПЛЕЕРА)
DAE (U) ROOT LIST
FAM (I) «TOP. LIST (FAM1 FAM2 FAM3)
FAM1 (I) TOP» LIST NIL
FAM2 (I) «TOP. LIST NIL
FAM3 (I) TOP. LIST NIL
FLAG1 (1) .TOP* ATOM
FLAG2 (1) «TOP» ATOM
FLAG3 (1) TOP» ATOM
LOGIC (U) TOP. LISP COMP1
FRAME-NAME: FAM1
AKO (U) ROOT FRAME TEMA1
DESINF (U) ROOT TEXT (ЛЕНТОПРОТЯЖНЫЙ
МЕХАНИЗМ)
DATE (U) ROOT LIST
TODAY (1) «TOP» ATOM
ENDDATE (1) .TOP. ATOM 02.04.91
LOGIC (U) .TOP» LISP COMPDATE

Рисунок 4.4 Пример базы знаний фреймового типа:

а - иерархия фреймов; б - значения слотов

4.7 Семантические сети для представления знаний

Особенность семантической сети как модели знаний состо­ит в единстве базы знаний и механизма вывода новых фактов. На основании вопроса к базе знаний строится семантическая сеть, отображающая структуру вопроса, и ответ получается в результате сопоставления общей сети для базы знаний в це­лом и сети для вопроса.

Рассмотримпример семантической сети, отображающий под­чиненность сотрудников в отделе учреждения, приведенный на рис. 35,а. Приводятся связи, показывающие подчиненность пер­вого сотрудника. Остальные сотрудники отдела связываются че­рез вершины сети связями типа "руководит 2", "руководит 3" и т. д.

Вопрос "Кто руководит Серовым?" представляется в виде под­сети, показанной на рис. 4.5,б. Сопоставление общей сети с сетью запроса начинается с фиксации вершины "руководит", имеющей ветвь "объект", направленную к вершине "Серов". Затем произ­водится переход по ветви "руководит", что и приводит к ответу "Петров"

Рисунок 4.5 Примеры: а - семантической сети;

б - сети логического вывода для запроса

Преимущества семантических сетей состоят в том, что это достаточно понятный способ представления знаний на осно­ве отношений между вершинами и дугами сети. Однако с уве­личением размеров сети ухудшается се обозримость и увели­чивается время вывода новых фактов с помощью механизма сопоставления.

Семантическая сеть -- информационная модель предметной области, имеющая вид ориентированного графа, вершины которого соответствуют объектам предметной области, а дуги (рёбра) задают отношения между ними. Объектами могут быть понятия, события, свойства, процессы. Таким образом, семантическая сеть является одним из способов представления знаний. В названии соединены термины из двух наук: семантика в языкознании изучает смысл единиц языка, а сеть в математике представляет собой разновидность графа -- набора вершин, соединённых дугами (рёбрами). В семантической сети роль вершин выполняют понятия базы знаний, а дуги (причем направленные) задают отношения между ними. Таким образом, семантическая сеть отражает семантику предметной области в виде понятий и отношений.

Идея систематизации на основе каких-либо семантических отношений предлагалась ещё учёными ранней науки. Примером этого может служить биологическая классификация Карла Линнея 1735 г. Если рассматривать её как семантическую сеть, то в данной классификации используется отношение подмножества, современное AKO.

Прародителями современных семантических сетей можно считать экзистенциальные графы, предложенные Чарльзом Пирсом в 1909 г. Они использовались для представления логических высказываний в виде особых диаграмм. Пирс назвал этот способ «логикой будущего».

Важным начинанием в исследовании сетей оказали работы немецкого психолога Отто Зельца 1913 и 1922 гг. В них для организации структур понятий и ассоциаций, а также изучения методов наследования свойств он использовал графы и семантические отношения. Исследователи Дж. Андерсон (1973), Д. Норман (1975) и другие использовали эти работы для моделирования человеческой памяти и интеллектуальных свойств.

Компьютерные семантические сети были детально разработаны Ричардом Риченсом в 1956 году в рамках проекта Кембриджского центра изучения языка по машинному переводу. Процесс машинного перевода подразделяется на 2 части: перевод исходного текста в промежуточную форму представления, а затем эта промежуточная форма транслируется на нужный язык. Такой промежуточной формой как раз и были семантические сети.

Математика позволяет описать большинство явлений в окружающем мире в виде логических высказываний. Семантические сети возникли как попытка визуализации математических формул. Основным представлением для семантической сети является граф. Однако не стоит забывать, что за графическим изображением непременно стоит строгая математическая запись, и что обе эти формы являются не конкурирующими, а взаимодополняющими.

Основной формой представления семантической сети является граф. Понятия семантической сети записываются в овалах или прямоугольниках и соединяются стрелками с подписями -- дугам. Это наиболее удобно воспринимаемая человеком форма. Её недостатки проявляются, когда мы начинаем строить более сложные сети или пытаемся учесть особенности естественного языка.

Классификация семантических сетей:

Для всех семантических сетей справедливо разделение по арности и количеству типов отношений.

По количеству типов, сети могут быть однородными и неоднородными. Однородные сети обладают только одним типом отношений (стрелок), например, таковой является вышеупомянутая классификация биологических видов (с единственным отношением AKO). В неоднородных сетях количество типов отношений больше двух. Классические иллюстрации данной модели представления знаний представляют именно такие сети. Неоднородные сети представляют больший интерес для практических целей, но и большую сложность для исследования.

По арности, типичными являются сети с бинарными отношениями (связывающими ровно два понятия). Бинарные отношения, действительно, они очень просты и удобно выглядят на графе в виде стрелки между двух концептов. Кроме того, они играют исключительную роль в математике. На практике, однако, могут понадобиться отношения, связывающие более двух объектов -- N-арные. При этом возникает сложность -- как изобразить подобную связь на графе, чтобы не запутаться. Концептуальные графы снимают это затруднение, представляя каждое отношение в виде отдельного узла.

Помимо концептуальных графов существуют и другие модификации семантических сетей, это является ещё одной основой для классификации (по реализации).

На рис. 8 изображен пример семантической сети.

Проблема поиска решения в базе знаний типа семантической сети сводится к задаче поиска фрагмента сети или подсети, соответствующей поставленному вопросу.

Семантическая связь (СС) от-ражает отношение понятий в понятийной системе. В лексике им соответствуют лексемы любого вида, в том числе представляющие предикаторы «меньше», «равно», «если, то» и др.
Внелексические свойства СС выражаются через:

  • Rf — рефлексивность;
  • Nrf — нерефлексив-ность;
  • Arf — антирефлексивность (ни одной рефлексии);
  • Sm — симметричность;
  • Ns — несимметричность;
  • Ans — антисим-метричность (ни одной симметрии);
  • As — асимметричность (кон-текстное свойство — обращение связи дает иную связь из списка);
  • Тг — транзитивность;
  • Ntr — нетранзитивность.

Внелексические свойства семантических связей в суждениях проверяются следующим образом.

Относительно сочетания перечисленных свойств СС делятся на типы, представленные в (табл. 2.1.).
1. Рефлексивность определяется по критерию подстановки:

вме-сто объекта А подставляется объект В(АгВ -> ВгВ) и выбирается один из следующих ответов:
вполне возможно (тавтология) ~» Rf;
не исключено -> Nrf;
невозможно —> Arf.
Пример. Вегетативные расстройства сопровождаются вегета-тивными расстройствами. Ответ 1 для Com.

2. Симметричность определяется по критерию перестановки:
объекты А и В меняются местами (АгВ -» ВгА) и выясняется спра-ведливость полученного предложения. При утвердительном ответе высказыванию приписывается свойство Sm, в противном слу-чае — свойство Ns.

Пример. Головная боль всегда сопровождается вегетативными расстройствами, и Вегетативные расстройства всегда сопровожда-ются головной болью. Ответ «Нет» для Com. Это соответствует свой-ству Ns.
Свойство Ns уточняется на более сильные свойства: Ans и As. Первое имеет место для любых примеров анализируемой связи. Например, для связи Com имеет место свойство Ans.

Плюс модели: Легка в реализации.

Минус модели: Плохо структурирована - при большом количестве элементов можно запутаться, а при увеличении объема информации - может произоти комбинаторный взрыв.При создании любой вещи, любого изделия, любого произведения человек встает перед необходимостью неизбежного выбора среди огромного числа возможных вариантов. К чему при этом может привести простой перебор этих вариантов проследим на следующем явлении. Это явление известно в кибернетике под названием комбинаторный взрыв. Что это за "зверь" нетрудно продемонстрировать на простом примере. Допустим, что имеется некий алфавит, состоящий всего из 10 символов (букв). ...
Из такого алфавита можно составить 10^^100 текстов длиной по 100 букв. Гипотетический компьютер, обладающий возможностью обрабатывать 10^^18 таких текстов в секунду, потратит на общий анализ всех текстов 10^^74 лет. Для сравнения - по современным космогоническим представлениям с момента Большого взрыва исследованной части Вселенной прошло ~10^^10 лет.

Потребности проектировщиков баз данных в более удобных и мощных средствах моделирования предметной области вызвали к жизни направление семантических моделей данных. Притом, что любая развитая семантическая модель данных, как и реляционная модель, включает структурную, манипуляционную и целостную части, главным назначением семантических моделей является обеспечение возможности выражения семантики данных.

Семантическая модель - модель предметной области, предназначенная для представления семантики предметной области на самом высоком уровне абстракции. Это означает, что устранена или минимизирована необходимость использовать понятия «низкого уровня», связанные со спецификой физического представления и хранения данных.

Наиболее часто на практике семантическое моделирование используется на первой стадии проектирования базы данных. При этом в терминах семантической модели производится концептуальная схема базы данных, которая затем вручную преобразуется к реляционной (или какой-либо другой) схеме. Этот процесс выполняется под управлением методик, в которых достаточно четко оговорены все этапы такого преобразования.

Наиболее известным представителем класса семантических моделей является модель «сущность-связь» (ER-модель).

Основные преимущества ER-моделей:

Основные элементы ER-моделей:

  • § объекты (сущности);
  • § атрибуты объектов;
  • § связи между объектами

Сущность - это реальный или представляемый объект, информация о котором должна сохраняться и быть доступна. В диаграммах ER-модели сущность представляется в виде прямоугольника, содержащего имя сущности. При этом имя сущности - это имя типа, а не некоторого конкретного экземпляра этого типа. Для большей выразительности и лучшего понимания имя сущности может сопровождаться примерами конкретных объектов этого типа.

Атрибут сущности - это именованная характеристика, являющаяся некоторым свойством сущности.

Связь - это графически изображаемая ассоциация, устанавливаемая между двумя сущностями. Эта ассоциация всегда является бинарной и может существовать между двумя разными сущностями или между сущностью и ей же самой. В любой связи выделяются два конца (в соответствии с существующей парой связываемых сущностей), на каждом из которых указывается имя конца связи, степень конца связи (сколько экземпляров данной сущности связывается), обязательность связи (т.е. любой ли экземпляр данной сущности должен участвовать в данной связи). Связи позволяют по одной сущности находить другие сущности, связанные с нею.

Графически связь изображается в виде линии, связывающей две сущности или ведущей от сущности к ней же самой. При этом в месте "стыковки" связи с сущностью используются трехточечный вход в прямоугольник сущности, если для этой сущности в связи могут использоваться много экземпляров сущности, и одноточечный вход, если в связи может участвовать только один экземпляр сущности. Обязательный конец связи изображается сплошной линией, а необязательный - прерывистой линией.

  • · Связь типа один-к-одному означает, что один экземпляр первой сущности (левой) связан с одним экземпляром второй сущности (правой).
  • · Связь типа один-ко-многим означает, что один экземпляр первой сущности (левой) связан с несколькими экземплярами второй сущности (правой).
  • · Связь типа много-ко-многим означает, что каждый экземпляр первой сущности может быть связан с несколькими экземплярами второй сущности, и каждый экземпляр второй сущности может быть связан с несколькими экземплярами первой сущности.

В моем курсовом проекте ER-модель имеет связь типа один-ко-многим.