Современные проблемы науки и образования. Основные способы управления частотным электроприводом

1

При проектировании частотного регулирования электропривода возникает необходимость построения адекватных моделей, в полной мере учитывающих специфику протекающих электромеханических процессов в двигателе. Для апробации моделей необходимо сравнение с физически реализуемым процессом на реальном оборудовании, в связи с этим возникает необходимость определения параметров реальных электродвигателей для проверки модели на адекватность. В статье описана математическая модель векторного управления асинхронным электродвигателем. Модель позволяет отслеживать электромеханические процессы в электродвигателе при его работе. Получены графики механических и электрических переходных процессов, характеризующих пуск электродвигателя. Построена механическая характеристика электродвигателя при векторном управлении, наглядно показывающая увеличение нагрузочного диапазона. Произведена оценка адекватности модели. Математические эксперименты и создание модели выполнены в графической среде имитационного моделирования Simulink – приложении к пакету Matlab.

инвертор

математическая модель

механическая характеристика

векторное управление

асинхронный двигатель

1. Виноградов А.Б. Векторное управление электроприводами переменного тока / ГОУ ВПО «Ивановский государственный энергетический университет имени В.И. Ленина». – Иваново, 2008. – 297 с.

2. Лиходедов А.Д. Построение механической характеристики асинхронного двигателя и её апробация // Современные проблемы науки и образования. – 2012. – № 5. – URL: http://www..09.2012).

3. Усольцев А.А. Векторное управление асинхронными двигателями: учебное пособие по дисциплинам электромеханического цикла. – СПб., 2002.

4. Шувалов Г.А. Экономия электроэнергии с помощью частотного преобразователя // Электрооборудование: эксплуатация и ремонт. – 2012. – № 2.

5. Blaschke, F. Das Prinzip der Feldorientierung, die Grundlage für die Transvector-Regelung von Drehfeldmaschinen (in German), Siemens-Zeitschrift 45, Heft 10, 1971.

6. PLC – это просто!! Векторное управление. – URL: http://plc24.ru/vektornoe-upravlenie/ (дата обращения: 12.09.2012).

Развитие асинхронного электропривода с векторным управлением

Принято различать два основных способа управления электроприводами переменного тока, использующими в качестве преобразователей энергии по-лупроводниковые преобразователи частоты: частотное и векторное.

При частотном управлении в ЭП реализуется один из статических за-конов частотного управления (например, , и т.д.). На выходе системы управления формируется задание по частоте и ам-плитуде выходного напряжения ПЧ. Область применения таких систем: асинхронный электропривод, к кото-рому не предъявляется повышенных статических и динамических требований, вентиляторы, насосы и прочие общепромыш-ленные механизмы.

При векторном управлении управление осуществляется по мгновен-ным значениям переменных. В цифровых векторных системах может выпол-няться управление по эквивалентным (усредненным на интервале дискретно-сти управления) переменным .

В 1971 году Блашке предложил принцип построения системы управления асинхронным двигателем , в котором использовалась векторная модель АД с ориентацией системы координат по потокосцеплению ротора. Этот принцип называется также прямым управлением моментом . Векторное управление позволяет существенно увеличить диапазон управления, точность регулирования, повысить быстродействие электропривода. Этот метод обеспечивает непосредственное управление вращающим моментом двигателя.

Вращающий момент определяется током статора, который создает возбуждающее магнитное поле. При непосредственном управлении моментом необходимо изменять, кроме амплитуды, и фазу статорного тока, то есть вектор тока. Этим и обусловлен термин «векторное управление».

Для управления вектором тока, а, следовательно, положением магнитного потока статора относительно вращающегося ротора требуется знать точное положение ротора в любой момент времени. Задача решается либо с помощью выносного датчика положения ротора, либо определением положения ротора путем вычислений по другим параметрам двигателя. В качестве этих параметров используются токи и напряжения статорных обмоток.

Менее дорогим является частотно регулируемый электропривод с векторным управлением без датчика обратной связи скорости, однако векторное управление при этом требует большого объема и высокой скорости вычислений от преобразователя частоты. Кроме того, для непосредственного управления моментом при малых, близких к нулевым скоростям вращения работа частотно-регулируемого электропривода без обратной связи по скорости невозможна. Векторное управление с датчиком обратной связи по скорости обеспечивает диапазон регулирования до 1:1000 и выше, точность регулирования по скорости - сотые доли процента, точность по моменту - единицы процентов .

Питание АД и СД в режиме векторного управления осуществляется от инвертора, который может обеспечить в любой момент времени требуемые амплитуду и угловое положение вектора напряжения (или тока) статора. Измерение амплитуды и положение вектора потокосцепления ротора производится с помощью наблюдателя (математический аппарат, позволяющий восстанавливать неизмеряемые параметры системы). В зависимости от условий эксплуатации электропривода возможно управление электродвигателем как в режимах с обычной точностью, так и в режимах с повышенной точностью отработки задания на скорость или момент. Так, например, частотный преобразователь обеспечивает точность поддержания скорости вращения ±2-3% в режиме U/f, при векторном управлении без датчика скорости ±0,2%, при полном векторном управлении с датчиком скорости обеспечивается точность ±0,01% .

Общий принцип векторного управления АД

В дальнейшем мы будем использовать следующие индексы систем координат: a-b - неподвижная система координат (), ориентированная по оси фазы a обмотки статора; x-y - система координат, вращающаяся синхронно с ротором () и ориентированная по оси фазы a его обмотки; d-q - система координат, вращающаяся синхронно с потокосцеплением ротора () и ориентированная по его направлению; m-n - произвольно ориентированная система координат, вращающаяся с произвольной скоростью .

Общий принцип моделирования и построения системы управления АД заключается в том, что для этого используется система координат, постоянно ориентированная по направлению какого-либо вектора, определяющего электромагнитный момент. Тогда проекция этого вектора на другую ось координат и соответствующее ей слагаемое в выражении для электромагнитного момента будут равны нулю, и формально оно принимает вид, идентичный выражению для электромагнитного момента двигателя постоянного тока, который пропорционален по величине току якоря и основному магнитному потоку.

В случае ориентации системы координат по потокосцеплению ротора () момент можно представить как:

, (1)

где - индуктивность рассеяния цепи ротора, - индуктивность цепи намагничивания, - число пар полюсов, - проекции токов статора на оси системы координат .

По данному выражению можно при условии постоянства потокосцепления ротора управлять электромагнитным моментом, изменяя проекции тока статора на поперечную ось . Выбор уравнения для построения системы управления играет большую роль, т.к. многие величины, в особенности у короткозамкнутых АД, не могут быть измерены. Кроме того, этот выбор существенно влияет на сложность передаточных функций системы, иногда в несколько раз увеличивая порядок уравнений.

Для построения системы векторного управления АД нужно выбрать вектор, относительно которого будет ориентирована система координат, и соответствующее выражение для электромагнитного момента, а затем определить входящие в него величины из уравнений для цепи статора и/или ротора (2) :

, (2, а)

, (2, б)

где - напряжение обмоток статора в векторной форме; - активные сопротивления обмоток статора и ротора; составляющие ,связаны с изменением потокосцепления во времени вследствие изменения во времени токов и называются ЭДС трансформации, по аналогии с процессами ее возбуждения в соответствующей электрической машине; составляющие , - связаны с изменением потокосцепления вследствие вращения ротора и называются ЭДС вращения.

Если в качестве опорного вектора выбрать потокосцепление ротора и ориентировать по нему координатную систему так, чтобы ее вещественная ось совпадала с направлением , то угловая частота вращения системы координат будет равна угловой частоте питания статора , т.к. векторы потокосцеплений статора и ротора вращаются с одинаковой частотой. Применение вектора потокосцепления ротора теоретически обеспечивает большую перегрузочную способность АД.

При этом проекции вектора тока статора с учетом того, что , равны:

(3)

где - электромагнитная постоянная времени ротора.

Выразим потокосцепление и угловую частоту ротора:

(4)

Таким образом, с помощью проекции тока статора можно управлять потокосцеплением ротора, и передаточная функция этого канала соответствует апериодическому звену с постоянной времени, равной постоянной времени ротора; а с помощью проекции можно независимо и безынерционно управлять частотой ротора .

При этом электромагнитный момент АД можно определить, зная частоту токов ротора при заданном потокосцеплении:

, (5)

Выражения - определяют связь между проекциями тока статора на оси координат, потокосцеплением, частотой ротора и электромагнитным моментом АД. Из выражения и уравнения движения следует, что управление моментом может осуществляться безынерционно двумя входными сигналами: потокосцеплением и частотой ротора. Эти сигналы связаны с проекциями вектора тока статора выражениями . Поэтому устройство векторного управления содержит блок развязки координат (РК), осуществляющий преобразования в соответствии с выражениями (3), а также ротатор, вращающий вектор тока статора в направлении, противоположном вращению ротора АД. Входными сигналами для устройства управления будут линейное напряжение сети и частота питающего напряжения, соответствующие потокосцеплению и частоте ротора. Название блока развязки координат происходит от выполняемой им функции формирования сигналов, соответствующих независимым (развязанным, разделённым) проекциям вектора тока статора (рисунок 1).

Рис. 1. Структурная схема блока развязки координат.

Из выражения для электромагнитного момента (5) и общего уравнения движения можно получить передаточную функцию АД по каналу управления частотой ротора:

где - механическая постоянная времени. Эта передаточная функция полностью соответствует двигателю постоянного тока, поэтому построение систем электропривода с векторным управлением АД ничем не отличается от приводов постоянного тока.

Следует отметить, что устройство управления может выполнять свои функции только при условии, что параметры АД, входящие в передаточные функции его звеньев, соответствуют истинным значениям, в противном случае потокосцепление и частота ротора в АД и в устройстве управления будут отличаться друг от друга. Это обстоятельство создает значительные трудности при реализации систем векторного управления на практике, т.к. параметры АД изменяются в процессе работы. В особенности это относится к значениям активных сопротивлений .

Математическое описание координатных преобразований

Если вектор тока представлен в неподвижной системе координат (a, b), то переход к новой системе координат (x,y), развернутой относительно исходной на некоторый угол (рисунок 2а), осуществляется из следующего соотношения аргументов комплексных чисел:

Или (7)

Рис. 2. Обобщенный вектор тока в различных системах координат.

Для системы координат, вращающейся с постоянной угловой частотой , угол равен .

Преобразование координат можно записать в развернутом виде следующим образом:

Отсюда можно найти составляющие вектора и в матричной форме:

, (9)

где , - мгновенные значения токов соответствующих обмоток.

Необходимым элементом системы векторного управления АД является ротатор, осуществляющий преобразование координат векторов в соответствии с выражением (9) .

Для преобразования переменных из системы координат (d,q) в систему координат (a, b) воспользуемся следующими уравнениями:

где γ - угол полеориентирования. Структурная схема ротатора изображена на рисунке 3.

Рис. 3. Структурная схема ротатора.

Математическая модель АД

Асинхронный двигатель смоделирован в системе координат - α, β. Уравнения, соответствующие этой системе координат, описываются системой уравнений:

(11)

где: , , , - составляющие векторов потокосцепления статора и ротора в системах координат ; , - составляющие вектора напряжения статора в системах координат ; - активные сопротивления обмоток статора и ротора; - полные индуктивности обмоток статора и ротора (17),(18);- коэффициенты электромагнитной связи статора и ротора (12),(13); p - число пар полюсов; - механическая скорость ротора; J - момент инерции ротора двигателя; - момент сопротивления на валу двигателя.

Значения полных индуктивностей обмоток и коэффициентов электромагнитной связи статора и ротора вычисляются по формулам:

где:- индуктивности рассеяния; - индуктивность цепи намагничивания,

где: - индуктивное сопротивление рассеяния обмоток статора и ротора; - индуктивное сопротивление цепи намагничивания; f - частота напряжения, подводимого к статору.

При решении системы дифференциальных уравнений в координатах (11) можно получить динамическую механическую характеристику и временные характеристики переменных состояния (например, момента и скорости), которые дают представление о процессах, протекающих в двигателе. Составляющие напряжения, подводимого к статорной обмотке двигателя, вычисляются по формуле:

(19)

где U - действующее значение напряжения, подводимого к статору.

Решение уравнений сводится к интегрированию левой и правой частей каждого дифференциального уравнения системы:

(20)

Токовременные зависимости вычисляются по уравнениям:

(21)

Паспортные данные АД ДМТ f 011-6у1 приведены в статье .

На рисунке 4 изображена модель АД, управляемого током статора, в системе координат, ориентированной по потокосцеплению ротора.


Рис. 4. Модель векторного управления АД в среде Simulink:

АД - асинхронный двигатель;

УУ - устройство управления, включающее: РК - блок развязки координат, Р - ротатор;

Н - нагрузка, учитывающая также сопротивление подшипников.

Модель векторного управления АД позволяет отслеживать электромагнитные процессы, происходящие в асинхронном двигателе при его работе.

На следующем графике (рисунок 5) изображена механическая характеристика электродвигателя при векторном управлении, полученная модельным путем, в сравнении с механической характеристикой электродвигателя без регулятора, полученной при натурном эксперименте .

Рис. 5. Сравнение механических характеристик.

Как можно видеть по графику, при векторном управлении механическая характеристика асинхронного двигателя приобретает жёсткость, вследствие чего расширяется перегрузочный диапазон. Значения характеристик в диапазоне от 0 до 153 Н·м расходятся незначительно, погрешность составляет лишь 1,11%, следовательно, полученная математическая модель адекватно отражает работу реального двигателя и её можно использовать для проведения экспериментов в инженерной практике.

Заключение

Применение векторного управления позволяет посредством изменения амплитуды и фазы питающего напряжения напрямую управлять электромагнитным моментом электродвигателя. Для векторного управления асинхронным двигателем следует сначала привести его к упрощенной двухполюсной машине, которая имеет две обмотки на статоре и роторе, в соответствии с этим имеются системы координат, связанные со статором, ротором и полем. Векторное управление подразумевает наличие в звене управления математической модели регулируемого электродвигателя.

Механические характеристики, полученные при работе описанной модели, подтверждают теоретические сведения о векторном управлении. Модель адекватна и может применяться для дальнейших экспериментов.

Рецензенты:

Швецов Владимир Алексеевич, д.т.н., профессор кафедры РЭС КамчатГТУ, г. Петропавловск-Камчатский.

Потапов Вадим Вадимович, д.т.н., профессор филиала ДВФУ, г. Петропавловск-Камчатский.

Библиографическая ссылка

Лиходедов А.Д., Портнягин Н.Н. МОДЕЛИРОВАНИЕ ВЕКТОРНОГО УПРАВЛЕНИЯ АСИНХРОННЫМ ЭЛЕКТРОПРИВОДОМ // Современные проблемы науки и образования. – 2013. – № 1.;
URL: http://science-education.ru/ru/article/view?id=8213 (дата обращения: 18.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Технические различия между векторными и скалярными частотными

преобразователями

Вопрос: На рынке представлены векторные и скалярные частотные преобразователи, причем

векторные ощутимо дороже. Каковы технические различия между ними?

Вопрос не так прост, чтобы ответить на него односложным образом. Сами по себе термины

"векторный" и "скалярный" являются неточными применительно к характеристике

частотных преобразователей. Поскольку речь идет по существу о параметре переменного

тока, то использование термина "скалярный" вообще недопустимо. Из курса элементарной

физики хорошо известно, что скалярная величина - это такая величина, каждое значение которой (в отличие от вектора) может быть выражено одним (действительным) числом,

вследствие чего совокупность значений скаляра можно изобразить на линейной шкале (скале - отсюда название). Длина, площадь, время, температура и т. д. - скалярные величины. Векторными величинами, или векторами, называют величины, имеющие и численное

значение, и направление. В этой связи разделение частотных преобразователей на скалярные

и векторные в принципе некорректно, и отражает стремление менеджеров торговых

компаний обосновать более высокие цены на один из типов преобразователей, якобы имеющий превосходство над другим.

Что касается технической стороны дела, она заключается в следующем.

Основным способом корректировки вращающего момента на валу электродвигателя является

изменение частоты и величины тока обмоток статора, что приводит к изменению силы его

вращающегося магнитного поля. Большинство частотных преобразователей устроены таким

образом, что дают возможность пользователю настроить характеристику выходных

электрических параметров под конкретный вид оборудования. Например, в зависимости от

величины момента инерции приводимого в движение оборудования можно придать

характеристике выходного тока преобразователя линейный, параболический или гиперболический вид.

Так, если необходимо стронуть с места тяжелую массу на приводимом в движение

транспортере, характеристике выходного тока следует придать гиперболический вид. Водяные насосы и вентиляторы желательно приводить в движение по параболической

кривой, что дает экономию электроэнергии. По этому алгоритму работают практически все

частотные преобразователи, называемые неправильным термином "скалярные", более точным названием которых было бы: "частотные преобразователи с предварительной настройкой частоты и величины выходного тока".

Другим эффективным средством повышения момента на валу электродвигателя является

использование 3-й гармоники выходного тока, вектор которой, как и кратных ей более

высоких гармоник, вращается в ту же сторону, что и вектор тока основной гармоники (50

Гц), т.е., имеет прямую последовательность. Другие же вращаются в обратном направлении

и имеют обратную последовательность. Общий ток нейтрали, вычисляемый по формуле:



управления параметрами выходного тока, а именно:

1) Преобразователи с предварительной настройкой параметров выходного тока .

Используются в большинстве общепромышленных приводов как с обратной связью по

контролю технологического параметра так и без нее, включая приводы насосов,

вентиляторов, конвейеров, транспортеров, экструдеров, в том числе одно- и многодвигательные системы.

2) Преобразователи с динамической настройкой параметров выходного тока . Используются в однодвигательных приводах высокоточного технологического

оборудования. Могут быть с обратной связью по контролю положения ротора двигателя и без нее. По точности и глубине регулирования скорости вращения несколько превосходят преобразователи первого типа, но значительно уступают сервоприводам.

Что касается проблемы в целом, следует иметь ввиду, что для решения конкретных задач в области управляемого привода применяются соответствующие электродвигатели со своими

системами управления - шаговые моторы с контроллерами, серводвигатели с контроллерами,

двигатели постоянного тока с контроллерами и, наконец, асинхронные и синхронные

электродвигатели с частотными преобразователями. Попытки создать универсальный привод

заведомо обречены на провал, поскольку конструктивные различия между приводами

слишком велики, а решаемые приводами задачи просто несопоставимы. Невозможно создать из асинхронного двигателя серводвигатель, а из синхронного шаговый, даже если встроить в него полсотни полюсов.

Что же делать? Все гениальное просто - достаточно правильно спроектировать привод с

учетом необходимого момента на валу в самом неблагоприятном диапазоне частот

вращения, а управление технологическим параметром поручить ПИД-регулятору, который имеется в большинстве скалярных преобразователей. автор статьи

большинстве современных т.н. "скалярных" преобразователей.

Использование частотного преобразователя направлено на решение важных задач. Они заключаются в осуществлении управления моментом и скоростью электродвигателя. Данные требования указывают на необходимость ограничивать ток двигателя, а также момент значениями, которые являются допустимыми. Это выполняется в процессах пуска, торможения, а также при изменениях нагрузки.

Делать это требуется для того, чтобы ограничивать динамические ударные нагрузки в механизме преобразователя частоты . При этом отмечаются перегрузки при работе и потребность в регулировке момента двигателя, которая выполняется непрерывно. Также выполнение таких действий требуется, когда необходимо точно поддержать усилия на мехнизме, который является рабочим. Примером в данном случае становятся приводы, используемые в станках для обработки металла.

Сущестуют различные методы частотного управления, которые позволяют решить различные задачи при регулировке скорости и измененения момента, среди которых- два основных метода - векторный и скалярный . Каждый из них имеет свои характерные особенности, на которых следует остановиться более подробно.

Первый метод управления - скалярный . Особенность скалярного управления заключается в его распространенности, а область применения связана с приводами насосов и вентиляторов. Кроме этого, частотные преобразователи со скалярным методом управления используют там, где важно поддерживать определенный технологический параметр. Им может быть, например, давление в трубопроводе. Изменение амплитуды, а также частоты питающего напряжения выступает в качестве основного принципа, на котором основывается данный метод. При этом используется закон U/f. Наибольший диапазон для регулирования скорости составляет 1:10.
Дополнительные особенности скалярного метода заключаются в свойственной ему легкости при реализации. Существует также и недостаток, который заключается в том, что нет возможности точно регулировать скорость вращения вала. Еще одна особенность - на валу двигателя частотный преобразователь со скалярным управлением не дает возможности контролировать момент.

Второй метод, используемый в частотных преобразователях - векторный . Это такой метод управления синхронными и асинхронными двигателями, при котором формируются не только гармонические токи (напряжения) фаз, но и обеспечивается управление магнитным потоком ротора,а именно, моментом на валу электродвигателя. Векторное управление применяется в случае, когда в процессе эксплуатации нагрузка может меняться на одной и той же частоте, т.е. нет четкой зависимости между моментом нагрузки и скоростью вращения, а также в случаях, когда необходимо получить расширенный диапазон регулирования частоты при номинальных моментах.

Системы векторного управления разделяются на два класса - это бездатчиковые и с обратной связью. Область применения позволяет определить применение определенного метода. Применение бездатчиковых систем возможно, когда скорость изменяется не больше чем 1:100, а точность поддержания составляет не больше чем ±0,5 %. При аналогичных показателях, составляющих 1:1000 и ±0,01 % соответственно принято использовать системы с обратной связью.

Преимуществами векторного метода управления является быстрота реакции относительно изменения нагрузки, а в области малых частот вращение двигателя характеризуется плавностью, отсутствием рывков. Внимание привлекает обеспечение на валу при условии нулевой скорости номинального момента, если имеется датчик скорости. Регулировка скорости выполняется при достижении высокой точности. Все эти преимущества становятся важными на практике.

ВЫВОДЫ:

1. Если в скалярных преобразователях частоты объектом контроля и управления является только магнитное поле статора, то в векторных моделях объектом контроля и управления является и магнитное поле статора, и ротора, а точнее - их взаимодействие с целью оптимизации момента вращения на различных скоростях. Что касается методов контроля и управления, то когда применяется скалярный метод управления- используется выходная частота и ток частотного преобразователя, а в случае с векторным управлением - выходная частота, ток и его фаза.

Всякое изменение или поддержание постоянной скорости электропривода обеспечивает целенаправленное регулирование момента, развиваемого двигателем. Момент формируется в результате взаимодействия потока (потокосцепления), создаваемого одной частью двигателя с током в другой части и определяется векторным произведением этих двух пространственных моментообразующих векторов. Поэтому величину развиваемого двигателем момента определяют модули каждого вектора и пространственный угол между ними.

При построении систем скалярного управления контролировались и регулировались только численные значения (модули) моментообразующих векторов, но не контролировалось их пространственное положение. Принцип векторного управления заключается в том, что система управления контролирует численное значение и положение в пространстве друг относительно друга моментообразующих векторов. Отсюда задача векторного управления состоит в определении и принудительном установлении мгновенных значений токов в обмотках двигателя таким образом, чтобы обобщенные векторы токов и потокосцеплений занимали в пространстве положение, обеспечивающее создание требуемого электромагнитного момента .

Электромагнитный момент, создаваемый двигателем:

где м - конструктивный коэффициент; , 2 - пространственные

векторы токов или потокосцеплений, образующие момент; X - пространственный угол между моментообразующими векторами.

Как следует из (6.53), минимальные значения токов (потокосцеплений), образующих момент, будут для требуемого значения момента, если векторы х и 2 перпендикулярны друг другу, т.е. Х = °.

В системах векторного управления нет необходимости определять абсолютное пространственное положение векторов, и 2 по отношению к осям статора или ротора. Нужно определить положение одного вектора относительно другого. Поэтому один из векторов принимают за базовый, а положение другого контролирует угол X.

Исходя из этого, при построении систем векторного управления целесообразно исходить из математического описания электромагнитных и электромеханических процессов, выраженных в координатах, привязанных к базовому вектору (координаты и- v). Такое математическое описание приведено в § 1.6.

Если принять за базовый вектор и направить ось координат и по этому вектору, то, исходя из (1.46), получим следующую систему уравнений:


В этих уравнениях? v = , так как вектор совпадает с осью координат и.

На рис. 6.31 представлена векторная диаграмма токов и потоко- сцеплений в осях и - v ^ориентацией координаты и по вектору по- токсцепления ротора. Из векторной диаграммы следует, что

Рис. Б.31. Векторная диаграмма потокосцеплений и токов в осях u-v при М

При постоянстве (или медленном изменении) потокосцепления ротора d"V u /dt= в результате чего i и = и Г = yji u +i v = i v

При этом вектор тока ротора Г перпендикулярен потокосцеп- лению ротора. Поскольку поток рассеяния ротора 0 существенно меньше потока в зазоре машины Ч, т то при постоянстве потокосцепления ротора можно считать, что проекция вектора тока статора на ось координат v i v равна |/"| или /

Достоинством принятой системы координат u-v для построения системы векторного регулирования момента и скорости асинхронного двигателя является то, что момент двигателя (6.54) определяется как скалярное произведение двух взаимоперпендикуляр- ных векторов: потокосцепления ротора *Р и активной составляющей тока статора Такое определение момента, характерное, например, для двигателей постоянного тока независимого возбуждения, наиболее удобно для построения системы автоматического регулирования.

Система векторного управления. Структурная схема такого управления строится, исходя из следующих принципов:

  • ? двухканальная система регулирования состоит из канала стабилизации потокосцепления ротора и канала регулирования скорости (момента);
  • ? оба канала должны быть независимы, т.е. изменение регулируемых величин одного канала не должно влиять на другой;
  • ? канал регулирования скорости (момента) управляет составляющей тока статора / v . Алгоритм работы контура регулирования момента как и в системах подчиненного регулирования скорости двигателей постоянного тока (см. § 5.6) - выходной сигнал регулятора скорости является заданием на момент двигателя. Разделив значение этого задания на модуль потокосцепления ротора и получим задание на составляющую тока статора i v (рис. 6.32);
  • ? каждый канал содержит внутренний контур токов / v и i и с регуляторами токов, обеспечивающими необходимое качество регулирования;
  • ? полученные значения токов i v и i и посредством координатных преобразований переводятся в значения i а и / р двухфазной неподвижной системы координат а - (3 и затем в задание реальных токов в обмотках статора в системе трехфазных координат а-Ь-с;
  • ? необходимые для вычислений и формирования обратных связей сигналы скорости, угла поворота ротора, токов в обмотках статора измеряются соответствующими датчиками и затем с помощью обратных координатных преобразований переводятся в значения этих величин, соответствующих координатным осям u-v.

Рис.

Такая система регулирования обеспечивает быстродействующее регулирование момента, а, следовательно, и скорости в максимально широком диапазоне (свыше 10 000:1). При этом мгновенные значения момента асинхронного двигателя могут значительно превосходить паспортное значение критического момента.

Для того, чтобы сделать каналы регулирования независимыми друг от друга нужно ввести на вход каждого канала перекрестные компенсирующие сигналы е К0МПУ и е компм (см. рис. 6.32). Значение этих сигналов найдем из уравнений цепи статора (6.54). Выразив и ЧК 1у через соответствующие токи и индуктивности (1.4) и учитывая, что при ориентации оси и вдоль вектора потокосцепления ротора Ч / |у =0 получим:

Откуда находим


где коэффициент рассеяния.

Подставив (6.55) в (6.54) и учитывая, что в рассматриваемой системе регулирования d x V 2u /dt = 0, получим

или

ные постоянные времени; е и и e v - ЭДС вращения по осям u - v

Для задания независимых величин i и и / v необходимо компенсировать е и и e v введением компенсирующих напряжений:

Для реализации принципов векторного управления необходимо прямое измерение или расчет по математической модели (оценки) модуля и углового положения вектора потокосцепления ротора. Функциональная схема векторного управления асинхронным двигателем с непосредственным измерением потока в воздушном зазоре машины с помощью датчиков Холла представлена на рис. 6.33 .


Рис. Б.ЗЗ. Функциональная схема прямого векторного управления асинхронным двигателем

Схема содержит два канала регулирования: канал регулирования (стабилизации) потокосцепления ротора *Р 2 и канал регулирования скорости. Первый канал содержит внешний контур потокосцепления ротора, содержащий ПИ-регулятор потокосцепления РП и обратную связь по потокосцеплению, сигнал которой формируется с помощью датчиков Холла, измеряющих поток в зазоре машины х? т по осям аи(3. Реальные значения потока затем пересчитываются в блоке ПП в значения потокосцепления ротора по осям а и р и с помощью вектор-фильтра ВФ находят модуль вектора потокосцепления ротора, который подается как сигнал отрицательной обратной связи на регулятор потокосцепления РП и используется в качестве делителя в канале регулирования скорости.

В первом канале контуру потокосцепления подчинен внутренний контур тока i и, содержащий ПИ-регулятор тока РТ1 и обратную связь по действительному значению тока / 1и, вычисляемому по реальным значениям токов фаз статора с помощью преобразователя фаз ПФ2 и координатного преобразователя КП1. Выходом регулятора тока РТ1 является задание напряжения U lu , к которому прибавляется сигнал компенсации второго канала е кшпи (6.57). Полученный сигнал задания напряжения преобразуют посредством координатного КП2 и фазного ПФ2 преобразователей в заданные значения и фазы напряжений на выходе преобразователя частоты.

Канал регулирования потокосцепления ротора обеспечивает поддержание постоянства потокосцепления Ч* 2 во всех режимах работы привода на уровне заданного значения х Р 2зад. При необходимости ослабления поля Ч*^ может изменяться в некоторых пределах с небольшим темпом изменения.

Второй канал предназначен для регулирования скорости (момента) двигателя. Он содержит внешний контур скорости и подчиненный ему внутренний контур тока / 1у. Задание на скорость поступает от задатчика интенсивности ЗИ, определяющего ускорение и требуемое значение скорости. Обратная связь по скорости реализуется посредством датчика скорости ДС или датчика углового положения ротора.

Регулятор скорости PC принимается пропорциональным или пропорционально-интегральным в зависимости от требований к электроприводу. Выходом регулятора скорости является задание на момент, развиваемый двигателем Л/ зад. Поскольку момент равен произведению тока, на потокосцепление ротора Ч / 2 , то, разделив в блоке деления БД значение задания момента М зад на Ч / 2 , получим значение задания тока, которая подается на вход регулятора тока РТ2. Дальнейшая обработка сигналов аналогична первому каналу. В результате получаем задание на напряжение питания двигателя по фазам, определяющее значение и пространственное положение в каждый момент времени обобщенного вектора напряжения статора!? Отметим, что сигналы, относящиеся к переменным в координатах - , являются сигналами постоянного тока, а сигналы, отражающие токи и напряжения в координатах аир, являются сигналами переменного тока, определяющими не только модуль, но частоту и фазу соответствующего напряжения и тока.

Рассмотренная система векторного управления реализуется в настоящее время в цифровом виде на базе микропроцессоров. Разработаны и широко используются различные структурные схемы векторного управления, отличные в деталях от рассматриваемой. Так, в настоящее время действительные значения потокосцеплений не измеряют датчиками магнитного потока, а рассчитывают по математической модели двигателя, исходя из замеренных фазных токов и напряжений.

В целом векторное управление можно оценить как наиболее эффективный способ управления двигателями переменного тока, обеспечивающий высокую точность и быстродействие управления.

Главная идея векторного управления заключается в том, чтобы контролировать не только величину и частоту напряжения питания, но и фазу. Другими словами контролируется величина и угол пространственного вектора . Векторное управление в сравнении со обладает более высокой производительностью. Векторное управление избавляет практически от всех недостатков скалярного управления.

    Преимущества векторного управления:
  • высокая точность регулирования скорости;
  • плавный старт и плавное вращение двигателя во всем диапазоне частот;
  • быстрая реакция на изменение нагрузки: при изменении нагрузки практически не происходит изменения скорости;
  • увеличенный диапазон управления и точность регулирования;
  • снижаются потери на нагрев и намагничивание, повышается .
    К недостаткам векторного управления можно отнести:
  • необходимость задания параметров ;
  • большие колебания скорости при постоянной нагрузке;
  • большая вычислительная сложность.

Общая функциональная схема векторного управления

Общая блок-диаграмма высокопроизводительной системы управления скорости переменного тока показана на рисунке выше. Основой схемы являются контуры контроля магнитного потокосцепления и момента вместе с блоком оценки, который может быть реализован различными способами. При этом внешний контур управления скоростью в значительной степени унифицирован и генерирует управляющие сигналы для регуляторов момента М * и магнитного потокосцепления Ψ * (через блок управления потоком). Скорость двигателя может быть измерена датчиком (скорости / положения) или получена посредством оценщика, позволяющего реализовать .

Классификация методов векторного управления

Начиная с семидесятых годов двадцатого века было предложено множество способов управления моментом. Не все из них нашли широкое применение в промышленности. Поэтому, в данной статье рассматриваются только самые популярные методы управления. Обсуждаемые методы контроля момента представлены для систем управления и с синусоидальной обратной ЭДС.

Существующие методы управления моментом могут быть классифицированы различным способом.

    Чаще всего методы управления моментом разделяют на следующие группы:
  • линейные (ПИ, ПИД) регуляторы;
  • нелинейные (гистерезисные) регуляторы.
Метод управления Диапазон регулирования скорости Погрешность скорости 3 , % Время нарастания момента, мс Пусковой момент Цена Описание
1:10 1 5-10 Не доступно Низкий Очень низкая Имеет медленный отклик при изменении нагрузки и небольшой диапазон регулирования скорости, но при этом прост в реализации.
>1:200 2 0 Высокий Высокая Позволяет плавно и быстро управлять основными параметрами двигателя - моментом и скоростью. Для работы данного метода требуется информация о положении ротора.
>1:200 2 0 Высокий Высокая Гибридный метод, разработанный для того чтобы объединить преимущества и .
>1:200 2 0 Высокий Высокая Имеет высокую динамику и простую схему, но характерной особенностью его работы являются высокие пульсации тока и момента.
>1:200 2 0 Высокий Высокая Имеет частоту переключения инвертора ниже чем у других методов и предназначен для уменьшения потерь при управлении электродвигателями большой мощности.

Примечание:

  1. Без обратной связи.
  2. С обратной связью.
  3. В установившемся режиме

Среди векторного управления наиболее широко используются (FOC - field oriented control) и (DTC - direct torque control).

Линейные регуляторы момента

Линейные регуляторы момента работают вместе с широтно-импульсной модуляцией (ШИМ) напряжения. Регуляторы определяют требуемый вектор напряжения статора усредненный за период дискретизации. Вектор напряжения окончательно синтезируется методом ШИМ, в большинстве случаев используется пространственно векторная модуляция (ПВМ). В отличие от нелинейных схем управления моментом, где сигналы обрабатываются по мгновенным значениям, в линейных схемах контроля момента, линейный регулятор (ПИ) работает с значениями усредненными за период дискретизации. Поэтому частота выборки может быть уменьшена с 40 кГц у нелинейных регуляторов момента до 2-5 кГц в схемах линейных регуляторов момента.

Полеориентированное управление

Полеориентированное управление (ПОУ, англ. field oriented control, FOC) - метод регулирования, который управляет бесщеточным переменного тока ( , ), как машиной постоянного тока с независимым возбуждением, подразумевая, что поле и могут контролироваться отдельно.

Полеориентированное управление, предложенное в 1970 году Блашке и Хассе основано на аналогии с механически коммутируемым . В этом двигателе разделены обмотки возбуждения и якоря, потокосцепление контролируется током возбуждения , а момент независимо управляется регулировкой тока . Таким образом, токи потокосцепления и момента электрически и магнитно разделены.


Общая функциональная схема бездатчикового полеориентированного управления 1

С другой стороны бесщеточные электродвигатели переменного тока ( , ) чаще всего имеют трехфазную обмотку статора, и вектор тока статора I s используется для контроля и потокосцепления и момента. Таким образом, ток возбуждения и ток якоря объединены в вектор тока статора и не могут контролироваться раздельно. Разъединение может быть достигнуто математически - разложением мгновенного значения вектора тока статора I s на две компоненты: продольную составляющую тока статора I sd (создающую поле) и поперечную составляющую тока статора I sq (создающую момент) во вращающейся dq системе координат ориентированной по полю ротора (R-FOC – rotor flux-oriented control) - рисунок выше. Таким образом, управление бесщеточным двигателем переменного тока становится идентичным управлению и может быть осуществлено используя инвертер ШИМ с линейным ПИ регулятором и пространственно-векторной модуляцией напряжения.

В полеориентированном управлении момент и поле контролируются косвенно посредством управления составляющими вектора тока статора.

Мгновенные значения токов статора преобразовываются к dq вращающейся системе координат с помощью преобразования Парка αβ/dq, для выполнения которого также требуется информации о положении ротора. Поле контролируется через продольную составляющую тока I sd , в то время как момент контролируется через поперечную составляющую тока I sq . Обратное преобразование Парка (dq/αβ), математический модуль преобразования координат, позволяет вычислить опорные составляющие вектора напряжения V sα * и V sβ * .


Для определения положения ротора используется либо датчик положения ротора установленный в электродвигателе либо реализованный в системе управления бездатчиковый алгоритм управления, который вычисляет информацию о положении ротора в режиме реального времени на основании тех данных, которые имеются в системе управления.

Блок-схема прямого управления моментом с пространственно векторной модуляцией с регулировкой момента и потокосцепления с обратной связью работающей в прямоугольной системе координат ориентированной по полю статора представлена на рисунке ниже. Выходы ПИ регуляторов момента и потокосцепления интерпретируются как опорные составляющие напряжения статора V ψ * и V M * в системе координат dq ориентированной по полю статора (англ. stator flux-oriented control, S-FOC). Эти команды (постоянные напряжения) затем преобразуются в неподвижную систему координат αβ, после чего управляющие значения V sα * и V sβ * поступают на модуль пространственно векторной модуляции.


Функциональная схема прямого управления моментом с пространственно векторной модуляцией напряжения

Обратите внимание, что данная схема может рассматриваться как упрощенное управление ориентированное по полю статора (S-FOC) без контура управления током или как классическая схема (ПУМ-ТВ, англ. switching table DTC, ST DTC) в которой таблица включения заменена модулятором (ПВМ), а гистерезисный регулятор момента и потока заменены линейными ПИ регуляторами.

В схеме прямого управления моментом с пространственно векторной модуляцией (ПУМ-ПВМ) момент и потокосцепление напрямую управляются в замкнутом контуре, поэтому необходима точная оценка потока и момента двигателя. В отличии от классического алгоритма гистерезисного , работает на постоянной частоте переключения. Это значительно повышает характеристики системы управления: уменьшает пульсации момента и потока, позволяет уверенно запускать двигатель и работать на низких оборотах. Но при этом снижаются динамические характеристики привода.

Нелинейные регуляторы момента

Представленная группа регуляторов момента отходит от идеи преобразования координат и управления по аналогии с коллекторным двигателем постоянного тока, являющегося основой для . Нелинейные регуляторы предлагают заменить раздельное управление на непрерывное (гистерезисное) управление, которое соответствует идеологии работы (включено-выключено) полупроводниковых устройств инвертора.

В сравнении с полеориентированным управлением схемы прямого управления моментом имеют следующие характеристики:

    Преимущества:
  • простая схема управления;
  • отсутствуют контуры тока и прямое регулирование тока;
  • не требуется преобразование координат;
  • отсутствует отдельная модуляция напряжения;
  • датчик положения не требуется;
  • хорошая динамика.
    Недостатки:
  • требуется точная оценка вектора магнитного потокосцепления статора и момента;
  • сильные пульсации момента и тока из-за нелинейного (гистерезисного) регулятора и переменной частоты переключения ключей;
  • шум с широким спектром из-за переменной частоты переключения.

Прямое управление моментом

Впервые метод прямого управления моментом с таблицей включения был описан Такахаси и Ногучи в статье IEEJ представленной в сентябре 1984 года и позже в статье IEEE опубликованной в сентябре 1986 года . Схема классического метода прямого управления моментом (ПУМ) на много проще, чем у метода управления по полю (), так как не требуется преобразования систем координат и измерения положения ротора. Схема метода прямого управления моментом (рисунок ниже) содержит оценщик момента и потокосцепления статора, гистерезисные компараторы момента и потокосцепления, таблицу включения и инвертор.

Принцип метода прямого управления моментом заключается в выборе вектора напряжения для одновременного управления и моментом и потокосцеплением статора. Измеренные токи статора и напряжение инвертора используются для оценки потокосцепления и момента. Оцененные значения потокосцепления статора и момента сравниваются с управляющими сигналами потокосцепления статора ψ s * и момента двигателя M * соответственно посредством гистерезисного компаратора. Требуемый вектор напряжения управления электродвигателем выбирается из таблицы включения исходя из оцифрованных ошибок потокосцепления d Ψ и момента d M генерируемых гистерезисными компараторами, а также исходя из сектора положения вектора потокосцепления статора полученного исходя из его углового положения . Таким образом, импульсы S A , S B и S C для управления силовыми ключами инвертора генерируются посредством выбора вектора из таблицы.


Классическая схема прямого управления моментом с таблицей включения с датчиком скорости

Имеется множество вариаций классической схемы нацеленых на улучшение пуска, условий перегрузки, работы на очень низких скоростях, уменьшение пульсаций момента, работу на переменной частоте переключения и уменьшение уровня шумов.

Недостатком классического метода прямого управления моментом является наличие высоких пульсаций тока и в установившемся состоянии. Проблема устраняется повышением рабочей частоты инвертора выше 40кГц, что увеличивает общую стоимость системы управления .

Прямое сомоуправление

Заявка на патент метода прямого самоуправления была подана Депенброком в октябре 1984 года . Блок схема прямого самоуправления показана ниже.

Основываясь на командах потокосцепления статора ψ s * и текущих фазовых составляющих ψ sA , ψ sB и ψ sC компараторы потокосцепления генерируют цифровые сигналы d A , d B и d C , которые соответствуют активным состояниям напряжений (V 1 – V 6). Гистерезисный регулятор момента имеет на выходе сигнал d M , который определяет нулевые состояния. Таким образом, регулятор потокосцепления статора задает отрезок времени активных состояний напряжений, которые перемещают вектор потокосцепления статора по заданной траектории, а регулятор момента определяет отрезок времени нулевых состояний напряжений, которые поддерживают момент электродвигателя в определенном гистерезисом поле допуска.


Схема прямого самоуправления

    Характерными особенностями схемы прямого самоуправления являются:
  • несинусоидальные формы потокосцепления и тока статора;
  • вектор потокосцепления статора перемещается по шестиугольной траектории;
  • нет запаса по напряжению питания, возможности инвертора используются полностью;
  • частота переключения инвертора ниже чем у прямого управления моментом с таблицей включения;
  • отличная динамика в диапазонах постоянного и ослабленного поля.

Заметьте, что работа метода прямого самоуправления может быть воспроизведена с помощью схемы при ширине гистерезиса потока 14%.